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ON GENERALIZED CARMICHAEL NUMBERS

BY

Lorenz Halbeisen and Norbert Hungerb�uhler

Abstract. For arbitrary integers k 2 Z we investigate the set Ck of the generalized Carmichael
numbers, i.e. the natural numbers n > maxf1; 1� kg such that the equation an+k � a mod n holds
for all a 2 N. We give a characterization of these generalized Carmichael numbers and discuss several
special cases. In particular, we prove that C1 is �nite and that Ck is in�nite, whenever 1� k > 1 is
square-free. We also discuss generalized Carmichael numbers which have one or two prime factors.
Finally, we consider the Jeans numbers, i.e. the set of odd numbers n which satisfy the equation
an � a mod n only for a = 2, and the corresponding generalizations. We give a stochastic argument
which supports the conjecture that in�nitely many Jeans numbers exist which are squares.

1 Introduction: Historical Background

On October 18th, 1640, Pierre de Fermat wrote in a letter to Bernard Frenicle de Bessy that
if p is a prime number, then p divides ap�1 � 1 for all integers a not divisible by p, a result
now known as \Fermat's Little Theorem". An equivalent formulation is the assertion that
p divides ap � p for all integers a, whenever p is prime. Fermat's remark to Frenicle proved
one half of what has been called the Chinese hypothesis which dates from about 2000 years
earliery, that an integer n is prime if and only if 2n � 2 is divisible by n. The other half
of this is false, since, for example, 2341 � 2 is divisible by 341 = 11 � 31 (and this is the
smallest counter example as noted by J.H. Jeans in [Je1898]). The question arose whether
all integers n satisfying the stronger requirement of the Fermat congruence, namely

an � a mod n for all integers a, (1)

are prime (this rules out at least the example n = 341, since 3341 � 168 mod 341). However,
also this implication turned out to be false. This was noticed by R.D. Carmichael in 1910
who pointed out in [Ca1910] that 561 = 3 � 11 � 17 divides a561 � a for all integers a. In
1899 already, Korselt had noted in [Ko1899] that one could easily test for such integers by
using (what is now called)

Korselt's Criterion: n divides an�a for all numbers a 2 N , if and only if n is square-free
and p� 1 divides n� 1 for all primes p dividing n.

In a series of papers around 1910, Carmichael began an in-depth study of compos-
ite numbers with this property, which have become known as Carmichael numbers.
In [Ca1912], Carmichael exhibited an algorithm to construct such numbers and stated, per-
haps somewhat wishfully, that \this list (of Carmichael numbers) might be inde�nitely ex-
tended". However, this conjecture remained open during almost the whole century until it
was positively proved in [AGP1994].
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yJ.H. Jeans states in [Je1898]: \A paper fond among those of the late Sir Thomas Wade, and dating from
the time of Confucius, contains the theorem, that 2n�1�1 � 0 mod n when n is prime, and also states that
it does not hold if n is not a prime." Other sources impute this statement to an erroneous translation and
point out that the ancient Chinese did never even formulate the concept of prime numbers (see [Ri1989]).
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The other line we want to follow in this exposition is this: For addition, multiplication
and exponentiation, we have the well known reduction formulasz:

a + b � Mod(a; n) + Mod(b; n) mod n (2)
a � b � Mod(a; n) �Mod(b; n) mod n (3)

ab � Mod(a; n)b mod n (4)

It is much more di�cult to �nd reduction formulas which allow to reduce the exponent. Of
course in general

ab 6� aMod(b;n) mod n: (5)

It is easy to see, that the numbers n for which the reduction formula (5) holds generally are
precisely the numbers n for which

an+1 � a mod n for all integers a. (6)

The set of numbers with the property (6) is surprisingly short (compared to the in�nite list
of the Carmichael numbers) and will be determined below.

Comparing (1) and (6), the following generalization of the Carmichael numbers emerges
very naturally:

Ck :=
�
n 2 N : minfn; n+ kg > 1 and an+k � a mod n for all a 2 N

	
So, the original Carmichael numbers together with all primes form the set C0, and the
numbers with the reduction property (6) are the numbers in C1.

It will turn out that it is useful to consider the following functionx de�ned for natural
numbers n > 1:

g(n) :=

(
lcmfp� 1 : p prime and p j ng if n is square free

1 otherwise

For ` 2 Z we say that n 2 N is an `-number, if g(n) j n+ ` and n > maxf1;�`g.

