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Abstract

Let R = (R, +, · ) be a ring. Then Z ⊆ R is called spanning if the R-module
generated by Z is equal to the ring R. A spanning set Z ⊆ R is called smallest
if there is no spanning set of smaller cardinality than Z. It will be shown that
the cardinality of a smallest spanning set of a ring R is not always decidable. In
particular, a ring R = (R,+, · ) will be constructed such that the cardinality of a
smallest spanning set Z ⊆ R depends on the underlying set theoretic model.

0. Definitions and Terminology

Set theoretic notations. For a set x let |x| denotes the cardinality of the set x, which
is the least ordinal number α such that there exists a bijection between x and α. The
least infinite ordinal number is denoted by ω = {0, 1, 2, . . . }. Let c := |P(ω)|, where P(ω)
denotes the power-set of ω. Further, let ℵ0 := |ω| and for n ∈ ω let ℵn+1 be the least cardinal
number which is strictly greater than ℵn. In particular, ℵ1 is the least uncountable cardinal
number. Recall that the statement ℵ1 = c is equivalent to the Continuum Hypothesis which
is not decidable in ZFC, i.e., in Zermelo-Fraenkel Set Theory with the Axiom of Choice.

Spanning sets. Let R = (R,+, · ) be a ring. We say that a set Z ⊆ R is a spanning set
of R, if for all r ∈ R there is an n ∈ ω and z0, . . . , zn−1 ∈ Z such that r =

∑n−1
i=0 ri zi (for

some ri ∈ R). As usual, for n = 0 let
∑n−1

i=0 ri zi := 0, where 0 ∈ R denotes the neutral
element with respect to addition.

In other words, a set Z ⊆ R is a spanning set of R if the left R-module generated by Z
is equal to the ring R.

A spanning set Z ⊆ R of R is called smallest if there is no spanning set of R of smaller
cardinality than Z.
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The results. It will be shown that the cardinality of a smallest spanning set of a ring R is
not always decidable. In other words, there is a ring R = (R, +, · ) such that the cardinality
of a smallest spanning set Z ⊆ R of R depends on the underlying set theoretic model. In
particular, we will construct a ring R = (R, +, · ) and show that for a smallest spanning
set Z ⊆ R there are models of ZFC in which we can have the following: ℵ1 = |Z| = c,
ℵ1 = |Z| < c, ℵ1 < |Z| = c, and ℵ1 < |Z| < c.

1. The Ring RU

Let [ω]ω be the set of all infinite subsets of ω. In the sequel, let U ⊆ [ω]ω be an arbitrary
but fixed non-principal ultrafilter over ω, i.e., for any x, y ∈ U , x ∩ y ∈ U ; if x ∈ U and
x ⊆ y, then y ∈ U ; for all x ∈ [ω]ω, either x ∈ U or ω \ x ∈ U . Let ωω be the set of all
functions from ω to ω. On ωω define the following equivalence relation:

f
U∼ g ⇐⇒ ∃x ∈ U ∀n ∈ x

(
f(n) = g(n)

)
.

For f ∈ ωω let [f ] :=
{
f ′ ∈ ωω : f ′

U∼ f
}
; and for f, g ∈ ωω let

f <U g ⇐⇒ ∃x ∈ U ∀n ∈ x
(
f(n) < g(n)

)
,

and let
f ≤U g ⇐⇒ [f ] = [g] or f <U g .

Notice that the relation ‘≤U ’ is a total order on the equivalence classes of ωω. Indeed, for any
f, g ∈ ωω consider the partition of ω into the three pairwise disjoint sets

{
n : f(n) < g(n)

}
,{

n : f(n) = g(n)
}

and
{
n : f(n) > g(n)

}
. Since U is an ultrafilter, exactly one of these sets

belongs to U , and therefore f <U g or [f ] = [g] or g <U f . So, for f, g ∈ ωω let us define
the operation ‘∗’ as follows:

f ∗ g =

{
f if f ≤U g,
g otherwise.

Now, we define the ring RU = (R, +, · ) as follows: Let S = (S,+, · ) be any unital ring. The
set R consists of all elements of the form

∑n−1
i=0 ai x[fi], where n ∈ ω and for all 0 ≤ i ≤ n−1:

ai ∈ S and fi ∈ ωω. Further, for a x[f ], a′ x[f ], b x[g] ∈ R, where [f ] 6= [g], let

a x[f ] + a′ x[f ] = (a + a′)x[f ] ,

a x[f ] · a′ x[f ] = (a · a′)x[f ] ,

a x[f ] + b x[g] = a x[f ] + b x[g] ,

a x[f ] · b x[g] = (a · b)x[f∗g] .

Before we can start investigating the cardinality of smallest spanning sets of RU , we have
to give some facts about bounding and dominating numbers.

