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Abstract

It will be shown that for almost all weights one can reconstruct a weighted
graph from its spectrum. This result is the opposite to the well-known theorem
of Botti and Merris which states that reconstruction of non-weighted graphs is
in general impossible since almost all (non-weighted) trees share their spectrum
with another nonisomorphic tree.

1 Notations and introduction

A weighted graph G is a pair (A;M), where A = (Aij) is a symmetric real n � n
matrix with Aii = 0, called adjacency matrix, and where the mass matrix M =
diag(m1; : : : ;mn) is a real diagonal n � n matrix. The valence matrix D of G is
de�ned to be the diagonal n� n matrix with

Dii =

nX
j=1

Aij =: di :

If all masses mi are equal to 1 and if Aij 2 f0; 1g for all i; j, then G is just a simple
graph and D its vertex degree matrix. If the masses mi are positive and all Aij � 0,
we consider G as a model for a molecule consisting of n atoms with weights mi and
with Aij being the elasticity constant of the chemical binding between mi and mj:
That is, if vi(t) denotes the scalar deviation of mi at time t from its normal position,
we have for every i

�mi�vi =
nX

j=1

Aij(vi � vj) = viDii �
nX

j=1

Aijvj :

Hence, an eigenvibration vj(t) = uje
i!t, j = 1; : : : n, of the molecule satis�es (in

matrix notation)
!2Mu = Du �Au
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where u is the vector (u1; : : : ; un). In other words the negative squares �!2 = � of
the eigenfrequences of the molecule are the spectrum of the (generalized) eigenvalue
problem

det(A�D � �M) = 0:

Alternatively, we could regard this as a discrete model of an inhomogeneous drum
consisting of n vertices bearing weights mi and with Aij being the elasticity constant
between mi and mj. Such a discrete model can for example arise from discretizing
the corresponding continuous problem for a numerical treatment.

Let us have a short look at the case of simple graphs when all mi and all nonzero
Aij equal 1. The adjacency spectrum of a simple graph G, i.e. the eigenvalue spec-
trum of the adjacency matrix A, is widely studied (see e.g. [2] as a main reference).
Nonisomorphic graphs (i.e. graphs whose adjacency matrices are not permutation
similar) a�ording the same (adjacency) characteristic polynomial are called cospec-
tral. Schwenk showed in [16] that almost all trees are cospectral. On the other hand
the operator L = L(G) := A �D is the so called Laplace or Kirchho� operator of
G (Laplace operator because it is the discrete analogue of the Laplace di�erential
operator, and Kirchho� operator since L �rst occurred in the famous Matrix-Tree
Theorem of G. Kirchho�). In how far the spectrum of L re
ects the spectral proper-
ties of molecules is discussed in [3], [5] and [8]. The relation between a simple graph
and its Laplace spectrum is studied e.g. in [6], [7], [15] and [13]. As a general ref-
erence for recent results on spectral graph theory see [4]. One of the most striking
results is the Theorem of Botti and Merris (see [1]) which generalizes the results of
Schwenk [16], McKay [12] and Turner [17]:

Theorem 1 (Botti-Merris) Let tn be the number of nonisomorphic trees on n ver-

tices and sn the number of such trees T for which there exists a nonisomorphic tree
~T such that the polynomial identities

d�(yA(T ) + zD(T )� xI) � d�(yA( ~T) + zD( ~T )� xI)

in the three variables x, y and z hold, simultaneously, for every irreducible character

� of the symmetric group Sn. Then limn!1 sn=tn = 1.

Here, I is the identity and d� denotes the immanent

d�(B) =
X
p2Sn

�(p)
nY
i=1

bip(i); (1)

where B = (bij) is an n � n-matrix (e.g. for � = ", the alternating character,
d� = det).
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Techniques which are based on Sunada's Trace Theorem have recently allowed to
generate isospectral simple graphs which are not necessarily trees, see [9].

The results in [1] and [9] seem to indicate that in general it is impossible to reconstruct
the structure of a molecule from its spectrum. However, we will see below that the
case of weighted graphs o�ers the possibility of a reconstruction.

We will always identify the vector m 2 Rn with the mass matrix M(m) = diag(m).
For given m 2 Rn and a countable set A � R we denote by GA;M(m) the set of
weighted graphs G = (A;M(m)) with A = (Aij), 0 � Aij 2 A, and we will say G is
a graph over A and M(m).