The rest of this paper is organized as follows: In Section 2 we give a characterization of
the generalized Carmichael numbers and establish contact with the function g. In Section 3
we discuss several special cases and prove in particular, that C1 is �nite and that Ck is
in�nite whenever 1 � k > 1 is square-free. In Section 4 we discuss generalized Carmichael
numbers which have one or two prime factors. Finally, in Section 5, we consider the Jeans
numbers, i.e. the set of odd numbers n which satisfy the equation an � a mod n only for
a = 2, and the corresponding generalizations. We give a stochastic argument which supports
the conjecture that in�nitely many Jeans numbers exist which are squares.

zHere, by Mod(a; n) we mean the uniquely determined number r 2 f1; : : : ; ng such that a = kn+ r for
some k 2 Z.

xlcm denotes the least common multiple, and we write a j b for a; b 2 Z with b

a
2 Z.
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2 Korselt's Criterion Generalized

Korselt's original criterion (see Section 1) characterizes the set C0 of Carmichael and prime
numbers. It turns out that a properly generalized version of Korselt's criterion, as stated in
Theorem 2.1, characterizes the generalized Carmichael numbers Ck:

Theorem 2.1 Let k 2 Z be any �xed integer. Then the natural number n belongs to Ck if
and only if
(�) n > maxf1; 1� kg,
(�) n is square-free and
(
) p� 1 j n+ k � 1 for all primes p dividing n.

It is sometimes useful to replace condition (
) by an equivalent condition, namely

Lemma 2.2 For all �xed k; n 2 Z, the following conditions are equivalent:
(
) p� 1 j n+ k � 1 for all primes p dividing n.
(
0) p� 1 j n

p
+ k � 1 for all primes p dividing n.

Proof. Let p be a prime dividing n and let m = n
p
. Now we get p � 1 j mp + k � 1 ()

p� 1 j
�
pm+ p(k� 1)� (p� 1)(k� 1)

�
() p� 1 j pm+ p(k� 1) and because p is prime,

this is equivalent to p� 1 j m + k � 1. q.e.d.

So, our second formulation of the generalized Korselt criterion reads as follows:

Theorem 2.3 Let k 2 Z be any �xed integer. Then the natural number n belongs to Ck if
and only if
(�) n > maxf1; 1� kg,
(�) n is square-free and
(
0) p� 1 j n

p
+ k � 1 for all primes p dividing n.

The proof of the Theorems 2.1 and 2.3|which are equivalent by Lemma 2.2|is given in
the following lemmas. First, we address the implication which assumes n 2 Ck. (�) follows
directly from the de�nition of Ck. (�) is proven in the next lemma:

Lemma 2.4 If n 2 Ck, then n is square-free.

Proof. Assume the contrary, then there exists an n 2 Ck and a prime p such that p2 j n
and for all a 2 N we have an+k � a mod n. Notice that n 2 Ck implies n + k > 1. Now,
for a = p we get pn+k � p = p(pn+k�1 � 1) which implies that p2 - pn+k � p and therefore,
n - pn+k � p, which is a contradiction to the requirement that for all a 2 N there holds
n j an+k � a. q.e.d.

To prepare the proof of (
), we need the following lemma:
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Lemma 2.5 If p is prime and 0 < r < p�1, then there is an a 6� 0 mod p such that ar 6� 1
mod p.

Proof. Assume not, then the polynomial x(xr � 1) = xr+1 � x � 0 mod p (for all x) is
a non-trivial normed null-polynomial of degree less than p. But this is a contradiction to
[HHL1999, Theorem7], which states that the minimal degree of a non-trivial normed null-
polynomial modulo p is equal to p, if p is prime.

q.e.d.

Now, (
) is proven in the next lemma:

Lemma 2.6 If n 2 Ck, then p� 1 j n + k � 1 for all primes p dividing n.

Proof. Assume there exists an n 2 Ck for which we �nd a prime p dividing n such that
p�1 - n+k�1. Then it follows that n � 3 and that for a natural number r with 0 < r < p�1
we have n + k � 1 = (p � 1)h + r for an h 2 N . Let a 6� 0 mod p be such that ar 6� 1
mod p (see Lemma 2.5). So, by Fermat's Little Theorem (since p is prime and (a; p){ = 1),
we get an+k = (ap�1)h � ar � a � ar+1 6� a mod p. Hence, n - an+k � a which contradicts
n 2 Ck. q.e.d.

