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Abstract

For a ⊆ b ⊆ ω with b \ a infinite, the set D = {x ∈ [ω]ω : a ⊆ x ⊆ b} is
called a doughnut. A set S ⊆ [ω]ω has the doughnut property D , if it contains
or is disjoint from a doughnut. It is known that not every set S ⊆ [ω]ω has the
doughnut property, but S has the doughnut property if it has the Baire property
B or the Ramsey property R . In this paper it is shown that a finite support
iteration of length ω1 of Cohen forcing, starting from L, yields a model for CH +
Σ1

2(D ) + ¬Σ1
2(B ) + ¬Σ1

2(R ).

0. Introduction

Investigating arrow partition properties, Carlos DiPrisco and James Henle introduced in
[DH00] the so-called doughnut property: For a set x, let |x| denote its cardinality and let
[ω]ω := {x ⊆ ω : |x| = ω}. Then, for a ⊆ b ⊆ ω with b \ a ∈ [ω]ω, the set D = {x ∈ [ω]ω :
a ⊆ x ⊆ b} is called a doughnut, or more precisely, the (a, b)-doughnut. A set S ⊆ [ω]ω has
the doughnut property, denoted by D , if it contains or is disjoint from some doughnut.
A set S ⊆ [ω]ω has the Ramsey property, denoted by R , if it contains or is disjoint
from some (∅, b)-doughnut. Hence, it is obvious that if S has the Ramsey property, then it
has the doughnut property as well. Like for the Ramsey property, it is easy to show—using
the Axiom of Choice—that not every set S ⊆ [ω]ω has the doughnut property. Moreover,
in the constructible universe L not even every ∆1

2-set has the doughnut property. Indeed,
let A =

{
y ∈ [ω]ω : ∀z ∈ [ω]ω

(
z <L y → (|y M z| is infinite)

)}
, where “M” denotes the

symmetric difference, and let S =
{
x ∈ [ω]ω : ∀y ∈ A(|x M y| is infinite or odd)

}
. Since

“<L” is a ∆1
2-relation (cf. [Je78, Theorem 97]), the set A is a Π1

2-set and by construction,
for every x ∈ [ω]ω there is a unique y ∈ A such that |xMy| is finite. Thus, for every x ∈ [ω]ω

we either have x ∈ S or ∀y ∈ A(|x M y| is infinite or even), and since “odd” and “even”
are arithmetical relations, S is a ∆1

2-set. Now, if x ∈ [ω]ω and n ∈ x, then x ∈ S if and
only if x \ {n} /∈ S, which implies that S does not have the doughnut property. On the
other hand, one can show that if S has the Baire propertyB (which means there is an
open set O such that SMO is meager), then S has also the doughnut property (cf. [DH00,
Proposition 2.2] or [MS80]).
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Let P be any property of subsets of [ω]ω. We write Σ1
2(P ) if every “boldface” Σ1

2-set
S ⊆ [ω]ω has the property P . By the facts mentioned above we have

Σ1
2(B ) =⇒ Σ1

2(D ) ⇐= Σ1
2(R ) .

This is similar to the fact that if all Σ1
2-sets S have the Baire property or the Ramsey

property, then all Σ1
2-sets are K�-regular, denoted by K σ. (The property K σ will be

defined later.) Thus, we also have

Σ1
2(B ) =⇒ Σ1

2(K σ) ⇐= Σ1
2(R ) .

The aim of this paper is to show that Con(ZFC) ⇒ Con
(
ZFC+CH+Σ1

2(D )+¬Σ1
2(K σ)

)
.

In particular we get Con(ZFC) ⇒ Con
(
ZFC + CH + Σ1

2(D ) + ¬Σ1
2(B ) + ¬Σ1

2(R )
)

Acknowledgement: I like to thank Carlos DiPrisco for many fruitful and inspiring dis-
cussions.