In this paper we look at the following problem: Given m = (m1; : : : ;mn) 2 Rn
+,

A � R countable (e.g. A = f0; 1g in the simplest case) and the Laplace spectrum
fx 2 R : det(L � xM(m)) = 0g of a graph (A;M(m)) 2 GA;M(m). Can you then
compute the adjacency matrix A from this information? The naive answer would be
just to compare the spectrum of every possible graph with the given spectrum. But
�rst, this only works for a �nite set A, second, the number of simple graphs on n
vertices grows superexponentially in n and hence the method is not practicable, and
third it does not answer the question for which set of mass matrices (depending on
A) the map A 7! fx 2 R : det(L � xM(m)) = 0g is injective. The aim of this
paper is to discuss conditions on the mass matrix M(m) such that the answer to this
question is aÆrmative and to describe reconstruction algorithms. In a �rst part we
will discuss the case A = f0; 1g with a very strong growth condition on the masses
mi which implies that reconstruction of the graph from its spectrum is possible, and
in a second part we will consider a general countable set A and an algebraic condition
which shows that for almost all mass matrices (in a sense that will be made precise)
reconstruction of the adjacency matrix A is possible.

The conditions we give for reconstructability of weighted graphs are suÆcient, but
certainly far from being necessary. Therefore | although it seems not to be realistic
to apply our results directly to real molecules, since the masses of the atoms of a
molecule might not satisfy the growth or the algebraic condition we use | the given
reconstruction results at least show that reconstructability is a phenomenon that
does occur for weighted graphs. So, whether in concrete situations reconstruction is
possible or not may be a matter of a more detailed analysis adapted to the case at
hand.

2 The Laplacian spectrum of weighted graphs

In this section all nonzero Aij are assumed to be 1, i.e., we consider the case A =
f0; 1g, and we ask for a condition on the mass matrixM which allows to decide which
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masses are linked in a graph whose Laplace spectrum is known.

Theorem 2 There exist mass matrices M0 = diag(m1; : : : ;mn) such that the follow-

ing is true: Let G = (A;M) and ~G = ( ~A; ~M) be weighted graphs over A = f0; 1g
such that M and ~M are permutation similar to M0, then

det(L(G) � xM) � det(L( ~G)� x ~M ) (2)

holds if and only if G and ~G are isomorphic graphs, i.e. A = P ~AP�1 and M =
P ~MP�1 holds for a permutation matrix P . A possible choice is mi = n(2

i).

Remark: The proof will be constructive and provide an \algorithm" to reconstruct
the adjacency matrix A from the roots of the polynomial det(L� xM).

The proof of Theorem 2 is based upon the following two elementary lemmas:

Lemma 1 Let q1; : : : ; qn be a sequence of real numbers of at least geometric growth

with constant s > 1, i.e. qi � sqi�1 for i = 2; : : : ; n, and q1 > 0. Then

nX
i=1

Æiqi =
nX
i=1

~Æiqi (3)

implies Æi = ~Æi for i = 1; : : : ; n, provided that all Æi 2 f0; 1; : : : ; bs� 1cg.

Proof
We proceed by induction: For n = 1 the assertion is trivial. On the other hand,
using (3) we have for n > 1

(Æn � ~Æn)qn =

n�1X
i=1

(~Æi � Æi)qi (4)

� (s� 1)
n�1X
i=1

qi

� (s� 1)
n�1X
i=1

qn
1

sn�i

= qn(1 � 1

sn�1
)

= qn"

for an " < 1. We may assume that Æn � ~Æn and hence we obtain from (4)

0 � Æn � ~Æn < 1:
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Thus Æn = ~Æn and the assertion follows by induction. 2

The second lemma we need in the proof of Theorem 2 is the following

Lemma 2 Let �i = �(2
i) for some � > 0 and for i = 1; : : : ; n. Then the set of the

numbers

qij =
1

�i�j

nY
k=1

�k

with i 6= j rearranged as a growing sequence has at least geometric growth with con-

stant �.

