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Abstract

In this article we give a forcing characterization for the Ramsey property of �1
2-sets

of reals. This research was motivated by the well-known forcing characterizations for

Lebesgue measurability and the Baire property of �1
2-sets of reals. Further we will

show the relationship between higher degrees of forcing absoluteness and the Ramsey

property of projective sets of reals.

1 Notations and De�nitions

Most of our set-theoretical notations and notations of forcings are standard and can be
found in [Je 2] or [Ku]. An exception is, that we will write AB for the set of all functions
from B to A, instead of BA because we never use ordinal arithmetic. A<! is the set of all
partial functions f from ! to A, such that the cardinality of dom(f) is �nite.

First we will give the de�nitions of the sets we will consider as the real numbers.

Let [x]� := fy � x : jyj = �g and [x]<� := fy � x : jyj < �g, where jyj denotes the
cardinality of y. For x 2 [!]!, we will consider [x]<! as the set of strictly increasing,
�nite sequences in x and [x]! as the set of strictly increasing, in�nite sequences in x. For
x 2 [!]! and n 2 ! let x(n) be such that x(n) 2 x and jx(n) \ xj = n.

We can consider [!]! also as a set of in�nite 0-1-sequences

[!]! �! 2!

x 7�! f such that f(n) = 1 i� n 2 x;

or as the in�nite sequences in !

[!]! �! !!

x 7�! han : n 2 !i such that: a0 := x(0) and
an+1 := x(n+ 1)� x(n)� 1:

Note that these two mappings are bijective.

1The research for this paper was partially suported by the Emmy N�other Institute in mathematics of

Bar-Ilan and the Minerva foundation, Germany.
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The Baire space

The Baire space is the space !! of all in�nite sequences of natural numbers, han : n 2 !i,
with the following topology: For every �nite sequence s = hak : k < ni, let

Us := ff 2 !! : s � fg = fhck : k 2 !i : 8k < n(ck = ak)g:

The sets Us (s 2 !<!) form a basis for the topology of !!. Note that each Us is also
closed. The Baire space is homeomorphic to the space of all irrational numbers in [0; 1]
with the topology of the real line (cf. [Je 2] p. 36).
Because the mapping given above between [!]! and !! is bijective, we can endow [!]!

with the induced topology and will not distinguish between the two spaces [!]! and !!.
The same holds for the sets [!]! and 2!.

Three properties of sets of reals

Let us work in the topological space [!]!.

A set R � [!]! is rare (or nowhere dense) if the complement of R contains a dense open
set and a setM � [!]! is meager (or of �rst category) ifM is the union of countably many
rare sets. A nonmeager set is also called a set of second category. A set A � [!]! has
the Baire property if there exists an open set G � [!]! such that the symmetric di�erence
A�G = (A nG) [ (G n A) is meager.

A set N � [!]! is null if N considered as a set of reals has Lebesgue measure zero. A
set A � [!]! is Lebesgue measurable if there is a Borel set B such that the symmetric
di�erence A�B is null.

A set A � [!]! has the Ramsey property (or isRamsey) if 9x 2 [!]!([x]! � A_[x]!\A = ;):
If there exists an x such that [x]! \A = ; we call A a RamseyÆ set and if [x]! � A we call
A a co-RamseyÆ set. Note that A can also be both. A set A � [!]! is called uniformly
RamseyÆ if, for each x 2 [!]! there is a y 2 [x]! such that [y]! \A = ;.

The hierarchy of projective sets

We always consider the boldface �1
n hierarchy (see [Je 2] p.510). A �1

1-set is the projection
of a closed set. The �1

1-sets are also called analytic sets. The �1
1-sets are the complements

of the analytic sets. A �1
n+1-set is the projection of a �1

n-set and the �1
n+1-sets are the

complements of the �1
n+1-sets. A set is �1

n if it is �1
n and �1

n. For the normal form of the
formulas representing projective sets and relations cf. [Je 2] Section 40. Further we will
consider a �1

n-relation without free variables as a �1
n-sentence.

If all �1
n-sets with parameters in V \W are Ramsey, (are Lebesgue measurable, have the

Baire property, respectively), with respect to V, we will write V j= �1
n(R)W (V j= �1

n(L)W ,
V j= �1

n(B)W , respectively). If V =W , then we do not write the index W . The notations
�1
n(R)W ; �1

n(L)W ; �1
n(B)W ; �1

n(R)W ; �1
n(L)W and �1

n(B)W are similar. Note that
because of the three properties are closed under complements, the statements �1

n(R),
�1
n(L) and �1

n(B) are equivalent to �1
n(R), �

1
n(L) and �1

n(B), respectively.

Filters and Families on !

F � [!]! is a Ramsey family if for all � 2 2[!]
2

there is an h 2 F such that �j[h]2 is
constant.
F � [!]! is a dominating family if for all x 2 [!]! there is a d 2 F and a natural number
n 2 ! such that for all k � n: d(k) � x(k):
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F � [!]! is dominated by the real d if for all f 2 F there is a natural number n 2 ! such
that for all k � n: d(k) � f(k): (In this case we call d a dominating real with respect to
F).
F � [!]�! is a �lter (on !) if ! 2 F and for all x; y 2 [!]�!: if x; y 2 F then x \ y 2 F
and if x 2 F , x � y then y 2 F :
A �lter F is proper if ; =2 F :
A �lter F is an ultra�lter if it is proper and for every x 2 [!]�!, either x 2 F or ! nx 2 F :
The �lter F = fx 2 [!]! : j! n xj < !g is called the Fr�echet �lter.
A Ramsey ultra�lter is a Ramsey family which is also an ultra�lter. We consider only
�lters which are proper and contain the Fr�echet �lter.

Some notions of forcing

We recall the de�nition of the following seven notions of forcing.

(i) The Amoeba (measure) forcing A:

p 2 A, p � 2! is a perfect tree ^ �(p) > 1
2
;

p � q , p � q:

(ii) The Random forcing B:

p 2 B, p � 2! is a perfect tree ^ �(p) > 0;
p � q , p � q:

(iii) The Cohen forcing C:

p 2 C, p 2 2<!;
p � q , p extends q.

(iv) The Hechler forcing D:

hn; fi 2 D, n 2 ! ^ f 2 !!;
hn; fi � hm; gi , n � m ^ f jm = gjm ^ 8k(f(k) � g(k)):

(v) The Mathias forcing M:

hs; Si 2M, s 2 [!]
<!