1. Completely Doughnut Sets

In this section we introduce a pseudo topology on [ω]ω, called the doughnut topology,
which is related to the doughnut property and show that this pseudo topology has the same
features as the Ellentuck topology, which was introduced by Erik Ellentuck in [El74] to prove
that analytic sets are completely Ramsey. In our terminology, the non-empty basic open
sets of the Ellentuck topology are the (∅, b)-doughnuts, where b ∈ [ω]ω. In fact, Ellentuck
proved that a set S ⊆ [ω]ω is completely Ramsey if and only if it has the Baire property
with respect to the Ellentuck topology, and that S is completely Ramsey null if and only if
it is meager (or equivalently, nowhere dense) with respect to the Ellentuck topology. In the
following we will see that a set is completely doughnut (defined below) if and only if it has
the Baire property with respect to the doughnut topology and it is completely doughnut
null if and only if it is meager (or equivalently, nowhere dense) with respect to the doughnut
topology. Let us start by defining the doughnut topology:

For a, b ⊆ ω let

(a, b)ω :=
{
x ∈ [ω]ω : a ⊆ x ⊆ b ∧ |x \ a| = |b \ x| = ω

}
.

The sets (a, b)ω together with the sets [ω]ω and ∅ are the basic open sets. Since the
intersection of two basic open sets might contain just one element, the basic open sets do
not form a basis for a topology on [ω]ω. However, since we use in the following just unions
of basic open sets and the intersection of unions of basic open dense sets, let us say that a
set S is open with respect to the doughnut topology if S is the union of basic open sets, and
similarly we define nowhere dense and meager with respect to the doughnut topology.

For a, b ⊆ ω let

[a, b]ω :=
{
x ∈ [ω]ω : a ⊆ x ⊆ b ∧

(
|x \ a| = ω ∨ |b \ x| = ω

)}
.

Thus, a set [a, b]ω is either an (a, b)-doughnut or empty.

In our terminology, the non-empty basic open sets of the Ellentuck topology are the
doughnuts [∅, b]ω, where b ∈ [ω]ω.
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Fact 1.1. For every doughnut [a, b]ω there are a′, b′ ∈ [a, b]ω such that ∅ 6= (a′, b′)ω ⊆
[a′, b′]ω ⊆ (a, b)ω ⊆ [a, b]ω.

Proof. Take a′, b′ ∈ [a, b]ω such that a ⊆ a′ ⊆ b′ ⊆ b and each of the sets a′ \ a, b′ \ a′ and
b \ b′ is infinite. a

A set S ⊆ [ω]ω is completely doughnut, denoted by D c, if for each doughnut [a, b]ω

there is a doughnut [a′, b′]ω ⊆ [a, b]ω such that [a′, b′]ω ⊆ S or [a′, b′]ω ∩ S = ∅. If we are
always in the latter case, then S is called completely doughnut null.

Obviously, the complement of a completely doughnut set is also completely doughnut
(cf. [El74, Lemma 5]). Moreover, every open set (w.r.t. the doughnut topology) is com-
pletely doughnut (cf. [El74, Lemma 4]):

Fact 1.2. If S ⊆ [ω]ω is an open set with respect to the doughnut topology, then S is
completely doughnut.

Proof. If S ⊆ [ω]ω is open (w.r.t. the doughnut topology), then S is the union of basic open
sets. Thus, for any doughnut [a, b]ω, S ∩ (a, b)ω is open. Hence, S ∩ (a, b)ω is either empty
or contains a basic open set. Thus, by Fact 1.1, S ∩ [a, b]ω contains or is disjoint from some
doughnut, and since [a, b]ω was arbitrary, this implies that S is completely doughnut. a

The following fact characterizes completely doughnut null sets in terms of nowhere dense
sets (cf. [El74, Lemma 6]).

Fact 1.3. A set S ⊆ [ω]ω is completely doughnut null if and only if it is nowhere dense with
respect to the doughnut topology.

Proof. Take any set S ⊆ [ω]ω. By definition, S is completely doughnut null if for each
doughnut [a, b]ω there is a doughnut [a′, b′]ω ⊆ [a, b]ω \ S, and hence, by Fact 1.1, [ω]ω \ S
contains an open dense set (w.r.t. the doughnut topology).

On the other hand, if [ω]ω \S contains an open dense set (w.r.t. the doughnut topology),
then for each doughnut [a, b]ω there is a basic open set (a′, b′)ω ⊆ (a, b)ω such that (a′, b′)ω∩
S = ∅. Now, for any doughnut [a′′, b′′]ω ⊆ (a′, b′)ω we have [a′′, b′′]ω∩S = ∅, and since [a, b]ω

was arbitrary, this implies that S is completely doughnut null. a

Before we proceed, let us first define completely doughnut sets in terms of trees.