Now, we prove the opposite implication in Theorem 2.1. First, we state the following
lemma:

Lemma 2.7 Let k; n 2 Z and p a prime dividing n such that p � 1 j n + k � 1. Then, for
all a 2 N with (a; p) = 1, we have an+k � a mod p.

Proof. By the premise we have n + k = (p � 1)h + 1 for some h and therefore, an+k =
(ap�1)h � a � a mod p (by Fermat's Little Theorem). q.e.d.

Conclusion. Now, assume (�), (�) and (
). Since n is square-free, in order to conclude
n 2 Ck, which is equivalent to an+k � a mod n (for all a 2 N), it su�ces to show that
for all a 2 N and for all primes p dividing n we have an+k � a mod p. If (a; p) = 1, the
congruence follows from Lemma 2.7, and otherwise it is trivial. This completes the proof of
the generalized version of Korselt's criterion.

For completeness, let us state the following lemma:

Lemma 2.8 If n 2 Ck and (a; n) = 1, then an+k�1 � 1 mod n.

Proof. This follows immediately from the fact that the residues which are relatively prime
to n are a multiplicative group modulo n. q.e.d.

Now, we formulate the connection between the generalized Carmichael numbers and
the function g introduced at the end of Section 1.

{(a; b) denotes the greatest common divisor of the natural numbers a and b.
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Theorem 2.9 The number n belongs to C`+1 if and only if n is an `-number.

Proof. Let n 2 N with n > maxf1;�`g be given. Since the statement of the theorem is trivial
if n contains a square, we may assume that n is square-free. So, according to Theorem 2.1,
we simply have to check that g(n) j n+ ` if and only if p� 1 j n + ` for all prime divisors p
of n. But this follows directly from the de�nition of the function g. q.e.d.

Theorem 2.9 answers in particular the question to which Ck a given number n belongs,
namely precisely to all Ck with k = 1� n+m � g(n), where m = 1; 2; 3; : : : . We should also
remark explicitly that g can alternatively be de�ned by

g(n) = minfm > 1 : am = a mod n for all ag � 1:

3 Special Cases

In this section we consider the set Ck for certain k's.

3.1 The case k = 0

Since, by Fermat's Little Theorem, for every prime p we have ap � a mod p (for all a 2 N),
every prime belongs to C0. In [AGP1994] it is shown that the set C0 contains also in�nitely
many composite numbers (the Carmichael numbers).

3.2 The case k = 1

It is shown in [HHL1999] that C1 = f2; 6; 42; 1806g. Here, we give a new and simpler proof
of this result by using the generalized Korselt criterion for C1.

Theorem 3.1 C1 = f2; 6; 42; 1806g.

Proof. First remember that each member of C1 is square-free. If a prime p belongs to C1,
then by Theorem 2.1 we have p � 1 j p, which implies p = 2. Hence, 2 is the only prime
belonging to C1. If p < q are two primes and pq 2 C1, then we get by Theorem 2.3 that
p � 1 j q and q � 1 j p. By p � 1 j q we get p � 1 = 1 or p = q + 1, but we assumed p < q,
so p = 2; and by q � 1 j 2 we must have q = 3. Hence, 6 is the only member of C1 which is
a product of two primes. Now assume p < q < r are three primes and pqr 2 C1. Because
p � 1 j qr and both q and r are greater than p we get p = 2. By q � 1 j 2r we get, since
q < r, q = 3. Finally, by r � 1 j 6 and because r > 3 we get r = 7. Hence, 42 is the only
member of C1 which is a product of three primes. Assume now p < q < r < s are four
primes such that pqrs 2 C1. By p� 1 j qrs we get again p = 2, by q � 1 j 2rs we get q = 3,
by r � 1 j 6s we get r = 7 and by s� 1 j 42 we get s = 43. Hence, 1806 is the only member
of C1 which is a product of four primes. For �ve (or more) primes p < q < r < s < t we get
again p = 2, q = 3, r = 7 and s = 43. Thus, t > 43 and t � 1 j 2 � 3 � 7 � 43, which implies
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t 2 f87; 259; 603; 1807g, and therefore, t is not prime. This shows that there is no number
in C1 which is a product of �ve or more distinct primes. q.e.d.