^ S 2 [!]
!
^ max(range(s))<min(S);

hs; Si � ht; T i , s extends t ^ S � T ^ 8i 2 dom(s) n dom(t)(s(i) 2 T ):

(vi) The forcing notion P(D) for an ultra�lter D:

ps 2 P(D), ps � [!]
<!

is a tree and there is an s 2 ps such that
8t 2 ps((s � t _ t � s) ^ (s � t! fn : t_n 2 psg 2 D));

ps � qt , ps � qt:

(vii) The forcing notion PD for an ultra�lter D:

hs; ai 2 PD , s 2 [!]
<!

^ a 2 [!]
!
^ a 2 D ^ max(range(s))<min(a),

hs; ai � ht; bi , s extends t ^ a � b ^ 8i 2 (dom(s) n dom(t))(s(i) 2 b):

In the forcing notions (v),(vi) and (vii) we call s the stem of the condition hs; Si, ps
and hs; ai, respectively. A generic object over one of these seven forcing notions can be
considered as a generic real and we will handle the generic reals like the corresponding
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generic objects. For example ifGM is Mathias generic and p 2 GM (for a Mathias condition
p), then we write p 2 m (for m Mathias generic real) and if p has empty stem (p = h;; Si),
we also write m � p: Note that the conditions of these seven forcing notions can also be
considered as reals, (and the meaning of r1 � r2 is clear). Let p; q are Mathias conditions,
then we write p �0 q to say that p and q have the same stem and p � q.
Names in the forcing language are denoted with a \�" over the letter. Canonical names
for generic objects are usually denoted by boldface letters and canonical names for objects
in the ground model we denote with a \

�

" over the letter.

Forcing-absoluteness

Let P be a notion of forcing. We de�ne

V P j= �() V j= \1 P�"

where � is a formula with parameters in V and 1 is the weakest condition of P.

Now we say V is �1
n-P-absolute if for all �

1
n-sentences ' with parameters in V ,

V P j= ' i� V j= ':

Or equivalently, if for all P-generic objects GP over V :

V [GP] j= ' i� V j= ':

2 Introduction

In this section we give a list of results. Some of them are well-known, others gave the
motivation to this work.

Characterizations with generic reals

Because the canonical well-ordering of constructible reals is �1
2 (cf. [Je 2] Theorem 97),

G�odel's constructible universe L is neither a model for �1
2(B) nor �

1
2(L) nor �

1
2(R). Hence,

a model V of set theory in which one of these properties holds, has to be larger than L.
In fact, V has to contain even some reals which are generic over L.

THEOREM 2.1 (i) V j= �1
2(B) if and only if for all reals r 2 V the set of reals in V

which are Cohen over L[r] is not empty.

(ii) V j= �1
2(L) if and only if for all reals r 2 V the set of reals in V which are random

over L[r] is not empty.

(iii) V j= �1
2(R) if and only if for all reals r 2 V the set of reals in V which are Ramsey

over L[r] is not empty.

PROOF: All three results were proved in [JS 1]. a

A similar characterization we also have for �1
2-sets.

THEOREM 2.2 (i) V j= �1
2(B) if and only if for all reals r 2 V the set of reals in V which

are Cohen over L[r] is co-meager.

(ii) V j= �1
2(L) if and only if for all reals r 2 V the set of reals in V which are random

over L[r] has measure 1.
(iii) V j= �1

2(R) if and only if for all reals r 2 V the set of reals in V which are Ramsey

over L[r] is co-RamseyÆ.

PROOF: A proof can be found in [BJ]. For the third result see also [JS 1]. a
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Characterizations with forcing absoluteness

For the �1
2-sets we also �nd a characterization with forcing absoluteness.

THEOREM 2.3 (i) V j= �1
2(B) if and only if V is �1

3-Hechler-absolute.

(ii) V j= �1
2(L) if and only if V is �1

3-Amoeba-absolute.

(iii) V j= �1
2(R) if and only if V is �1

3-Mathias-absolute.

PROOF: The �rst two results were proved in [Ju 1] and [Ju 2]. A proof of the last one
will be given in this work, Theorem 4.1. a

For higher levels in the projective hierarchy, we lose the forcing characterization with
Mathias forcing for the Ramsey property. We will show in Theorem 5.3 that

�1
4-Mathias-absoluteness =) �1

3(R)

but (Theorem 5.2)
�1

3(R) 6=) �1
4-Mathias-absoluteness:

The reason for this is, that if V is �1
4-Mathias-absolute, then !V1 is inaccessible in L. On

the other hand we can build a model in which �1
3(R) holds without using inaccessible

cardinals.
We will show further (Corollary 6.1) that

�1
5-Mathias-absoluteness =) �1

4(R);

and moreover (Corollary 6.5)

�1
6-Mathias-absoluteness =) �1

5(R):

3 The Ramsey Property and Mathias Forcing

Basic facts about the Ramsey property

FACT 3.1 If A � [!]! is Ramsey and C � [!]! is uniformly RamseyÆ (e.g. countable),

then both, A [ C and A n C are Ramsey.

PROOF: To see that A [ C is Ramsey, �rst note that if there is an x 2 [!]! such that
[x]! � A, we are done. Otherwise, pick x such that [x]! \ A = ; and pick y 2 [x]! such
that [y]! \C = ;. Now [y]! \ (A [C) = ;.

To see that AnC is Ramsey, again note that if there is an x such that [x]! \A = ;, we are
done. Otherwise, pick x such that [x]! � A. Now there is a y 2 [x]! such that [y]!\C = ;
and [y]! � (A n C). a

FACT 3.2 The axiom of choice implies that there are sets without the Ramsey property.

PROOF: De�ne on [!]! an equivalence-relation as follows:

x � y i� jx�yj is �nite.

Now choose from each equivalence class x� an element cx. Further de�ne:

f(x) :=

(
1 if jx�cxj is odd,
0 otherwise.

5



Then the set fx : f(x) = 1g is evidently not Ramsey. a

The �rst example of a set which does not have the Ramsey property is given in [ER]. A
lot of other examples can be found in [Bn] and [Co].

FACT 3.3 Analytic sets (these are the �1
1-sets) are Ramsey.

PROOF: A proof can be found in [El] and [Si]. a

The forcing notions P(D), PD and M

(Compare also with [Ma]).