Proof
Consider a = qij

qlm
for fi; jg 6= fl;mg. We have a = �l�m

�i�j
= �2

l+2m�2i�2j and therefore

the proof is complete if we can show that the exponent 2l + 2m � 2i � 2j 6= 0. But
this follows from Lemma 1 since 2l + 2m = 2i + 2j would imply fl;mg = fi; jg which
contradicts the assumption. 2

Now we give the proof of Theorem 2:

Proof
We may assume that the vertex sets of G and ~G are already renumbered in such a
way that M = ~M = M0. Using (1) we easily �nd the following expansion

det(L� xM) =

���������

�d1 � xm1 A12 A13 : : : A1n

A21 �d2 � xm2 A23 : : : A2n
...

...
. . .

...
An1 An2 : : : : : : �dn � xmn

���������
= (5)

= (�1)nxn
nY
i=1

mi + (�1)nxn�1
nX
i=1

di
Y
j 6=i

mj +

+(�1)nxn�2
X
i<j

(didj �A2
ij)

Y
k=2fi;jg

mk + : : :+ det(L):

Now we use expansion (5) in the identity (2). Comparing the coeÆcients of xn�1 on
both sides we conclude by Lemma 1 that

di = ~di (i = 1; : : : ; n) (6)

since by our assumption on the masses mi the ordered set of numbers qi =
Q

j 6=imj is
at least of geometric growth with constant n and di 2 f0; 1; : : : ; n� 1g. Notice that
by the theorem of Botti and Merris this cannot yet imply that the graphs G and ~G
are isomorphic.
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Comparing the coeÆcients of xn�2 and using (6) we obtain

X
i<j

Aij

Y
k=2fi;jg

mk =
X
i<j

~Aij

Y
k=2fi;jg

mk :

The numbers qij =
Q

k=2fi;jgmk obviously satisfy the hypothesis of Lemma 2 with

� = n and hence we conclude (by applying Lemma 1 once more with s = 2) that
Aij = ~Aij and the proof is complete. 2

Up to now, we consider two graphs as isospectral if they share the polynomial det(L�
xM), i.e. the eigenvalues of both graphs coincide counted with multiplicity. Now we
will show that even if we only require that two graphs have the same spectrum as

sets they are isomorphic.

Let us consider a connected, weighted graph G with masses mi = n(2
i) as in Theo-

rem 2. Then the following Proposition claims that the eigenvalues of the Laplacian
spectrum of G are simple.

Proposition 1 Suppose A = f0; 1g and let G 2 GA;M(m) be a connected weighted

graph with masses mi = n(2
i), i = 1; : : : ; n. Then the roots of the characteristic

polynomial det(L� xM(m)) are simple.

Proof
Let p(x) = (�1)n det(L�xM) = anx

n+: : :+a2x2+a1x+a0. Since all roots �i = �!2
i

of p are negative real numbers, we have

ak � 0 for k = 0; : : : ; n. (7)

From (1) we get for k = 0; : : : ; n

ak =
X
jIj=k

det(LI)
Y
j2I

mj (8)

where the sum is taken over all ordered subsets I of f1; : : : ; ng of cardinality k and
where LI denotes the matrix obtained from L by deleting all rows and columns having
a number in I. Of course, since the sum of the rows in L is zero, a0 = det(L) = 0.

Now, observe �rst that
jdet(LI)j � nn�k (9)

for jIj = k. This follows from the fact that every column of LI represents a vector of
length at most n. On the other hand for 1 � jIj < n we have

1 � jdet(LI)j (10)
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since the graphs under consideration are assumed to be connected which implies that
the matrices LI are strongly diagonal dominated.

For simplicity we assume mi = n(3
i) in the proceeding of the proof. The arguments

in case mi = n(2
i) are similar but more terms have to be taken into consideration. In

order to obtain an estimate for the coeÆcients ak we proceed as follows: The largest
term in

P
jIj=k

Q
j2I mj is obviously �k :=

Qn
j=n�k+1 mj. All other terms are smaller

or equal to 
k := mn�k

Qn
j=n�k+2 mj. The quotient is �k


k
= m2

n�k. Since the total

number of terms in the sum is
�
n
k

�
we obtain from (9), (10) and (8)

�
1� nn�k

�
n

k

�
1

m2
n�k

� nY
j=n�k+1

mj < jakj <
�
1 +

�
n

k

�
1

m2
n�k

�
nn�k

nY
j=n�k+1

mj : (11)

