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As the original design of asting Peals of Bells was inorder to make pleasant Musik thereon; so the Notes inevery Peal are formed apt for that end and purpose, ev-ery Peal of Bells being tun'd aording to the priniplesof Musik.Yet the Notes may be so plaed in ringing that theirMusik may be rendred muh more pleasant: for in Mu-sik there are Conords, whih indeed may be term'dthe very life and soul of it.For this Musial end were hanges on Bells �rst pra-tied, hanges being nothing else but a moving and pla-ing of the Notes in ringing; wherein 'tis to be observedas a general Rule, That every hange must be madebetwixt two notes that strike next to eah other.Fabian StedmanCampanalogia, 1677By the ampanologist, the playing of tunes is onsideredto be a hildish game; the proper use of bells is to workout mathematial permutations and ombinations.His passion �nds its satisfation in mathematial om-pleteness and mehanial perfetion.Dorothy L. SayersThe Nine Tailors, 1934





Prefae
This book provides a self-ontained introdution to Axiomati Set Theorywith main fous on In�nitary Combinatoris and the Foring Tehnique. Thebook is intended to be used as a textbook in undergraduate and graduateourses of various levels, as well as for self-study. To make the book valuablefor experiened researhers also, some historial bakground and the soures ofthe main results have been provided in the Notes, and some topis for furtherstudies are given in the setion Related Results�where those ontainingopen problems are marked with an asterisk.The axioms of Set Theory ZFC, onsisting of the axioms of Zermelo-Fraenkel Set Theory (denoted ZF) and the Axiom of Choie, are the foun-dation of Mathematis in the sense that essentially all Mathematis an beformalised within ZFC. On the other hand, Set Theory an also be onsid-ered as a mathematial theory, like Group Theory, rather than the basis forbuilding general mathematial theories. This approah allows us to drop ormodify axioms of ZFC in order to get, for example, a Set Theory withoutthe Axiom of Choie (see Chapter 4) or in whih just a weak form of theAxiom of Choie holds (see Chapter 7). In addition, we are also allowed toextend the axiomati system ZFC in order to get, for example, a Set Theoryin whih, in addition to the ZFC axioms, we also have Martin's Axiom (seeChapter 13), whih is a very powerful axiom with many appliations for In-�nitary Combinatoris as well as other �elds of Mathematis. However, thisapproah prevents us from using any kind of Set Theory whih goes beyondZFC, whih is used, for example, to prove the existene of a ountable modelof ZFC (see the Löwenheim-Skolem Theorem in Chapter 15).Most of the results presented in this book are ombinatorial results, inpartiular the results in Ramsey Theory (introdued in Chapter 2 and furtherdeveloped in Chapter 11), or those results whose proofs have a ombinatorial�avour. For example, we get results of the latter type if we work in Set Theorywithout the Axiom of Choie, sine in the absene of the Axiom of Choie,the proofs must be onstrutive and therefore typially have a muh moreombinatorial �avour than proofs in ZFC (examples an be found in Chap-



X Prefaeters 4&7). On the other hand, there are also elegant ombinatorial proofsusing the Axiom of Choie. An example is the proof in Chapter 6, where it isshown that one an divide the solid unit ball into �ve parts, suh that one anbuild two solid unit balls out of these �ve parts� another suh paradoxialresult is given in Chapter 17, where it is shown that it might be possible in ZFto deompose a square into more parts than there are points on the square.Even though the ZFC axiomati system is the foundation of Mathematis,by Gödel's Inompleteness Theorem �brie�y disussed at the end of Chap-ter 3� no axiomati system of Mathematis is omplete in the sense thatevery statement an either be proved or disproved; in other words, there arealways statements whih are independent of the axiomati system. The maintool to show that a ertain statement is independent of the axioms of SetTheory is Cohen's Foring Tehnique, whih he originally developed in theearly 1960s in order to show that there are models of ZF in whih the Axiomof Choie fails (see Chapter 17) and that the Continuum Hypothesis is inde-pendent of ZFC (see Chapter 14). The Foring Tehnique is introdued anddisussed in great detail in Part II, and in Part III it is used to investigateombinatorial properties of the set of real numbers. This is done by omparingthe Cardinal Charateristis of the Continuum introdued in Chapter 8.The following table indiates whih of the main topis appear in whih hapter,where ∗∗∗ means that it is the main topi of that hapter, ∗∗ means that somenew results in that topi are proved or at least that the topi is important forunderstanding ertain proofs, and ∗ means that the topi appears somewherein that hapter, but not in an essential way: 27
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ChapterForing TehniqueAxiom of Choie & ZFRamsey TheoryCardinal Charateristis Part I Part II Part IIIFor example Ramsey's Theorem, whih is the nuleus of Ramsey Theory, is themain topi in Chapter 2, it is used in some proofs in Chapters 4&7, it is usedas a hoie priniple in Chapter 5, it is related to two Cardinal Charateristisde�ned in Chapter 8, it is used to de�ne what is alled a Ramsey ultra�lterin Chapter 10, it is used in the proof of the Hales-Jewett Theorem in Chap-ter 11, and it is used to formulate a ombinatorial feature of Mathias reals in