Let J = [!]<! be the ideal of �nite sets and let hP(!)=J ;� i =: U be the partial order
de�ned as follows:

p 2 U , p 2 [!]!;

p � q , p n q 2 J (this is p �� q):

FACT 3.4 Let D be U-generic over V , then D is a Ramsey ultra�lter in V [D].

PROOF: First note that U is @0-closed, hence adds no new reals to V , (cf.[Je 2] Lemma
19.6). Let � 2 2[!]

2

, then by the Ramsey Theorem (cf.[Je 2] Lemma 29.1) for each p 2 [!]!

there exists a q �� p such that � is constant on [q]2. Therefore H� := fq 2 [!]! :
�j[q]2 is constantg is dense in U, hence H� \D 6= ;. a

LEMMA 3.5 Let ~D be the canonical U-name for the U-generic object, then

U �P ~D �M :

PROOF:

U �P ~D = fhp; h~s; ~aii : p 2 U ^ p Uh~s; ~ai 2 P ~Dg

= fhp; h~s; ~aii : p 2 [!]! ^ p U(~a 2 ~D ^max(range(~s)) < min(~a))g:

Now the embedding
h : M �! U �P ~D

hs; ai 7�! ha; h�s; �aii

is a dense embedding (see [Go] De�nition 0.8):

1. It is easy to see, that h preserves the order relation �.

2. Let hp; h~s; ~aii 2 U �P ~D. Because U is @0-closed, there is a condition q � p and s 2
[!]<!; a 2 [!]! such that q U�s = ~s ^ �a = ~a. It is obvious that hq; h�s; �aii 2 U �P ~D

is stronger than hp; h~s; ~aii. Now let b := q \ a, then h(hs; bi) � hp; h~s; ~aii. a

LEMMA 3.6 PD � P(D) if and only if D is a Ramsey ultra�lter.

PROOF: See [JS 1] Theorem 1.20. a

LEMMA 3.7 The Mathias forcing M is exible.
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PROOF AND DEFINITION: For the notation see [Je 2] p. 153 and [Ku] p. 224.

A set T � !<! is called a Laver-tree if

T is a tree and 9� 2 T8� 2 T (� � � _ (� � � ^ jfn : �_n 2 Tgj = !)):

(We call � the stem of T . For � 2 T we let succT (�) := fn : �_n 2 Tg, (the successors of
� in T ) and T� := f� 2 T : � � � ^ � � �g.)

A Laver-tree T is uniform if there exists uT 2 [!]
!
such that 8� � stem(T )(fn : �_n 2

Tg = uT n (max(�) + 1).

For a Laver-tree T , we say A � T is a front if � 6= � in A implies � 6� � and for all f 2 [T ]
there is an n 2 ! such that f jn 2 A.

The meaning of p � [[�]] and p \ [[�]] are Up � [[�]] and Up \ [[�]], respectively.

1. We say a forcing notion P is Laver-like if there is a P-name ~r for a dominating real
such that
(i) the complete Boolean algebra generated by the family f[[~r(i) = n]] : i; n 2 !g
equals r.o. (P), and
(ii) for each condition p 2 P there exists a Laver-tree T � !! so that

8� 2 T

 
p(T�) :=

Y
n2!

X
�2T�

fp \ [[~rjlg(�) = � ]] : lg(�) = ng 2 r.o. (P) n f0g

!
:

We express this by saying p(T ) 6= ; where p(T ) := p(Tstem(T )).

M is Laver-like:

Let m be the canonical M-name for the Mathias real, then m is dominating (cf.
[Je 1] Part I, Lemma 3.15) and further let p = hs; Si 2 M with lg(s) = n and
S = fa(j) : j 2 !g. Then Up =

Q
k2n

[[m(�k) = �s(k)]] �
Q
i2!

P
j2!

[[m(�n+�i) = �a(j)]], which

gives a proof of (i).

For (ii) consider T � !<! de�ned as follows:

� 2 T i� � strictly increasing and
� � s _ (s � � ^ range(�) n range(s) � S):

This T has the desired property and is even a uniform Laver-tree. a

2. If ~r is a P-name that witnesses that P is Laver-like, we say that P has strong fusion
if for countably many open dense sets Dn � P and for p 2 P, there is a Laver-tree
T such that p(T ) 6= ; and for each n:

f� 2 T : p(T ) \ [[~rjlg(�) = �]] 2 Dng

contains a front.

M has strong fusion:

Let D � M be dense open and p = hs; Si an M-condition. For each � such that
� � s or (s � � ^ � n s � S) we de�ne the rank of �, rkD(�) as follows:

rkD(�) = 0 , 9A 2 [S]!(h�;Ai 2 D);
rkD(�) = � , :9� < �(rkD(�) = �) and

jfn : n 2 S ^ rkD(�
_n) < �gj = !:
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If rkD(�) is unde�ned, we put rkD(�) =1.

Note that if � 2 dom(rkD), then rkD(�) < 1. Otherwise almost all successors (in
S) of � have rank =1, hence the complement of S0 := fn : n 2 S^rkD(�

_n) =1g
with respect to S is �nite. Let sn := min(Sn), then the complement of

Sn+1 := fn : n 2 Sn ^ rkD(�
_�_s_n n) =1 for all � 2 [fs0; : : : ; sn�1g]

<ng

with respect to Sn is �nite. Let A := fsi : i 2 !g � S and take h�;A0i � h�;Ai such
that h�;A0i 2 D. Then � = �_�_sn (for an n) and A0 2 [A]!, hence rkD(�) =1, a
contradiction.

For two uniform Laver-trees T and T 0, the expression T �n T
0 means that the �rst n

elements of uT and uT 0 are the same. Let T0 be the uniform Laver-tree constructed
in the proof of part (ii) above.
De�ne a uniform Laver-tree Tn+1 and the corresponding set uTn+1 recursively such
that Tn+1 �n Tn and if � 2 Tn+1 then one of the following is true:

max(�) � uTn(n) ^ � 2 Tn

(rkDn
(�) = 0 ^ 8k < lg(�)(rkDn

(�jk) > 0))! h�; uTn+1 n (max(�) + 1)i 2 Dn

rkDn
(�) > 0 ^ 8k 2 uTn+1 n (max(�) + 1)(rkDn

(�) > rkDn
(�_k))

Now Tn+1 is a uniform Laver-tree and T :=
T
n2! Tn is also uniform, p(T ) 6= ; and

f� 2 T : p \ [[mjlg(�) = �]] 2 Dng contains a front, (consider rkDn
). a

3. A Laver-like P is closed under �nite changes if given a p 2 P and Laver trees T and
T 0 so that for all � 2 T 0 : jsuccT (�) n succT 0(�)j < !, if p(T ) 6= ;, then p(T 0) 6= ;,
too.