An elementary calculation shows that for n � 1 and k = 1; : : : ; n

nn�k
�
n

k

�
1

m2
n�k

� 1

n2
: (12)

Inserting (12) in (11) yields

�
1� 1

n2

� nY
j=n�k+1

mj < jakj <
�
nn�k +

1

n2

� nY
j=n�k+1

mj : (13)

Using (13) we obtain that for k = 2; : : : ; n� 1

a2k � 4ak�1ak+1 > 0 (14)

provided that n � 3 (the case n = 2 is easily handled separately). Now the claim
follows from the criterion of Kurtz on distinct roots of polynomials (see [11]). 2

Combining Theorem 2 and Proposition 1 we obtain as a corollary

Theorem 3 There exist mass matrices M0 such that the following is true: Let G =
(A;M) and ~G = ( ~A; ~M) be connected graphs over A = f0; 1g such that M and ~M are

permutation similar to M0. Then G and ~G are isomorphic if and only if the Laplacian

spectrum of G and ~G coincide as sets. A possible choice is mi = n(2
i), where n is the

number of masses.

Proof
According to Proposition 1 the Laplacian spectrum of both graphs consists of sim-
ple eigenvalues. Hence, by Vi�eta's Theorem, we conclude that det(L(G) � xM) �
�det(L( ~G) � x ~M) for some � 6= 0. On the other hand the coeÆcient of xn is
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(�1)nQn
i=1mi in det(L(G) � xM) and (�1)nQn

i=1 ~mi in det(L( ~G) � x ~M), which
for both cases is the same number since the mass matrices of G and ~G are permuta-
tion similar. Hence � = 1 and the assertion follows from Theorem 2.

2

Algorithmic remark: If one starts from the spectrum, the reconstruction algo-
rithm works as follows. First, compute the polynomial �det(L(G)� xM) by Vi�eta's
Theorem and normalize it such that the coeÆcient of xn is (�1)nQn

i=1mi. Then
�nd the valence matrix D using the coeÆcient of xn�1 as described in the proof of
Theorem 2. Finally use this to compute the adjacency matrix A from the coeÆcient
of xn�2. (Notice that the proof of Lemma 1 can be used to determine recursively the
values of the Æi from the value of the sum

Pn
i=1 Æiqi.)

Inspection of the proof of Theorem 3 shows that the set of masses m 2 Rn, for which
reconstruction is possible, contains a large open set (all sequences mi which grow
\fast enough"). However, the set of masses for which reconstruction is possible has
also a part with a �ne algebraic structure, as we will see in the next section. There,
we consider a general countable set A of possible values of elasticity constants and
impose algebraic conditions on the masses to show that for almost all mass matrices
the weighted adjacency matrix of a graph is determined by its Laplace spectrum.

3 p-independent reals

In order to simplify the formulas, we use a multi-index notation: For i = (i1; : : : ; in) 2
Nn
0 we write jij := max(i1; : : : ; in) and for m = (m1; : : : ;mn) 2 Rn we de�ne mi :=Qn
k=1m

ik
k .

Let Q be a set of real numbers and p 2 N0. We say that m 2 Rn is p-independent
over Q if the following implication holds:

X
i2Nn

0
;jij�p

qim
i = 0 and qi 2 Q for all i 2 Nn

0 ; jij � p =)

=) qi = 0 for all i 2 Nn
0 ; jij � p. (15)

Notice that the set fm1; : : : ;mng � R is algebraically independent over Q if and only
if m = (m1; : : : ;mn) 2 Rn is p-independent over Q for every p 2 N0. So, the notion
of p-independence is weaker than the notion of algebraic independence. For example,
3
p
3 and 3

p
5 are 2-independent but not algebraically independent over Q.