Remark: In [AGP1994, page 708] it is claimed that for b = 0 and b = 1 and for any
�xed nonzero integer a, there are in�nitely many square-free, composite integers n such that
p � a j n � b for all primes p dividing n. However, as we have seen in Theorem 3.1, for
a = 1 and b = 0 there are only �nitely many such numbers. For b other than 0 or 1 the
corresponding statement is open. Below we prove at least for a = 1 and several special b
that there are in�nitely many composite, square-free numbers n having the corresponding
property.

3.3 The case 1� k > 1 square-free

Theorem 3.2 If 1� k > 1 is square-free, then Ck is an in�nite set. In particular

(a) for each prime number n - 1� k of the form n = 1 + s g(1� k), or

(b) for each composite number n 2 C0 with g(1� k) j g(n) and (1� k; n) = 1,

the number n(1� k) belongs to Ck.

Before we start with the proof of Theorem 3.2, we note the following property of the function
g which follows immediately from its de�nition. Namely, we observe that

g(mn) =
g(m)g(n)

(g(m); g(n))
(7)

whenever m and n are square-free numbers with (m;n) = 1. Proof. Let m = 1� k > 1 be
a square-free number. Moreover, let n - m be a prime number of the form n = 1 + s g(m)
(according to Dirichlet's result from 1837k, there exist in�nitely many such numbers n)
or, more generally, let n 2 C0 be such that g(m) j g(n) and (m;n) = 1. Then we have
(g(m); g(n)) = g(m) and hence, because of (7),

g(mn) = g(n) j m(n� 1):

In view of Theorem 2.9 this proves the claim. q.e.d.

Remark: We call the numbers n(1� k) 2 Ck with n prime, which we found in Theo-
rem 3.2, primitive. Thus, these in�nitely many primitive numbers correspond to case (a) in
Theorem 3.2. The question arises, whether besides these primitive numbers, there are other
members of Ck, for example if case (b) actually does occur.

From Theorem 3.2(a) we immediately obtain for k = �1, that 2p 2 C�1 (where p is any
odd prime). Using Theorem 3.2(b), we can prove that apart from the primitive numbers 2p
(p prime), there are in�nitely many other elements in C�1:

Proposition 3.3 If n 2 C0 is odd, then 2n 2 C�1. In particular, there are in�nitely many
non-primitive elements in C�1.

kThere are in�nitely many primes in any arithmetic progression b; b+ d; b+ 2d; : : : , where (b; d) = 1



14 Generalized Carmichael Numbers

Proof. If n > 2 is prime, then 2n 2 C�1 by Theorem 3.2(a). If n 2 C0 is a composite
number, in other words, if n is one of the in�nitely many Carmichael numbers (and hence
odd), then 2n 2 C�1 by Theorem 3.2(b). q.e.d.

From Theorem 3.2(a) we obtain for k = �2, that 3p 2 C�1 (for any prime p > 3).
Again, by Theorem 3.2(b), we get the following slightly stronger result:

Proposition 3.4 If 3 < n 2 C0, n not a multiple of 3, then 3n 2 C�2.

Proof. If n > 3 is prime, then 3n 2 C�2 by Theorem 3.2(a). If 3 < n 2 C0 is a composite
number and not a multiple of 3, then 3n 2 C�2 by Theorem 3.2(b). q.e.d.

Similarly, for k = �5, we obtain from Theorem 3.2:

Proposition 3.5 If n 2 C0 is neither divisible by 2 nor by 3, then 6n 2 C�5.

The cases k = �6;�12;�18;�36 allow us to make contact to a construction for
Carmichael numbers which goes back to Chernick: He observed in [Ch1939] that if the num-
bers p = 1 + 6m, q = 1+ 12m and r = 1 + 18m are all prime, then n = pqr is a Carmichael
number��. The �rst values for m such that the corresponding triplet consists of primes are
m = 1; 6; 35; 45; 51; 55; 56; 100; : : : . It is widely believed that there exist in�nitely many val-
ues of m with this property (usually it is accredited to an extended Hardy-Littlewood prime
k-tuple conjecture). For these special Carmichael numbers, we have the following

Proposition 3.6 If p = 1 + 6m, q = 1 + 12m and r = 1 + 18m are prime numbers, and
hence n = pqr 2 C0, then 7n 2 C�6 if m > 1, 13n 2 C�12 if m > 2, 19n 2 C�18 if m > 3,
and 37n 2 C�36 if m > 6.