M is closed under �nite changes:

Use a standard fusion argument. a

4. We call P a exible forcing notion i� P is Laver-like, has strong fusion and is closed
under �nite changes.

Hence, the Mathias forcing M is exible. a

Essential Theorems about �1

2
-sets of reals

Now we will give the relationship between the Ramsey property and Mathias forcing.

FACTS 3.8

1. [JS 1] Theorem 1.7:

For every P(D)-sentence � and for all p 2 P(D) there exists a q 2 P(D) such that
q � p, stem(p)=stem(q) and

q P(D)� or q P(D):� (q decides �):

(This is known as pure decision.)
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2. [JS 1] Theorem 1.14:

If V � V 0 � V 00 are models of ZFC and D 2 V is an ultra�lter and x 2 V 0 is
P(D)-generic over V , then for every y 2 [x]! \ V 00, y is P(D)-generic over V , too.

3. [JS 1] Theorem 1.15:

If D 2 V and g is P(D)-generic over V , then

V [g] j= �1
2(R)V :

4. [JS 1] Theorem 1.16:

If D 2 V , then

r 2 [!]! is P(D)-generic over V if and only if

8a 2 D(r �� a) and 8� 2 2[!]
2

\ V : 9n 2 ! such that �j[rnn]2 is constant.

5. [JS 1] Theorem 2.7:

V j= �1
2(R) if and only if V j= �1

2(R):

6. [JS 1] Theorem 2.11:

For an s 2 [!]! de�ne Ds := fa 2 [!]! : s �� ag (where s �� a means js n aj < !)
and Ds := Ds \ L[Ds]. If Ds is an ultra�lter in L[Ds] and r �� s, then Dr = Ds

and we write Ps for the forcing notion P(D
s) in L[Ds].

V j= �1
2(R)L[u] , 8r 2 L[u]9s 2 [r]! \ V (s is Ps-generic over L[u][D

s]):

Some properties of Mathias forcing

FACTS 3.9

1. Using the Fact 3.8 3. and the Lemmas 3.5 and 3.6 we see that if m is Mathias over
V , then V [m] j= �1

2(R)V . Thus, (with [Ku] Lemma 5.14 on p. 276) an !1-iteration
of Mathias forcing with countable support gives a model in which each �1

2-set is
Ramsey.

2. We call r a Ramsey real over V if and only if there exists a D 2 V such that:
(i) D is an ultra�lter, 8a 2 D(r �� a) and
(ii) for all � 2 2[!]

2

; � 2 V there is an n 2 ! such that �j[rnn]2 is constant.
(See also [JS 1] De�nition 1.17).
Now we see that if s is Ps-generic over L[u][D

s], then (by 3.8 4.) it is Ramsey over
L[u][Ds] and even a dominating real with respect to L[u][Ds].

PROOF: To each real r 2 L[u][Ds] consider the function �r 2 2[!]
2

(which also
belongs to L[u][Ds]) de�ned as follows:

�r(fi; jg) = 0 () 9k(r(2k) < i; j � r(2k+1)):

9



Because s is Ps-generic and by 3.8 4. we have

9n 2 !(�j[snn]2 is constant):

Thus, because s n n is in�nite, �j[snn]2 � 1 and for k � 2n we get s(k) > r(k), hence

8r 2 L[u][Ds] \ [!]!9l 2 !8k � l(s(k) > r(k))

which says, that the reals of L[u][Ds] are dominated by s. a

We close this section by mentioning two useful corollaries.

COROLLARY 3.10 If p is an M-condition and ~x is an M-name for a real, then there
exists an M-condition q �0 p and a real �x 2 V such that V j= \q M�x = ~x".

PROOF: Let ~x be an M-name for a real. Each real can be considered as an in�nite
0-1-sequence, so ~x is such that for all natural numbers n:

~x(�n) = �1 or ~x(�n) = �0:

Take p = hs;Xi. Because Mathias forcing has pure decision (by the Lemmas 3.5, 3.6
and Fact 3.8 1., or by [Ba] Theorem 9.3) in V there is a condition hs;X0i such that
X0 � X which decides ~x(�0). Let a0 be the least member of X0, then there are Y; X1

such that X0 n fa0g � Y � X1 and hs_a0; Y i, hs;X1i both decide ~x(�1). Let now a1 be
the least member of X1. There are Y1; Y2; Y3;X2 such that X1 n fa1g � Y1 � : : : � X2

and hs_a_0 a1; Y1i, hs
_a1; Y2i, hs

_a0; Y3i, hs;X2i all decide ~x(�2). Now let a2 be the least
member of X2 and so on. De�ne r := fai : i 2 !g. We encode now ~x by �x := fs_t : t 2
[r]<! ^ hs_t; r n (max(t) + 1)i M~x(lg(t)

_
) = �1g: Then �x is a real and if m is a Mathias

real over V such that hs; ri 2 m then ~x[m] = �x[m], where �x[m](n) = 1 if and only if
mj

n
2 �x. a

COROLLARY 3.11 If p is an M-condition and V j= \p M9x�(x)", then there is an

M-condition q �0 p and an M-name ~x for a real such that V j= \q M�(~x)".

PROOF: We will follow the proofs of [Ba] Theorems 9.1 and 9.3.