Let {0, 1}<ω be the set of all finite sequences of 0’s and 1’s. For s, t ∈ {0, 1}<ω we write
s ≺ t if s is a proper initial segment of t, and we write s 4 t if s ≺ t or s = t. A set
T ⊆ {0, 1}<ω is called a tree, if s ∈ T and t ≺ s implies t ∈ T . If T ⊆ {0, 1}<ω is a tree
and s ∈ T , then Ts = {t ∈ T : s 4 t∨ t ≺ s}. If 〈s0, . . . , sn〉 ∈ {0, 1}<ω and u ∈ {0, 1}, then
s_u := 〈s0, . . . , sn, u〉. A tree T ⊆ {0, 1}<ω is called uniform, if for all s, t ∈ T of the same
length we have

s
_
0 ∈ T ⇐⇒ t

_
0 ∈ T and s

_
1 ∈ T ⇐⇒ t

_
1 ∈ T .

If T is a tree, then a set ξ ⊆ T is called a branch through T , if for any s, t ∈ ξ we have
s 4 t or t ≺ s and ξ is maximal with respect to this property. The set of all branches
through T is denoted by [T ]. Notice that all branches through a finite uniform tree are
of the same length. A tree T ⊆ {0, 1}<ω is called perfect, if for every s ∈ T there is
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a t ∈ T with s 4 t such that both t
_
0 and t

_
1 belong to T ; such a sequence t is called

a splitting node of T . The set of all splitting nodes of T is denoted by split(T ) and
for n ∈ ω, splitn(T ) :=

{
s ∈ split(T ) : |{t ∈ split(T ) : t ≺ s}| = n

}
. Finally, the set

splev(T ) := {|t| : t ∈ split(T )} denotes the set of all split levels of T .

Let ω2 be the set of all functions from ω to {0, 1}. For a set a ⊆ ω, let χa ∈ ω2 be such
that χa(n) = 1 iff n ∈ a, and for ξ ∈ ω2 let χ−1(ξ) = {n ∈ ω : ξ(n) = 1}.

Fact 1.4. Each uniform perfect tree T ⊆ {0, 1}<ω corresponds in a unique way to a dough-
nut, and vice versa.

Proof. Let T ⊆ {0, 1}<ω be a uniform perfect tree. Let D = {χ−1(ξ) : ξ ∈ [T ] ∧ χ−1(ξ) ∈
[ω]ω}, then D is equal to the doughnut [a, b]ω, where a =

⋂
ξ∈[T ]{n ∈ ω : ξ(n) = 1} and

b \ a = splev(T ).
On the other hand, if a ⊆ b ⊆ ω with b \ a ∈ [ω]ω, then let T ⊆ {0, 1}<ω be the tree with

[T ] = {ξ ∈ ω2 : a ⊆ χ−1(ξ) ⊆ b}. It is easy to see that T is a uniform perfect tree. a

If T is a uniform perfect tree, then let donut(T ) denote the doughnut which—by Fact 1.4—
corresponds to T .

The following lemma is similar to [El74, Lemma 7].

Lemma 1.5. With respect to the doughnut topology, a set S ⊆ [ω]ω is meager if and only if
it is nowhere dense.

Proof. Let S ⊆ [ω]ω be any meager set. By Fact 1.3 it is enough to show that S is completely
doughnut null. Since S is meager, there are countably many nowhere dense sets Wn such
that S =

⋃
n∈ω Wn. For each n ∈ ω, let On be an open dense set with On ∩ Wn =

∅. Let [a, b]ω be any doughnut and let T 0 be the corresponding uniform perfect tree.
Assume we already have constructed a uniform perfect tree Tn for some n ∈ ω. For
each t ∈ splitn(Tn) consider the trees Tn

t
_
0

and Tn
t
_
1
. By a successive amalgamation we can

construct a uniform perfect tree Tn+1 such that splitn(Tn+1) = splitn(Tn), [Tn+1] ⊆ [Tn]
and donut

(
Tn+1

)
⊆ On. Finally, let T =

⋂
n∈ω Tn, which is by construction a uniform

perfect tree. Now, donut(T ) = [a′, b′]ω for some a′ ⊆ b′ ⊆ ω with b′ \ a′ ∈ [ω]ω, and by
construction we have [a′, b′]ω ⊆ [a, b]ω and [a′, b′]ω ⊆

⋂
n∈ω On, and since S ∩

⋂
n∈ω On = ∅

we get [a′, b′]ω ∩ S = ∅. a

The following is a consequence of the preceding observations (cf. [El74, Theorem 9]).