Proof. Again, the claims follow easily from Theorem 3.2(a). Observe, that g(n) = 36m.
q.e.d.

Remark: If, in Proposition 3.6, m > 5 is a multiple of 5, then 31n 2 C�30.

The condition (b) in Theorem 3.2 is certainly not optimal. For illustration, consider
the case k = �9: Here we have the following

Proposition 3.7 If n 2 C0 is neither divisible by 2 nor by 5, then 10n 2 C�9.

Proof. We have, according to (7), that g(10n) j 2g(n) and since g(n) j n�1, 2g(n) j 10(n�1).
q.e.d.

A similar example is the case k = �20: Here we have the following

Proposition 3.8 If n 2 C0 is neither divisible by 2, nor by 3, nor by 7, then 21n 2 C�20.

Proof. We have g(21n) j 3g(n) and since g(n) j n� 1, 3g(n) j 21(n� 1). q.e.d.

��Actually, Chernick's theorem is more general and the special case that we mention here follows immedi-
ately from Korselt's criterion.
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4 Short products in Ck

In this section, we investigate numbers n 2 Ck which are the product of few (distinct) primes.
To warm up, we consider the case of one prime factor n = p 2 Ck. A necessary condition is
that p� 1 j p+k� 1. Hence, �(p� 1) = p+k� 1 for some � = 1; 2; 3; : : : . In case � = 1, we
conclude k = 0, and we know, that C0 contains all prime numbers. If � 6= 1, we can solve
for p and obtain p = 1 + k

��1
. If k � 1, this is maximal for � = 2 and hence, we have

Proposition 4.1 If k � 1 and p 2 Ck is prime, then p � 1 + k. In particular, Ck contains
only �nitely many prime numbers.

For k � �1 we obtain

Proposition 4.2 Ck does not contain prime numbers for k � �1.

No we consider n 2 Ck which are the product of two (distinct) primes, say 2 � p < q. From
the generalized Korselt criterion (Theorem 2.3) we infer that

p� 1 j q + k � 1
q � 1 j p+ k � 1;

and hence,

�(p� 1) = q + k � 1 (8)
�(q � 1) = p+ k � 1 (9)

for some �; � 2 N . Let us �rst discuss the case �� = 1:

First case � = � = 1: By adding (8) and (9), it follows that k = 0 and subsequently we
get p = q. In other words, this case does not occur.

Second case � = � = �1: Here, (8) and (9) are equivalent and we have the condition
p+ q = 2� k, and in particular, k � �3. Therefore, we get

Proposition 4.3 If p < q are both prime, then pq 2 C2�p�q.

Of course, this follows also immediately from Theorem 2.3.

From now on, we assume �� 6= 1. Solving (8) and (9) for p and q, we obtain

p = 1 + k
� + 1

�� � 1

q = 1 + k
� + 1

�� � 1
:

Thus, we have the conditions

k
� + 1

�� � 1
= 1 + r

k
� + 1

�� � 1
= k

� + 1

�� � 1
+ 1 + s
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for some real numbers r; s � 0. Now, for given k we ask what values of � and � (and
subsequently for p and q) are still possible. Obviously, for k = 0 the set of possible � and
� is empty. Hence (together with the case �� = 1), an immediate conclusion is that no
number in C0 can have precisely two prime factors. Expressing everything in r and s, we
have

� = 1 +
1 + k + s

1 + r

� =
1 + k + r

2 + r + s
p = 2 + r

q = 3 + r + s :

If we consider �rst the case k � 1, we see, that p is maximal, if r is maximal, which happens
(since � 2 N) for � = 2, i.e., for k + s = r. Then, � = 1+2k+s

2+k+2s
� 1, or s = k 2�b

2b�1
� 1,

and hence r = k �+1
2��1

� 1. This is maximal for � = 1 and we obtain p � 2k + 1. A similar
reasoning gives q � 3k + 1. Hence, we obtain

Proposition 4.4 If k � 1 and p < q prime such that pq 2 Ck, then p � 2k + 1 and
q � 3k + 1. In particular, only �nitely many members of Ck consist of precisely two prime
factors.