Assume p = hs;Ai M9x�(x). First we prove that there is a B � A such that if ht; Ci �
hs;Bi, ~x an M-name and ht; Ci M�(~x), then we �nd an M-name ~y such that ht; B n
(max(t) + 1)i M�(~y). For this we construct a sequence b0 < b1 < : : : of elements of A
and a sequence B0 � B1 � : : : of subsets of A such that for all b 2 Bn+1, bn < b. Let
B0 := A. Given Bn, let s1; s2; : : : ; sk enumerate all the subsets of fbi : i < ng. Now
construct a sequence B0

n � B1
n � : : : � Bk

n as follows. B0
n := Bn and given Bi�1

n let
Bi
n � Bi�1

n be such that for some M-name ~x, hs [ si; B
i
ni M�(~x), if it exists; otherwise

let Bi
n := Bi�1

n . Finally let bn :=
T
Bk
n, Bn+1 := Bk

n nfbng and B := fbn : n 2 !g. Suppose
ht; Ci � hs;Bi and we �nd an M-name ~x such that ht; Ci M�(~x). Because there is an
n 2 ! such that sl := t n s � fbi : i < ng we must have chosen Bl

n so that for some
M-name ~y, hs[ sl; B

l
ni M�(~y). Now B n (max(t)+1) � Bl

n, hence ht; B n (max(t)+1)i �
ht; Bl

ni M�(~y) and we are done.

If p; q are two M-conditions, then p\q denotes the weakest M-condition which is stronger
than p and q, (if it exists). Let ~x be an M-name and p an M-condition, then ~x(p) denotes
the following name. h~�; qi 2 ~x(p) if and only if there exists an M-condition q0 such that
h~�; q0i 2 ~x and q = p\q0. For twoM-names ~x; ~y let ~x[~y := fh~�; pi : h~�; pi 2 ~x_h~�; pi 2 ~yg:

Now we are prepared to prove the corollary. Given p = hs;Ai M9x�(x). Let B � A be as
above. We construct a sequence b0 < b1 < : : : of elements of B and subsets B0 � B1 � : : :
of B by induction as follows. Let B0 := B. Given Bn, �nd B0

n+1 � Bn so that for all
s0 � fbi : i < ng one of the following cases holds:
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1. For all b 2 B0
n+1 we �nd anM-name ~x (depending on b) such that hs[s0[fbg; B0

n+1n
(b+ 1)i M�(~x).

2. For no b 2 B0
n+1 we �nd an M-name ~x (which may depend on b) such that hs[ s0 [

fbg; B0
n+1 n (b+ 1)i M�(~x).

Because of the choice of B, for each n we �nd a B0
n+1 � Bn � B. Let bn :=

T
B0
n+1,

Bn+1 := B0
n+1 n fbng and A0 := fbn : n 2 !g. Suppose for ht; Ci � hs;A0i we �nd

an M-name ~x, such that ht; Ci M�(~x). Let jtj be minimal. If jtj = jsj then t = s
and we �nd an M-name ~y such that hs;A0i M�(~y). If jtj > jsj then max(t) = bn for
some n and at stage n, the �rst case held for some s0 = t n (s [ fbng). Now for each
bi 2 A0 (i � n) take an M-name ~xi such that hs [ s0 [ fbig; A

0 n (bi + 1)i M�(~xi).
Further let ~y :=

S
f~xi(pi) : i � n ^ pi = hs [ s0 [ fbig; A

0 n (bi + 1)ig. Then we have
hs[s0; A0 n (max(s0)+1)i M�(~y), which is a contradiction to the minimality of jtj. a

In the next section we start to show the relationship between Mathias-absoluteness and
the Ramsey property of projective sets of reals.

4 �1

2
-sets and the Ramsey Property

It is well-known that for �1
2(B) and �1

2(L) there are characterizations with forcing abso-
luteness (cf. Theorem 2.3). Such a characterization exists also for �1

2(R). Although the
proofs for the Baire property and the Lebesgue measurability are similar, the proof for the
Ramsey property is di�erent. This is because Mathias forcing does not have the countable
chain condition. (But fortunately it has a lot of combinatorial properties.)

THEOREM 4.1 V j= �1
2(R) if and only if V is �1

3-Mathias-absolute.

PROOF: First we prove that �1
3-M-absoluteness implies �1

2(R). For this let �(x) be a
�1

2-set:
�(x)$ '(x)$  (x);

where '(x) is a �1
2-set and  (x) is a �1

2-set. Because 8x('(x) $  (x)) is a �1
3-sentence,

by �1
3-M-absoluteness we have

VM j= 8~x('(~x)$  (~x)):

By Fact 3.9 1. we know that VM j= \each �1
2-set with parameters in V is Ramsey".

Therefore

VM j= 9~y(8~x0(~x0 2 [~y]! !  (~x0)) _ 8~x1(~x1 2 [~y]! ! :'(~x1))):

But this is a �1
3-sentence and because V j= '(x) $  (x), also V j= \� is Ramsey". Now

because �(x) was arbitrary and �1
2(R) is equivalent to �1

2(R) (by Fact 3.8 5.), we have
V j= �1

2(R):
Now we prove that �1

2(R) implies �1
3-M-absoluteness. Let 	 = 9x (x) be a �1

3-sentence.
If V j= 	, then by the Shoen�eld absoluteness Lemma (see [Je 2] Theorem 98), the �1

3-
sentences are upwards absolute, hence VM j= 	. For the other direction assume that
VM j= 	. Then, because of VM is full (cf. [Je 2] Lemma 18.6), there is a name ~x, such
that VM j=  (~x). By Corollary 3.10 there exist reals r; �x 2 V such that �x � r and
V j= \r M �x = ~x": Now, because V j=�1

2(R), there is an s 2 [r]
!
such that s is Ps-generic

over L[�x][r][Ds]. Let m � s be a Mathias real over V , then m is also Ps-generic over
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L[�x][r][Ds] (by 3.8 2.). V [m] j=  (�x[m]), hence L[�x][r][Ds][m] j=  (�x[m]) because  is
�1

2; m � s � r and �x may be regarded also as a Ps-name. So there must be a condition
p 2 L[�x][r][Ds] such that L[�x][r][Ds] j= \p Ps

 (�x)". Let k = max(range(stem(p))), then
s0 := snk isPs-generic over L[�x][r][D

s] and there is an n 2 ! such that s00 := (s0nn)[stem(p)
satis�es p, (by [JS 1] De�nition 1.8 and Lemma 1.12). Hence (again by [JS 1] Lemma
1.12), s00 is Ps-generic over L[�x][r][D

s] and because of s00 satis�es p and p Ps
 (�x) we have

L[�x][r][Ds][s00] j=  (�x[s00]) and �nally V j= 9x (x), (by Shoen�eld). a

So, we have found a forcing characterization for �1
2(R). Such a characterization with

Mathias forcing does not exist for higher degrees of Mathias-absoluteness as we will show
in the next section.