Proposition 1.6. A set S ⊆ [ω]ω is completely doughnut if and only if S has the Baire
property with respect to the doughnut topology.

Proof. Let S ⊆ [ω]ω be completely doughnut and let O =
⋃ {

(a, b)ω : [a, b]ω ⊆ S
}
. The set

O, as a union of open sets, is open. Since S is completely doughnut, for every doughnut
[a, b]ω there is a doughnut [a′, b′]ω ⊆ [a, b]ω, such that either [a′, b′]ω ⊆ S or [a′, b′]ω ∩S = ∅.
Hence, for every non-empty basic open set (a, b)ω there is a non-empty basic open set
(a′, b′)ω ⊆ (a, b)ω such that (a′, b′)ω ∩S \O = ∅, which implies that the set S \O is nowhere
dense. Thus, S is the union of an open set and a nowhere dense set, and therefore has the
Baire property.
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On the other hand, let us assume that S ⊆ [ω]ω has the Baire property. Thus, there is an
open set O such that SMO is meager. Since meager sets are nowhere dense (by Lemma 1.5)
and nowhere dense sets are completely doughnut null (by Fact 1.3), and since open sets are
completely doughnut (by Fact 1.2), S is completely doughnut. a

Remark. The set of completely doughnut null sets forms an ideal on [ω]ω. This ideal,
denoted by v0, is related to Silver forcing and was studied by Jörg Brendle in [Br95].
For example he shows that cov(v0) ≤ r (where r denotes the reaping number) and that
ω1 = cov(v0) < cov(P2) = ω2 = c is consistent with ZFC (where P2 denotes the Mycielski
ideal).

2. Making Doughnuts of Perfect Sets of Cohen Reals

In the following we show how to make doughnuts of Cohen reals. First we consider the
case when one Cohen real is added and then we show that a finite support iteration of length
ω1 of Cohen forcing, starting from L, yields a model in which every Σ1

2-set is completely
doughnut.

Let C := 〈C,≥〉 be the Cohen partial ordering, where C := {0, 1}<ω and for s, t ∈ C we
stipulate s ≥ t iff t 4 s. Remember that the algebra determined by C is the unique atomless
complete Boolean algebra which has a countable dense subset (cf. [BJ95, Theorem 3.3.1]).

To define the forcing notion P, which will be used later, we have to give some definitions.

Let T ⊆ {0, 1}<ω be a finite uniform tree. As mentioned in Section 1, all branches through
a finite uniform tree are of the same length. For a finite uniform tree T , let ht(T ) denote the
length of a branch through T . Finally, for a tree T ⊆ {0, 1}<ω let T |n = {t ∈ T : |t| ≤ n}.

Let P := 〈P,≥〉 be the partial ordering, where

P =
{
T ⊆ {0, 1}<ω : T is a finite uniform tree

}
,

and for T1, T2 ∈ P we stipulate

T1 ≥ T2 ⇐⇒ ht(T1) ≥ ht(T2) and T1|ht(T2) = T2 .

Since |P| = ℵ0, the algebra determined by P is isomorphic to the algebra determined by C,
hence, the forcing notion P is isomorphic to C. If G is a P-generic filter over some model V,
then TG :=

⋃
G is a uniform perfect tree. Moreover, by genericity, every ξ ∈ [TG] is Cohen

generic over V (cf. [BJ95, Lemma 3.3.2]).

In the sequel we will not distinguish between the sets [ω]ω and ω2, and all topological
terms will refer to the usual topology on [ω]ω and ω2, respectively.

Let T ⊆ {0, 1}<ω be any uniform perfect tree and let

σT : ω −→ splev(T )
n 7−→ |t| for some t ∈ splitn(T )

be the function which enumerates the split levels of T . Further, we define a bijection ΘT

between [T ] and ω2, by stipulating ΘT (ξ)(n) := ξ
(
σT (n)

)
for ξ ∈ [T ]. For any set S ⊆ ω2,

let ΘT (S) := {ΘT (ξ) : ξ ∈ S ∩ [T ]}. It is easy to see that if S ⊆ ω2 is a Σ1
2-set, then also

ΘT (S) is a Σ1
2-set.

Now we are prepared to prove the following:
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Lemma 2.1. Let G be P-generic over V and let a, b ∈ V be such that a ⊆ b ⊆ ω and
b \ a ∈ [ω]ω. Then for every Σ1

2-set S ∈ V [G] with parameters in V there is a doughnut
[a′, b′]ω ⊆ [a, b]ω with a′, b′ ∈ V [G], such that either [a′, b′]ω ⊆ S or [a′, b′]ω ∩ S = ∅.