For k � �1 we �rst observe, that � � 0. Now, if � = 0, then r = �1 � k, � = � s+1
k

and
hence p = 1 � k and q = 1 � k(� + 1) = 1 + (p � 1)�0 for �0 = 2; 3; : : : . This is precisely
what we also have from Theorem 3.2(a) in case 1� k prime.

Finally, we consider the case � < 0: Similar arguments as above in the discussion of
k � 1 lead to the following result: p � 1� k

5
and q � 1�k

2
. Summarizing, we have:

Proposition 4.5 Let k � �1 and p < q both prime such that pq 2 Ck. Then

(a) p = 1� k and q = 1 + h(p� 1) for some h = 2; 3; : : : , or

(b) p � 1� k
5
and q � 1�k

2
.

In particular, if 1� k is not prime, then only �nitely many elements of Ck have exactly two
prime factors.

5 When a = 2

In this section we come back to the Chinese hypothesis and the observation of Jeans (see
Section 1). We consider the set of odd numbers n for which the equation 2n � 2 mod n
holds. First we note the following

Fact 5.1 For an odd number n we have 2n � 2 mod n if and only if 2n�1 � 1 mod n.
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Proof. This follows immediately from the fact that the residues which are relatively prime
to n are a multiplicative group modulo n. q.e.d.

At the end of the 19th century, Jeans investigated the set of composite odd numbers n,
such that 2n�1 � 1 mod n (see [Je1898]). Let us denote the set of all these numbers by J0
and if n 2 J0, then we call n a J0-number, or just a J-number. In general,

Jk :=
�
n 2 N : minfn; n+ kg > 1 and n+ k is odd and 2n+k � 2 mod n

	
:

5.1 On the set of J-numbers

To investigate the set J , let us recall �rst some notations and basic facts.

The Euler � function: For n 2 N , �(n) is de�ned to be the number of integers between
1 and n relatively prime to n. For example, �(1) = 1, �(6) = 2, and if p is a prime, then
�(p) = p� 1.

Primitive roots and orders: Let a; n 2 N and (a; n) = 1, then we say a has order h

mod n, if h is the smallest positive integer such that ah � 1 mod n. This h is denoted by
orda(n). If h = �(n), where a and n are as above, then a is called a primitive root mod n.
It is well-known that for every prime number there is a primitive root. Moreover, for p prime
there are �(p � 1) primitive roots for p. But on the other hand, there is no simple way of
�nding primitive roots for some p, even if p is prime, and for small primes trial and error
is probably as good a method as any. Hence, there is no simple function which calculates
ord2(p), for any odd prime p. At this point we like to mention Artin's conjecture which
states that if a > 1 is not a square, then there are in�nitely many primes for which a is a
primitive root.

For odd numbers n we get by Euler's Theorem that 2�(n) � 1 mod n, and therefore,
ord2(n) j �(n). Thus, for odd primes p we have ord2(p) j p� 1.

Pseudoprimes: A composite integer n is called a pseudoprime to the base a if an�1 �
1 mod n. So, a composite n is a J-number if and only if n is odd and a pseudoprime to the
base 2. One can show that for each integer a > 1, there are in�nitely many pseudoprimes n
to the base a, namely

n =
ap � 1

a� 1

ap + 1

a + 1
;

where p is an odd prime not dividing a(a2 � 1) (see e.g. [Re1996, p. 125]).

Thus, there are in�nitely many composite J-numbers.

Lemma 5.2 If n is odd and square-free, then 2n�1 � 1 mod n if and only if for each prime
p dividing n, ord2(p) j n� 1.

Proof. Let p be a prime dividing n. If ord2(p) j n � 1, then, for some h 2 N , 2n�1 =

2h�ord2(p) =
�
2ord2(p)

�h
� 1 mod p. On the other hand, if 2n�1 � 1 mod n, then 2n�1 � 1

mod p for each p dividing n, and hence, ord2(p) j n� 1. q.e.d.

In the case of J-numbers it is not true that J-numbers are square-free. Moreover,
there are J-numbers which are squares, like 10932 or 35112. Furthermore, there are many
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J-numbers which are the product of exactly two di�erent primes. To �nd such composite
J-numbers, the following fact is a useful tool.

Fact 5.3 If p and q are odd primes such that p < q, q j 2p�1 � 1 and ord2(p) j q � 1 (or
p� 1 j q � 1), then pq is a J-number.