5 �1

4
-M-absoluteness and the Ramsey Property

THEOREM 5.1 �1
4-Mathias-absoluteness implies �1

3(R):

PROOF: Assume that V is �1
4-M-absolute. Let �(x) be a �1

3-set in V with parameters
in V : �(x) $ '(x) $  (x) where '(x) is a �1

3-set and  (x) is a �1
3-set. So V j=

8x('(x) $  (x)) and 8x(('(x) _ : (x)) ^ (:'(x) _  (x))) is a �1
4-sentence, hence M-

absolute. Therefore �(x) is still a �1
3-set in V

M.
Assume V j= \�(x) is not Ramsey". Hence V j= 8x9y1y2(y1 � x^y2 � x^�(y1)^:�(y2)).
Obviously we have �(y1) i� '(y1) and :�(y2) i� : (y2) but '(x); : (x) are both �1

3-
sets. So V j= \�(x) is not Ramsey" is equivalent to

V j= 8x9y1y2(y1 � x ^ y2 � x ^ '(y1) ^ : (y2)) (�: �)

where � is a �1
4-sentence. Thus by �1

4-M-absoluteness we have

VM j= � : (�)

Let m be the canonical name for a Mathias real m over V . Then there is a condition p
with empty stem such that p M'(m) or p M:'(m); (see Lemmas 3.5 and 3.6 and Fact
3.8 1.). Assume p M'(m), then p M9~x'(~x) (otherwise p M: (m) and : (m) is also
�1

3): Because each y 2 [m]! is Mathias over V and stem(p) = h i we have V [y] j= '(y):
Because V [y] � V [m] and ' is �1

3; hence upwards absolute, V [m] is also a model of '(y):
So, we get

p M9~x8~y(~y 2 [~x]! ! '(~y)):

Now because VM j= 8~x('(~x)$  (~x)) we �nally have

p M9~x8~y(~y 2 [~x]! ! '(~y) ^  (~y));

but this is a contradiction to (�). a

THEOREM 5.2 �1
3(R) does not imply �1

4-Mathias-absoluteness.

PROOF: For this it is enough to �nd a model V in which all �1
3-sets are Ramsey, all

�1
2-sets have the property of Baire and !1 in this model is the same as !L1 .

We have V j= �1
2(B) if and only if for all reals r in V there is a real in V which is Cohen over

L[r]. To say this is a �1
4-sentence: For s 2 2<! consider 1_s as a binary code for a natural

number n (n > 0) and let ]n := s; (]0 := ]1 = h i). We write n � m if ]mjlg(]n) = ]n. Note
that ]n � ]m is an arithmetical statement. The sentence 8r 2 [!]

!
9c 2 [!]

!
8x 2 [!]

!
(c

is a branch ^ (x 2 L[r] ^ x encodes a dense set ! x \ c 6= ;)) is a composition of the
following sentences.
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c is a branch is 8nm((n 2 c ^ m 2 c) ! (n � m _ m � n)), which is an arithmetical
statement.
x 2 L[r] is a �1

2-sentence with parameter r (cf. [Je 2] Theorem 97).
x encode a dense set is 8m9n(n 2 x ^m � n), which is arithmetic.
Finally x \ c 6= ; is 9t(t 2 x ^ t 2 c), which is arithmetic, too. a

So, if V is a model with the desired properties and V is �1
4-M-absolute, for each real

r 2 V [m] there is (in V [m]) a Cohen real c over L[r]. If r 2 V [m] is a real and c is a Cohen
real over L[r], then L[r]\!! is a strong measure zero set in L[r][c] (see [Co] Theorem 1.3)
and hence we �nd in V [m] a covering of L\ !! with respect to the real r. So L \ !! is a
strong measure zero set belonging to V .
Now if !L1 = !V1 then we get in V [m] a strong measure zero set of cardinality !1 with
parameter in V , namely L\!!, but this is a contradiction, (cf. [Ba], proof of Theorem 9.7
or cf. [Je 1] Lemma 8.2 and recall that M � U �P ~D � U �P( ~D)).

It leaves to construct a model V with the desired properties.

In [JS 2] x3 they show, that an !1 iteration of Mathias forcing starting from L, yields a
model in which every �1

3-set is Ramsey and !1 in this model is the same as !L1 . (By the
claim of Theorem 5.3 this is already enough).
Now in [Ju 3] Lemma 1.18 it is proved that if we make a suitable !1 iteration starting from
L, and add alternately Kesef and Cohen reals, we get a model V in which every �1

3-set is
Ramsey, every �1

2-set has the Baire property and !V1 is the same as !L1 . a

The next theorem is in fact a consequence of the following: If V is �1
4-M-absolute, then

!V1 is inaccessible in L.

THEOREM 5.3 �1
4-Mathias-absoluteness implies �1

3(R):

PROOF: We �rst give the following

CLAIM: If V is �1
4-M-absolute, then for all reals r 2 V we have !

L[r]
1 < !V1 , (hence !

V
1

is inaccessible in L).

Now we show that this claim implies that V j= �1
3(R).

LEMMA 5.4 If V is �1
4-M-absolute and 8r 2 V (!L[r]1 < !V1 ) then V j= �1

3(R):

PROOF OF THE LEMMA: Let �(x) � 9y (x; y) be a �1
3-set with parameter a 2 V . If

V j= 9z8x(x 2 [z]! ! :�(x)), then the set �(x) is Ramsey in V . Therefore let us assume
that V j= 8z9x(x 2 [z]!^�(x)) (�: �). Because � is a �1

4-sentence with parameter a and
by �1

4-M-absoluteness we have VM j= �. Now there is a Mathias condition p with empty
stem, such that p decides �(m). Because VM j= �, VM is a model of 9~x(~x 2 [m]!^�(~x)).
Further VM is full and �(x) � 9y (x; y), hence we �nd Mathias names ~x; ~y such that
VM j= (~x 2 [m]! ^  (~x; ~y)).
Consider the statement V [m] j= 9y (x; y) , V [x] j= 9z (x; z) and further assume that
V j= \q M (~x; ~y) ^ V [~x] 6j= 9~z (~x; ~z)" (for an M-condition q). First we have to de�ne
the meaning of q M\V [~x] j= 	(~x)" where 	 is an arbitrary formula with at most one
free variable: If ~z is a variable in 	 for a real and �n 2 ~z is a subformula of 	, then
q0 M\V [~x] j= �n 2 ~z" if and only if there exists a Mathias condition hu;Ui such that

hu;Ui M�n 2 ~z and q0 M8�k(�k 2 �u! �k 2 ~x ^ �k 2 ~x! (�k 2 �U _ �k 2 �u)):