Proof. Take any doughnut [a, b]ω with a and b in V and let T be the uniform perfect
tree which—by Fact 1.4—corresponds to [a, b]ω. Further, take any Σ1

2-set S ⊆ [ω]ω with
parameters in V. Put S′ = ΘT (S), then, since S is a Σ1

2-set, S′ =
⋃

ι∈ω1
Bι, where for each

ι ∈ ω1, Bι is a Borel set (cf. [Je78, Theorem 95, p. 520]) with Borel code in V. The following
two cases are possible:

Case 1: There is an α ∈ ω1 such that Bα is non-meager.
Case 2: For each ι ∈ ω1, Bι is meager.

We first consider case 1: So, let us assume that Bα is non-meager for some α ∈ ω1. Since
every Borel set has the Baire property, there is a non-empty basic open set O such that
O \ Bα is meager. Thus, there are countably many open dense sets Dn, n ∈ ω, such
that O ∩

⋂
n∈ω Dn ⊆ Bα. Following the proof of Lemma 1.5 (see also the proof of [DH00,

Proposition 2.2]), by a successive amalgamation we can grow a uniform perfect tree T̃

such that [T̃ ] ⊆ Bα. Let T ′ ⊆ {0, 1}<ω be the tree with [T ′] = Θ−1
T

(
[T̃ ]

)
, then T ′ is a

uniform perfect subtree of T . Let [a′, b′]ω = donut(T ′), then [a′, b′]ω ⊆ [a, b]ω and [a′, b′]ω ⊆
Θ−1

T (Bα) ⊆ Θ−1
T (S′) ⊆ S. So far, we just worked in V, but since the notions like meager

and nowhere dense are absolute for Borel codes (cf. [Je78, Lemma 42.4]), [a′, b′]ω ⊆ S is
also valid in V[G], which completes case 1.
Let us now consider case 2: So, assume that for every ι ∈ ω1, Bι is meager. By genericity,
TG =

⋃
G is a uniform perfect tree where [TG] avoids every meager set with Borel code in

V. Hence, [TG] ∩
⋃

ι∈ω1
Bι = ∅, which implies that Θ−1

T

(
[TG]

)
∩ S = ∅. Let T ′ ⊆ {0, 1}<ω

be the tree such that [T ′] = Θ−1
T

(
[TG]

)
, then T ′ is a uniform perfect subtree of T . Let

[a′, b′]ω = donut(T ′), then [a′, b′]ω ⊆ [a, b]ω and [a′, b′]ω ∩S = ∅, which completes case 2 and
the proof as well. a

Lemma 2.2. Let Cω1 be the finite support iteration of length ω1 of Cohen forcing, starting
from L, and let Gω1 be Cω1-generic over L. Then L[Gω1 ] |= Σ1

2(D c).

Proof. Let 〈cι : ι < ω1〉 be the generic sequence of Cohen reals which corresponds to Gω1 .
Let S ⊆ [ω]ω be any Σ1

2-set with parameter r and let [a, b]ω be any doughnut. By [Ku83,
Chapter VIII, Lemma 5.14], there is a λ ∈ ω1 such that a, b, r ∈ V[Gλ], where Gλ = 〈cι : ι <
λ〉. Since the forcing notions P and C are isomorphic, by Lemma 2.1 there is a doughnut
[a′, b′]ω in V[Gλ][cλ] such that [a′, b′]ω ⊆ [a, b]ω and either V[Gλ][cλ] |= [a′, b′]ω ⊆ S or
V[Gλ][cλ] |= [a′, b′]ω ∩ S = ∅.

If we are in the former case (which corresponds to case 1 in the proof of Lemma 2.1),
then [a′, b′]ω ⊆ B′ for some Borel set B′ contained in S with Borel code in V[Gλ] and by
absoluteness we get V[Gω1 ] |= [a′, b′]ω ⊆ S.

On the other hand, ∀x(x ∈ [a′, b′]ω → x /∈ S) is a Π1
2-sentence with parameters in

V[Gλ][cλ] which holds in V[Gλ][cλ], thus, by Shoenfield’s Absoluteness Theorem (cf. [Je78,
Theorem 98, p. 530]) we get V[Gω1 ] |= [a′, b′]ω ∩ S = ∅.