Proof. q j 2p�1 � 1 implies 2p�1 � 1 mod q and thus, ord2(q) j p � 1, which implies
ord2(q) j q(p � 1) + (q � 1), since ord2(q) j q � 1. Further, since ord2(p) j q � 1 we get
ord2(p) j p(q � 1) + (p� 1), because ord2(p) j p� 1. q.e.d.

Some Examples: p = 11 and q = 31 (check that 31 j 211�1 � 1); p = 17 and q = 257;
p = 19 and q = 73; p = 23 and q = 89; : : :

As a matter of fact we like to mention that if p is an odd prime, then 3p j 2p�1 � 1.

Now we turn back to J-numbers n of the form n = p2, with p prime. It is an open
question whether there are in�nitely many J-numbers which are square numbers. Here, we
give a heuristic argument which lends some support to the conjecture that there are in fact
in�nitely many such numbers, but they are very likely to be extremely rare.

Lemma 5.4 Let n = p2 for some odd prime p, then n is a J-number if and only if 2p�1 � 1
mod p2.

Proof. First notice that �(p2) = p(p� 1) and therefore 2p
2�p� 1 � 0 mod p2, which implies

that ord2(p
2) j p2 � p.

If p2 is a J-number, then 2p
2�1 � 1 � 0 mod p2, which implies that ord2(p

2) j p2 � 1,
and together with ord2(p

2) j p2 � p we get ord2(p
2) j p� 1. So, 2p�1 � 1 mod p2.

If 2p�1 � 1 mod p2, then ord2(p
2) j p� 1, and therefore, ord2(p

2) j �(p2) (since �(p2) =
p(p� 1)). Further, this implies that ord2(p

2) j p2 � 1, (since p2 � 1 = p2 � p+ (p� 1)), and
hence, 2p

2�1 � 1 mod p2. q.e.d.

If p is prime and p2 is a J-number, then we say that p is a germ.

Since 2p�1 � 1 mod p for every odd prime p, we get 2p�1 � bp+1 mod p2 for some 0 �
b � p� 1. Let P be the set of all odd prime numbers and consider the function � : P! [0; 1)
de�ned as follows: For p 2 P let �(p) 2 [0; 1) be such that 2p�1 � �(p)p2+1 mod p2, in other
words, �(p) := b

p
, where b is as above and p is odd. It is very likely that the distribution of �(p)

is uniform. To illustrate this, let pi (for i 2 N) be an enumeration of P such that pi < pi+1.
First we tested the �rst 60; 000 odd primes and found that

P
i�60;000 �(pi)

�= 29; 934. Further,P
60;000�i<100;000 �(pi)

�= 19; 928 and
P
f�(pi) : �(pi) <

1
10

and 60; 000 � i < 100; 000g �= 204.
Another test (up to over 2 Million) gave us

P
100;000�i<160;000 �(pi)

�= 29880 and
P
f�(pi) :

1
10
< �(pi) <

3
10
and 100; 000 � i � 160; 000g �= 2426.

The idea is now to replace the mapping p 7! b by equidistributed independent random
variables Xp which take values in f0; 1; : : : ; p� 1g, i.e., the probability that Xp = i is 1

p
for

each i 2 f0; 1; : : : ; p� 1g. From Xp we construct a new random variable Yp which takes, for
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each prime number p, the value 1 if Xp = 0 and zero otherwise. In other words, instead of
looking whether b = 0 (and hence p is a germ), we throw a dice with p faces f0; 1; : : : ; p�1g.
Therefore, a value p for which Yp = 1 is now called a random germ. The idea is that
random germs should have approximately the same distribution as the e�ective germs. The
probability that p is not a random germ is

P (p is not a random germ) = 1�
1

p
:

Thus, we have

P (p1; : : : ; pk are all not random germs) =
kY

i=1

�
1�

1

pi

�

= exp
kX

i=1

log

�
1�

1

pi

�
:

Observe that log(1� x) � �x for x � 0 (and j log(1� x) + xj = O(x2) for x! 0). Thus, we
can estimate

P (p1; : : : ; pk are all not random germs) . exp

�
�

kX
i=1

1

pi

�
:

Now, the sum of inverse primes is divergent, and hence,

P (pn; : : : ; pk are all not random germs)! 0 for k!1.