Let x be the evaluation of ~x by the Mathias real m. Now because VM j= ~x �m; x is also
Mathias over V and V [x] j= 	(x) if and only if there exists a Mathias condition q0 2 V
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such that q0 2 m and q0 MV [~x] j= 	(~x): Thus \q MV [~x] j= 	(~x)" is well de�ned.
Let r; �x; �y 2 V be such that r � q and V j= \r M�x = ~x ^ �y = ~y". Further let r 2 s 2 V
be Ramsey over L[a][r][�x; �y], then there is a condition p02L[a][r][�x; �y][D

s], p0�r such that
L[a][r][�x; �y][Ds] j= \p0 Ps

 (�x; �y)". This is because if m0 � s is Mathias over V , then m0 is
Ps-generic and L[a][r][�x; �y][D

s][m0] j=  (�x[m0]; �y[m0]) (by Shoen�eld). Let s0 be Ps-generic
such that p02s

0, further let s02m be Mathias over V and x := �x[m] (= ~x[m]). We write Ps
as a two step iteration Q1� ~Q2 and choose g1 such that g1 is Q1-generic over L[a][r][�x; �y][D

s]
(=:N) and N [g1] = N [x]. Because of N [x] � V [x]; V [x]\[!]!\N [x] is a �1

2-set in V [x] and
8x9y8z(z 2 N [x] ! 9n(yn = z)) (this is: for all x; !1

N [x] is countable) is a �1
4-sentence.

Because of x � m is Mathias over V and V is �1
4-M-absolute, it follows that !1

V [x] is
inaccessible in N [x]. Hence, there exists a set g2 2 V [x] which is ~Q2[x]-generic over N [x]
such that N [x][g2] j=  (x; �y[g1 � g2]). Now N [x][g2] j= 9y (x; y) and N [x][g2] � V [x] and
because �1

3-formulas are upwards absolute, V [x] j= 9y (x; y), which is a contradiction to
q M\V [~x] 6j= 9~z (~x; ~z)".

(If m is Mathias over V and x 2 [m]! \ V [m], then we say that V is �1
n-M-correct if for

every �1
n-set �(x) with parameters in V : V [m] j= �(x), V [x] j= �(x):)

Let p be a Mathias condition with empty stem which decides �(m), where m is Mathias
over V . Thus

V j= \p M9~z (~z;m)" or V j= \p M:�(m)":

If the �rst case holds, let r; �z be such that: r � p and if m � r is Mathias over V , then
V [m] j=  (�z[m];m). In V there exists a Ramsey real s � r over L[a][r][�z] and because
�1

2-sets are absolute (by Shoen�eld) in L[a][r][�z] there exists a Ps-condition q with empty
stem (note that all t 2 [s]! are also Ramsey over L[a][r][�z]) such that L[a][r][�z][Ds] j=
\q Ps

 (�z;g)" where g is the canonical name for the Ps-generic real over L[a][r][�z][D
s]. In

V there is a Ps-generic real s
0 such that s0 � q, hence for all t 2 [s0]! : L[a][r][�z][Ds][t] j=

 (�z[t]; t). Again by Shoen�eld we get:

V j=  (�z[t]; t) and this implies V j= 9y8x 2 [y]!�(x):

Therefore the set �(x) is Ramsey in V .

If the second case holds, we get

V j= \p M8~x 2 [m]!:�(~x)"

hence V j= \p M9~y8~x 2 [~y]!:�(~x)" which is a �1
4-sentence (with parameters in V ) and

says, that �(x) is Ramsey. Therefore by �1
4-M-absoluteness the set �(x) has to be Ramsey

in V . a

Now we have to show that the claim holds.

PROOF OF THE CLAIM: Assume V is �1
4-M-absolute, then by Theorem 4.1 V j=

�1
2(R), and by the Facts 3.8 5., 3.8 6. and 3.9 2. the following is true in V :

8u 2 [!]!8r 2 L[u] \ [!]!9s 2 [r]!(s is Ramsey over L[u][Ds]):

To say this is a �1
4-sentence:

De�ne [ : [!]2 �! !
fn;mg 7�! 1

2
(max(fn;mg)2 �max(fn;mg)) + min(fn;mg):
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Note that [ is a bijection and arithmetic. With [ we can consider each � 2 [!]! as a
function from [!]2 to 2, namely by

�(fn;mg) = 0 () [fn;mg 2 �:

The sentence

8u 2 [!]!8r 2 L[u] \ [!]!9s 2 [r]!(s is Ps-generic over L[u][D
s])

is a composition of the following sentences.

r 2 L[u] is a �1
2-sentence with parameter u.

s 2 [r]! is 8i(i 2 s! i 2 r), which is arithmetic.
s is Ps-generic over L[u][D

s], which is again a composition of the following sentences.

x 2 L[u][Ds] is a �1
2-sentence with parameters u and s.

�j[snn]2 is constant is an arithmetical sentence because of [ is arithmetic.
Ds is an ultra�lter in L[u][Ds] is 8x 2 L[u][Ds] \ [!]!9n(s n n � x _ s n n \ x = ;); which
is a �1

2-sentence with parameters u and s.
8� 2 L[u][Ds]9n(�j[snn]2 is constant), which is also a �1

2-sentence with the parameters u
and s. a

Therefore if V is �1
4-M-absolute, in VM for each real u there exists a real s which dominates

the reals of L[u] (cf. Fact 3.9 2.). Let m be Mathias over V . Because M is exible (cf.
Lemma 3.7), M adds a dominating family of size !1 (see [Br] Theorem 3.1). If there is
a real r 2 V such that !

L[r]
1 = !V1 and m is Mathias over V , then the reals of L[r][m]

dominates the reals of V [m]. (Note that the M-names �f� (� < !1) which are constructed
in [Br] Theorem 3.1 can all be de�ned within L[r].) But this contradicts that in V [m] we
have a dominating real over L[r][m]. a

This concludes the proof of the Theorem. a

We can prove even more, as we will see in the next section.