Since the Σ1
2-set S and the doughnut [a, b]ω were arbitrary, this completes the proof. a
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3. Conclusion

Before we can prove the main result of this paper, we have to give some definitions.

Let ωω be the set of all functions from ω to ω. For f, g ∈ ωω we write f ≤∗ g, if
f(n) ≤ g(n) for all but finitely many n ∈ ω. A family F ⊆ ωω is called bounded, if there
is a function g ∈ ωω such that for every f ∈ F we have f ≤∗ g ; otherwise, we call F
unbounded.

Using the techniques given in [BJ95, Chapter 6, Section 5] (see also [Go93, Section 8]), one
can show the following:

Lemma 3.1. A finite support iteration of Cohen forcing preserves unbounded families. In
particular, a finite support iteration of length ω1 of Cohen forcing, starting from L, yields
a model in which ωω ∩ L is unbounded.

A tree T ⊆ ω<ω is called superperfect, if for every s ∈ T there is a t ∈ T such that
s ≺ t and {n ∈ ω : t

_
n ∈ T} is infinite. A set F ⊆ ωω is K�-regular, denoted by K σ, if F

is either bounded or there is a superperfect tree T such that [T ] ⊆ F .

Concerning Σ1
2(K σ) we have the following two lemmata:

Lemma 3.2 ([Ju88, Theorem 1.1]).

V |= Σ1
2(K σ) ⇐⇒ V |= ∀r ∈ ωω (ωω ∩ L[r] is bounded) .

Lemma 3.3 ([Ju88, § 3]). Σ1
2(B ) =⇒ Σ1

2(K σ) ⇐= Σ1
2(R ) are the only implications be-

tween the three propertiesB , R and K σ.

Now we are ready to prove the main result:

Theorem 3.4. Con(ZFC) ⇒ Con
(
ZFC + CH + Σ1

2(D c) + ¬Σ1
2(K σ)

)
. In particular, it is

consistent with ZFC that 2ℵ0 = ℵ1 and that there is a Σ1
2-set which is completely doughnut,

but which has neither the Baire property nor the Ramsey property.

Proof. Let Cω1 denote the finite support iteration of length ω1 of Cohen forcing, and let Gω1

be Cω1-generic over L. Obviously we have L[Gω1 ] |= 2ℵ0 = ℵ1 and by Lemma 2.2 we also
have L[Gω1 ] |= Σ1

2(D c). On the other hand, by Lemma 3.1, L[Gω1 ] |= ωω∩L is unbounded,
and hence, by Lemma 3.2 we get L[Gω1 ] |= ¬Σ1

2(K σ). In particular, by Lemma 3.3, there is
a Σ1

2-set in L[Gω1 ] which is completely doughnut, but which has neither the Baire property
nor the Ramsey property. a

Putting the previous results together, we get the following diagram:

Σ1
2(K σ)

Σ1
2(B )

3;oooooo
oooooo

#+O
OO

OO
O

OO
OO

OO

� Σ1
2(R )

ck PPPPPPP

PPPPPPP

s{ nnn
nn
nn

nn
nn
nn
n

Σ1
2(D c)

KS

Considering this diagram, we get



8

Question 1. Σ1
2(K σ) =⇒ Σ1

2(D c) ?

Haim Judah and Saharon Shelah have shown that ∆1
2(R ) ⇐⇒ Σ1

2(R ) (see [JS89,
Theorem 2.10]). On the other hand, it is well-known that ∆1

2(B ) does not imply Σ1
2(B ).

This leads to

Question 2. ∆1
2(D c) ⇐⇒ Σ1

2(D c) ?

Further, they have also shown that ∆1
2(B ) ⇐⇒ ∀r ∈ ωω

(
Cohen (L[r]) 6= ∅

)
, where

Cohen (L[r]) denotes the set of Cohen reals over L[r] (see [JS89, Theorem 3.1 (iii)]). Thus, in
the model L[Gω1 ] constructed above, every ∆1

2-set has the Baire property, which motivates

Question 3. Σ1
2(D c) =⇒ ∆1

2(B ) ?

According to [Br95], let r0 and v0 denote the ideals on [ω]ω of completely Ramsey null
and completely doughnut null sets, respectively. Szymon Plewik has shown in [Pl86] that
add(r0) = cov(r0). Thus, we like to mention also

Question 4. add(v0) = cov(v0) ?
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