2. Bounding and dominating numbers

Let F ⊆ [ω]ω be an arbitrary filter over ω which contains all co-finite sets. With respect
to F define the cardinal numbers bF and dF as follows:

bF = min
{
|F | : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F (f �F g)

}
,

dF = min
{
|F | : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F (g ≤F f)

}
.
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Notice that if F is not an ultrafilter, then the relation ‘<F ’ is just a partial order on ωω. If
F is the filter of all co-finite sets, then we write b and d instead of bF and dF respectively. It
is easy to see that for any filter F which contains all co-finite sets we have b ≤ bF ≤ dF ≤ d.
In particular, if b = d, then b = bF . Further, it is also easy to see that ℵ1 ≤ b ≤ d ≤ c. On
the other hand, by the following fact this is all one can prove in ZFC (see for example [1,
Theorem 5.1]).

Fact. Each of the following statements is consistent with ZFC:

(1) ℵ1 = b = d = c

(2) ℵ1 = b = d < c

(3) ℵ1 < b = d = c

(4) ℵ1 < b = d < c

3. The Cardinality of Smallest Spanning Sets of RU

Combining the previous observations we get the following.

Theorem. Let Z ⊆ R be a smallest spanning set of the ring RU = (R, +, · ). Then there
are models of set theory in which we can have the following:

(1) ℵ1 = |Z| = c

(2) ℵ1 = |Z| < c

(3) ℵ1 < |Z| = c

(4) ℵ1 < |Z| < c

Proof. Let Z ⊆ R be a smallest spanning set of RU . Then without loss of generality we
may assume that Z = {1x[fι] : ι < κ}, where κ is a cardinal and 1 is the unit of S. Let us
first show that |Z| = dU :
Take any g ∈ ωω and consider x[g]. Since Z is a spanning set of RU , there must be an
element r ∈ R and some 1x[f ] ∈ Z such that 1x[g] = r x[f ], which implies that g ≤U f .
Hence, for every g ∈ ωω there must be an element 1x[f ] ∈ Z with g ≤U f , and therefore,
|Z| ≥ dU .
Now, let F ⊆ ωω be such that |F | = dU and ∀g ∈ ωω ∃f ∈ F (g ≤U f), and let Z = {1 x[f ] :
f ∈ F}. Take any non-zero r ∈ R. Then r =

∑n−1
i=0 ai x[gi], where n is a positive integer.

By the definition of F , there is a function f ∈ F such that gi ≤U f (for all 0 ≤ i ≤ n− 1).
Thus, r = r · 1x[f ], which proves that Z is a spanning set of RU .

So, if Z ⊆ R is a smallest spanning set of RU , then |Z| = dU . Now, if b = d, then,
since b ≤ dU ≤ d, this implies d = dU , and as a consequence we get that if Z ⊆ R is a
smallest spanning set of RU , then |Z| = d. Hence, by the fact mentioned before, each of
the following statements is consistent with ZFC: ℵ1 = |Z| = c, ℵ1 = |Z| < c, ℵ1 < |Z| = c,
and ℵ1 < |Z| < c. a

4. Generating Sets of Rings

There are at least two kinds of sets generating a ring R = (R,+, · ) we can think of,
namely subsets of R generating R as a ring and subsets of R generating R as a left R-
module, which we called spanning sets. Let us call the former sets just generating sets.
Further, instead of smallest generating or spanning sets, we can look for minimal generating
or spanning sets (minimal in the sense that the generating / spanning set does not properly
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contain any other generating / spanning set). So far, we just considered smallest spanning
sets of a ring. Thus, let us say a few words about the other cases.

It is quite obvious that each ring contains a smallest generating set as well as a smallest
spanning set. On the other hand, for example RU with S = Z does not have a minimal
spanning set, but it has a minimal generating set, namely

{
1x[f ] : f ∈ ωω

}
. It is also

easy to see that generating sets are also spanning sets, and therefore, the cardinality of
a smallest generating set is always greater than or equal to the cardinality of a smallest
spanning set. Further, by using the techniques of [2], one can show that any two infinite
minimal generating sets must have the same cardinality, namely the cardinality of the ring
itself. Moreover, any two infinite minimal spanning sets have the same cardinality:

Proposition. Let X,Y ⊆ R be two infinite minimal spanning sets of some ring R =
(R, +, · ), then |X| = |Y |.

Proof. For any set S ⊆ R, let 〈S〉 be the linear span of S and let [S]<ω be the set of all
finite subsets of S. Since Y ⊆ R is a spanning set, for every x ∈ X there exists a finite set
Ix ⊆ Y such that x ∈ 〈Ix〉. So, let us define ϕ : X → [Y ]<ω such that x ∈ 〈ϕ(x)〉. Now,
since X is a minimal spanning set of R, the function ϕ is finite-to-one, which implies that
|X| ≤ ℵ0 ·

∣∣[Y ]<ω
∣∣. Further, since Y is infinite, we have ℵ0 ·

∣∣[Y ]<ω
∣∣ = ℵ0 · |Y | = |Y |, and

therefore we get |X| ≤ |Y |. Thus, by interchanging X and Y , we finally have |X| = |Y |. a
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