In other words, the probability that after a certain odd prime number pn no other random
germ occurs is zero. So, we should expect that in�nitely many J-numbers exist which are
the square of a prime.

On the other hand, what can we say about the frequency of occurrence of (random)
germs? In order to answer this question, we close this discussion by calculating the distri-
bution function of random germs. In other words we ask: How many random germs may we
expect in the set fp1; p2; : : : ; pkg. This is simply

E

� kX
i=1

Ypi

�
=

kX
i=1

E[Ypi
] =

kX
i=1

1

pi
:

Example. The expected number of random germs p 2 f3; 4; : : : ; 2000g is 1:792448 (the
actual number of germs in this interval is 1, namely p = 1093). In the interval f3; 4; : : : ; 106g
the expected number of random germs is 2:38733, the actual number of germs is 2, namely
p = 1093 and p = 3511. 


We can now state the following conjecture:

Conjecture 5.5 There exist in�nitely many J-numbers which are the square of a prime.
Furthermore, the distribution function of the germs is asymptotically��fp � n : p is a germg

�� � X
p�n

p prime

1

p
� log logn :
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Remark: If we consider the random variable Z which takes the value p where p is the
smallest random germ, then a similar calculation as above shows that the expected value of
Z is E[Z] =1.

5.2 On the set of Jk-numbers

In the following we give a characterization of the set Jk. For this we �rst de�ne ord2(2) := 1.

Theorem 5.6 Let k 2 Z, then n 2 Jk if and only if 4 - n and ord2(p
l) j pl�1m + k � 1,

where n = plm and p - m.

The proof is given in the following two lemmas:

Lemma 5.7 If k is even, then n 2 Jk if and only if ord2(p
l) j pl�1m+ k� 1, where n = plm

and p - m.

Proof. Assume plm = n and p - m, then

2n+k = 2p
lm+k = 2p

l�1(p�1)m+pl�1m+k =
�
2p

l�1(p�1)
�m
� 2p

l�1m+k ;

and because 2p
l�1(p�1) � 1 mod pl we get

2n+k � 2p
l�1m+k mod pl :

Thus, n 2 Jk if and only if 2p
l�1m+k � 2 mod pl, which is equivalent to ord2(p)

l j pl�1m +
k � 1. q.e.d.

Notice that if n is square-free, Lemma 5.7 is equivalent to ord2(p) j m + k � 1 and
remember that ord2(p) j p� 1.

Lemma 5.8 If k is odd, then n 2 Jk if and only if 4 - n and for all odd primes p, where
n = plm and p - m, we have ord2(p

l) j pl�1m+ k � 1.

Proof. The proof is similar to the proof of Lemma 5.7. We only have to show that n 2 Jk
implies n is even and 4 - n. Let n 2 Jk, then by de�nition we have n + k > 1 and n + k is
odd, and hence n is even. Because n+ k > 1 we have 2n+k � 4 and therefore 4 j 2n+k, which
implies 4 - 2n+k � 2. Thus, 2n+k 6� 2 mod 4 and we get 4 - n. q.e.d.

Notice that if n is square-free, Lemma 5.8 is equivalent to ord2(p) j m + k � 1 and
n = 2m for some m.
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5.3 Some square-free elements of Jk

We have seen that there are only four numbers in the set C1. These numbers also appear in
the set J1. However, the set J1 is much bigger than C1, even if we restrict our attention to
square-free numbers.

Let p 2 J1 be a prime, then because each number belonging to J1 is even, p = 2. Assume
now 2q 2 J1 for an odd prime q. By Lemma 5.8 we get ord2(q) j 2, which implies q = 3.
Now assume 2qr 2 J1 where 2 < q < r are primes. Again by Lemma 5.8 we get ord2(q) j 2r,
which implies again, because r is prime and greater than q, that q = 3. Further, because
ord2(r) j 6, r > 3 and r is a prime we get r = 7. If we assume 2qrs 2 J1, where 2 < q < r < s
are primes, then we get again q = 3 and r = 7, but s is not uniquely determined by q = 3
and r = 7. For example, s = 127 and s = 43 are possible values for s. It is very likely
that|in contrast to C1|the set J1 contains in�nitely many square-free elements.

Acknowledgement: We like to thank Stephanie Halbeisen who wrote all the JAVA
programs we used in this paper.
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