Lemma 3 If Q � R is countable and p 2 N0, then the set fm 2 Rn : m not p-
independent over Qg is a meager and Lebesgue measure zero set in Rn.
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Proof
For a �xed m = (m1; : : : ;mn�1) 2 Rn�1 let Fm be the set of all not identically
vanishing polynomials f(x) with coeÆcients in Q[fm1; : : : ;mn�1g of degree at most
p. Because the set Q [ fm1; : : : ;mn�1g is countable and p is �nite, the set

N(m) := fx 2 R : f 2 Fm ^ f(x) = 0g
is countable. Hence, for every m 2 Rn�1, the set N(m) is a meager and Lebesgue
measure zero set in R and by the theorems of Kuratowski{Ulam and Fubini (see, e.g.,
[14] or [10]) we get that the set fm 2 Rn : m not p-independent over Qg is a meager
and Lebesgue measure zero set in Rn. 2

Remember that there exist meager sets which do not have Lebesgue measure zero
and vice versa. Moreover, one can cover the real line with a meager set and a set of
Lebesgue measure zero.

4 The Reconstruction Theorem

In this section let C denote an arbitrary but �xed set of countably many real numbers.
ThenA = Q[C], the smallest �eld containing C and the rational numbers, is countable
as well. We show that if the set of masses m 2 Rn

+ ful�lls a suitable algebraic
condition with respect to the set A, then the adjacency matrix A(G) of a graph in
GA;M(m) is determined by its Laplace spectrum fx 2 R : det(L(G) � xM(m)) = 0g.
In particular, we will see that the set of masses m 2 Rn

+ for which reconstruction
is not possible is a meager and Lebesgue measure zero set in Rn. Remember that
for m 2 Rn

+, M(m) = diag(m), and that GA;M(m) is the set of all weighted graphs
G = (A;M(m)) with A = (Aij) and 0 � Aij 2 A.

Theorem 4 Let m 2 Rn
+ be 1-independent over Q[C], and let G = (A;M) and

~G = ( ~A; ~M) be graphs over A = Q[C] of order n such that M and ~M are permutation

similar to M(m). Then G and ~G are isomorphic if and only if their characteristic

polynomials coincide, i.e., if det(L(G)� xM) � det(L( ~G)� x ~M).

Proof
It is easy to see that if G and ~G are isomorphic, then their characteristic polynomials
coincide.

For the opposite implication we may assume that the vertex sets of G and ~G are al-
ready renumbered such thatM = ~M = M(m). We recall that p(x) = (�1)n det(L(G)�
xM) = anx

n + : : : + a2x
2 + a1x + a0 with a0 = 0 and with an�1 =

nP
i=1

di
Q
j 6=i

mj.
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If p(x) and ~p(x) coincide we have in particular
nP
i=1

di
Q
j 6=i

mj =
nP
i=1

~di
Q
j 6=i

mj, hence

nP
i=1

(di � ~di)
Q
j 6=i

mj = 0, and because m is 1-independent over A, we have di = ~di for

1 � i � n. Thus, the valence matrix is determined by the coeÆcient an�1. Com-
paring the coeÆcient an�2 =

P
i<j

(didj � A2
ij)

Q
k 62fi;jg

mk of xn�2, and using again that

m is 1-independent over A and di = ~di, we obtain Aij = ~Aij � 0 and the proof is
complete. 2

As in Section 2 in the case A = f0; 1g, it turns out that the roots of the polynomial
det(L(G) � xM) are simple, provided the mass matrix is well chosen. In order to
prepare the proof, we need the following two lemmas.

Lemma 4 Suppose m = (m1; : : : ;mn) 2 Rn is nq-independent over a sub�eld K of

the real numbers and let

p1(x1; : : : ; xn) :=

nX
i=1

cixi

p2(x1; : : : ; xn) :=
X

1�i1<i2�n

ci1i2xi1xi2

p3(x1; : : : ; xn) :=
X

1�i1<i2<i3�n

ci1i2i3xi1xi2xi3

...

pn(x1; : : : ; xn) := c123:::nx1x2 : : : xn

be polynomials with coeÆcients ci1 :::ij 2 K n f0g. Then, (p1(m1; : : : ;mn); : : : ; pn(m1;
: : : ;mn)) 2 Rn is q-independent over K.