6 Higher Degrees of Mathias-absoluteness

COROLLARY 6.1 �1
5-Mathias-absoluteness implies �1

4(R):

PROOF: Let �(x) be a �1
4-set:

�(x)$ '(x)$ : (x)

where '(x) and  (x) are �1
4-sets. By �1

5-M-absoluteness, �(x) is still a �1
4-set in V

M.
Let p be an M-condition with empty stem such that

V j= \p M'(m)";

(if V j= \p M:'(m)" then V j= \p M (m)"), then there is an M-name ~y and (by
Corollary 3.11) a p0 � p with empty stem, such that

V j= \p0 M'0(m; ~y)"

(where '(x) � 9y'(x; y) and '0 is a �1
3-formula). Let m � p0 be Mathias over V , then

V [m] j= '0(m; ~y[m]):
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Now in the proof of Lemma 5.4 in fact we showed, that if m is Mathias over V , m0 2
[m]! \V [m], 8r 2 [!]! \V (!L[r]1 < !V1 ) and �(x) is a �1

3-set (or a �
1
3-set) with parameters

in V , then
V [m0] j= �(m0), V [m] j= �(m0):

Because of m0 2 [m]! \V [m], m0 is also Mathias over V and the sentence 8x 2 [m]!('0(x;
~y[m])) holds in V [m]. Therefore 9z8x 2 [z]!: (x), which is a �1

5-sentence with parameters
in V , is true in V [m]. Hence, V j= \�(x) is Ramsey" and because �(x) was arbitrary we
get V j= �1

4(R): a

To prove the last results, we need two slightly technical lemmas.

LEMMA 6.2 If 8r 2 [!]! \ V (!
L[r]
1 < !V1 ) and �(~z) is a �1

3-formula (where ~z is an

M-name in V for a real), then: for all M-conditions q in V there is a real a and an
M-condition l in V such that (q is an M-condition in L[a] and l � q) and for all reals

m: if m is Mathias over V and l 2 m, then (m is Mathias over L[a] and ~z[m] 2 L[a] and
(L[a][m] j= �(~z[m]) if and only if V [m] j= �(~z[m]))).

PROOF: To simplify the notation we assume that the parameters of � are in L.
Assume V j= \q0 M	(~z; ~x)" where q0 � q and �(z) � 9x	(z; x). Let r0 � q0 and �z; �x
such that V j= \r0 M�z = ~z ^ �x = ~x". Let a be a real which encode the reals r0; �z; �x
and q. In L[a] there must be an M-condition q1 � r0 such that L[a] j= \q1 M	(�z; �x)"
(because of the absoluteness of �1

2-formulas). Let l 2 V be Mathias over L[a] such that
q1 2 l and further let m be Mathias over V such that l 2 m, then L[a][m] j= 	(~z[m]; ~x[m])
and V [a][m] j= 	(~z[m]; ~x[m]).
If V j= \q0 M:�(~z)" for all q0 � q which decides �(~z), there is an M-condition q1 as in
the former case, (because �1

3-formulas are downwards absolute). The rest of the proof in
this case is the same as above. a

We say L[a] computes well the �1
3 formula �(~z) (the �

1
3 formula :�(~z), respectively) with

respect to q1.

LEMMA 6.3 If V is �1
4-M-absolute, then V is �1

4-M-correct.

PROOF: If not, then there is a �1
4-formula �(x) and an M-condition p 2 V such that

V j= \p M~x 2 [m]! ^ �(~x) ^ V [~x] 6j= �(~x)". Because V j= \p M�(~x)" there is an
M-name ~y such that V j= \p M	(~x; ~y)" where �(x) � 9y	(x; y) and 	(x; y) is a �1

3-
formula.
Let r; �x; �y be such that r � p and V j= \r M~x = �x ^ ~y = �y". By Lemma 6.2 there is an
a 2 V and an M-condition q � r such that L[a] computes well 	(�x; �y) with respect to q.
Let l and m as in the Lemma 6.2 and further let x := �x[m]. Because m is Mathias over
L[a] and x 2 L[a][m] we can write the Mathias forcing as a two step iteration Q1 � ~Q2

and choose (as in the proof of Lemma 5.4) g1; g2 2 V [x] such that g1 is Q1-generic over
L[a], g2 is ~Q2[g1]-generic over L[a][g1], g1 � g2 is M-generic over L[a] with respect to q
and L[a][g1] = L[a][x]. With the same arguments as in the proof of Lemma 5.4 we have
L[a][x][g2] j= 	(x; �y[g1 � g2]). Now because L[a] computes well the �1

3-formula 	 and
g2 2 V [x], we �nally have V [x] j= �(x): a

THEOREM 6.4 �1
6-Mathias-absoluteness implies �1

4(R):

PROOF: Let �(x) be a �1
4-formula with parameters in V and further let p 2 V be an

M-condition which decides �(m).
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If V j= \p M�(m)" then by Lemma 6.3 V j= \p M9x8y 2 [x]!�(y)".
If V j= \p M:�(m)" then by Lemma 6.3 V j= \p M9x8y 2 [x]!:�(y)".

In both cases (by �1
6-M-absoluteness) we get that �(x) is Ramsey in V and because �(x)

was arbitrary we have V j= �1
4(R): a

COROLLARY 6.5 �1
6-Mathias-absoluteness implies �1

5(R):

PROOF: Let �(x) be a �1
5-set:

�(x)$ '(x)$ : (x)

where '(x) and  (x) are �1
5-sets. By �

1
6-M-absoluteness, �(x) is still a �1

5-set in V
M. Let

p be anM-condition with empty stem such that V j= \p M'(m)"; (if V j= \p M:'(m)"
then V j= \p M (m)"), then there is an M-name ~y and (by Corollary 3.11) a p0 � p
with empty stem, such that

V j= \p0 M'0(m; ~y)"

(where '(x) � 9y'0(x; y) and '0 is a �1
4-formula). Let m � p0 be Mathias over V , then

V [m] j= '0(m; ~y[m]):

Because of Lemma 6.3 and because m0 2 [m]! \ V [m] is Mathias over V , the sentence
8m0 2 [m]!'0(m

0; ~y[m0]) which is V [m] j= 9z8x 2 [z]!'(x), holds in V [m]. Therefore
9z8x 2 [z]!: (x) which is a �1

6-sentence with parameters in V is true in V [m].

Hence, V j= \�(x) is Ramsey" and because �(x) was arbitrary we get

V j= �1
5(R):

a
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