Proof
Let F be a polynomial in n variables with coeÆcients in K and with maximal degree
less than or equal to q. The maximal degree of F is de�ned by

maxdegF := max
1�i�n

degt F (x1; : : : ; txi; : : : ; xn);

where degt is the usual polynomial degree with respect to the variable t. We assume,
that F is not the zero-polynomial. Now, let us consider the terms in the expression

X := F (p1(m1; : : : ;mn); : : : ; pn(m1; : : : ;mn))

after expanding all products but before eliminating terms which cancel. We order the
m-monomials in X according to the lexicographical order relation. E.g., m2

1m
0
2m

7
3 <
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m2
1m

1
2m

1
3. This ordering is compatible with multiplication of the monomials. A

lexicographically largest m-monomial in X appears while expanding a term

pb11 p
b2
2 : : : pbnn =

� nX
i=1

cixi

�b1� X
1�i1<i2�n

ci1i2xi1xi2

�b2

� : : : � (c123:::nx1x2 : : : xn)bn

(where all exponents bi � q) and is, apparently, the monomial

mb1+:::+bn
1 mb2+:::+bn

2 : : :mbn
n

(and all exponents here are less than or equal to nq). By inspection of this last expres-
sion it is clear that the exponent (b1; : : : ; bn) is determined by the lexicographically
largest m-monomial in X which therefore cannot cancel with any other (largest) m-
monomial in X. Now we assume by contradiction that F

�
p1(m1; : : : ;mn); : : : ; pn(m1;

: : : ;mn)
�
= 0. Since all appearing m-monomials have maximal degree less than or

equal to nq, it follows that all coeÆcients of the m-monomials must vanish (because
(m1; : : : ;mn) is assumed to be nq-independent overK). This contradicts the fact that
the coeÆcient of the lexicographically largest m-monomial does not vanish. 2

Lemma 5 If p is a polynomial of degree n � 2 such that the set of its coeÆcients

is (n2 � 2n + 2)-independent over a sub�eld K of the real numbers, then p has only

simple roots.

Proof
The polynomial p has a multiple root if and only if the greatest common divisor
of p and its derivative p0 is non-trivial, i.e., if it is a polynomial of degree strictly
larger than zero. The greatest common divisor of two polynomials can be determined
by the Euclidean algorithm. Performing the Euclidean algorithm with p and p0 and
computing the polynomial reminders in each step, it is easy to see that the conditions
that p has a multiple root are polynomial equations in the coeÆcients of p of degree
less than or equal to n2�2n+2 and with integer coeÆcients. Since the coeÆcients of
p are supposed to be (n2�2n+2)-independent over K � Q, the claim follows. 2

Theorem 5 Let m 2 Rn
+ be n(n2�2n+2)-independent over Q[C] and let G = (A;M)

be a connected graph over A = Q[C] of order n. Then det(L(G)� xM(m)) has only

simple roots.

Proof
Let p(x) = anx

n+ an�1x
n�1+ : : :+ a1x

1 be as in the proof of Theorem 4. Recall that

ak =
X
jIj=k

det(LI)
Y
j2I

mj
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and that det(LI ) 2 A n f0g, since the graph under consideration is supposed to be
connected. Thus, by Lemma 4, we get that (a1; : : : ; an) is (n2 � 2n+ 2)-independent
over A and the claim follows from Lemma 5. 2

Combining Theorem 4 and Theorem 5 we obtain

Theorem 6 Let C � R be countable and A = Q[C]. Let m 2 Rn
+ be n(n2 � 2n+2)-

independent over A, and let G = (A;M) and ~G = ( ~A; ~M) be graphs over A of order n
such that M and ~M are permutation similar to M(m). Then G and ~G are isomorphic

if and only if their Laplace spectra agree, provided that at least one of the graphs G
and ~G is connected. In particular, the set of masses m 2 Rn

+ for which reconstruction

is not possible is meager and has Lebesgue measure zero.

Proof
Let N � Rn be the set of all m 2 Rn which are not n(n2 � 2n+ 2)-independent over
Q[C]. Then by Lemma 3 we have that N is meager and has Lebesgue measure zero.
We may assume without loss of generality that G is connected. By Theorem 5 we
have that the roots of det(L(G) � xM(m)) are all simple. Hence, since the spectra
of G and ~G agree, the roots of det(L( ~G)� x ~M(m)) must be simple as well, and the
characteristic polynomials of both graphs coincide. Thus, by Theorem 4, the graphs
are isomorphic. 2

Acknowledgment: We thank the referees for their constructive remarks on the �rst
version of this paper, and we especially thank Walter Gubler for providing the elegant
proof of Lemma 4.
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