Prefae XIChapter 24. Furthermore, one an see that Cardinal Charateristis are ourmain tool in Part III in the investigation of ombinatorial properties of variousforing notions, even in the ases when� in Chapters 25&26� the existeneof Ramsey ultra�lters are investigated. Finally, in Chapter 27 we show howCardinal Charateristis an be used to shed new light on a lassial prob-lem in Measure Theory. On the other hand, the Cardinal Charateristis areused to desribe some ombinatorial features of di�erent foring notions. Inpartiular, it will be shown that the ardinal harateristi h (introdued inChapter 8 and investigated in Chapter 9) is losely related to Mathias for-ing (introdued in Chapter 24), whih is used in Chapter 25 to show that theexistene of Ramsey ultra�lters is independent of ZFC.I tried to write this book like a piee of musi, not just writing note bynote, but using various themes or voies� like Ramsey's Theorem and theardinal harateristi h�again and again in di�erent ombinations. In thisundertaking, I was inspired by the English art of bell ringing and tried to basethe order of the themes on Zarlino's introdution to the art of ounterpoint.Aknowledgement. First of all, I would like to thank Andreas Blass for hisvaluable remarks and omments, as well as for his numerous orretions, whihimproved the quality of the book substantially. Furthermore, I would like tothank my spouse Stephanie Halbeisen, not only for reading Chapters 1&12and parts of Chapters 5&13, but also for her patiene during the last sevenyears. I would also like to thank Dandolo Flumini for reading Chapters 2,3, 13, 14, 15, Ioanna Dimitriou for reading Chapters 16&17, and GearóidínDiserens for reading Chapter 1 as well as the introdutory omments of severalhapters. Finally, I would like to thank Jörg Sixt, editor of Springer-Verlag,for making every e�ort to ensure that the book was published in the optimalstyle.Winterthur, Otober 2011 Lorenz Halbeisen
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1The Setting
For one annot order or ompose anything, or un-derstand the nature of the omposite, unless oneknows �rst the things that must be ordered or om-bined, their nature, and their ause.Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558Combinatoris with all its various aspets is a broad �eld of Mathematiswhih has many appliations in areas like Topology, Group Theory and evenAnalysis. A reason for its wide range of appliations might be that Combi-natoris is rather a way of thinking than a homogeneous theory, and onse-quently Combinatoris is quite di�ult to de�ne. Nevertheless, let us startwith a de�nition of Combinatoris whih will be suitable for our purpose:Combinatoris is the branh of Mathematis whih studies olletionsof objets that satisfy ertain riteria, and is in partiular onernedwith deiding how large or how small suh olletions might be.Below we give a few examples whih should illustrate some aspets of in�nitaryCombinatoris. At the same time, we present the main topis of this book,whih are the Axiom of Choie, Ramsey Theory, ardinal harateristis ofthe ontinuum, and foring.Let us start with an example from Graph Theory: A graph is a set ofverties, where some pairs of verties are onneted by an edge. Connetedpairs of verties are alled neighbours. A graph is in�nite if it has an in�nitenumber of verties. A tree is a yle-free (i.e., one annot walk in properyles along edges), onneted (i.e., any two verties are onneted by a pathof edges) graph, where one of its verties is designated as the root. A tree



2is �nitely branhing if every vertex has only a �nite number of neighbours.Furthermore, a branh through a tree is a maximal edge-path beginning atthe root, in whih no edge appears twie.Now we are ready to state König's Lemma, whih is often used impliitly in�elds like Combinatoris, Topology, and many other branhes of Mathematis.König's Lemma: Every in�nite, �nitely branhing tree ontains an in�-nite branh.At �rst glane, this result looks straightforward and one would onstrutan in�nite branh as follows: Let v0 be the root. Sine the tree is in�nitebut �nitely branhing, there must be a neighbour of v0 from whih we reahin�nitely many verties without going bak to v0. Let v1 be suh a neighbourof v0. Again, sine we reah in�nitely many verties from v1 (without goingbak to v1) and the tree is �nitely branhing, there must be a neighbour of
v1, say v2, from whih we reah in�nitely many verties without going bakto v2. Proeeding in this way, we �nally get the in�nite branh (v0, v1, v2, . . .).Let us now have a loser look at this proof: Firstly, in order to provethat the set of neighbours of v0 from whih we reah in�nitely many vertieswithout going bak to v0 is not empty, we need an in�nite version of theso-alled Pigeon-Hole Priniple. The Pigeon-Hole Priniple an be seen as thefundamental priniple of Combinatoris.Pigeon-Hole Priniple: If n+1 pigeons roost in n holes, then at least twopigeons must share a hole. More prosaially: If m objets are olouredwith n olours and m > n, then at least two objets have the sameolour.An in�nite version of the Pigeon-Hole Priniple reads as follows:In�nite Pigeon-Hole Priniple: If in�nitely many objets are olouredwith �nitely many olours, then in�nitely many objets have the sameolour.Using the In�nite Pigeon-Hole Priniple we are now sure that the set of neigh-bours of v0 from whih we reah in�nitely many verties without going bakto v0 is not empty. However, the next problem we fae is whih element weshould hoose from that non-empty set. If the verties are ordered in someway, then we an hoose the �rst element with respet to that order, butotherwise, we would need some kind of hoie funtion whih selets in�nitelyoften (and this is the ruial point!) one vertex from a given non-empty set ofverties. Suh a hoie funtion is guaranteed by the Axiom of Choie, denotedAC, whih is disussed in Chapter 5.



3Axiom of Choie: For every family F of non-empty sets, there is afuntion f �alled hoie funtion �whih selets one element fromeah member of F (i.e., for eah x ∈ F , f(x) ∈ x); or equivalently,every Cartesian produt of non-empty sets is non-empty.The Axiom of Choie is one of the main topis of this book: In Chapter 3,the axioms of Zermelo-Fraenkel Set Theory (i.e., the usual axioms of SetTheory exept AC) are introdued. In Chapter 4 we shall introdue the readerto Zermelo-Fraenkel Set Theory and show how ombinatoris an, to someextent, replae the Axiom of Choie. Subsequently, the Axiom of Choie (andsome of its weaker forms) is introdued in Chapter 5. From then on, we alwayswork in Zermelo-Fraenkel Set Theory with the Axiom of Choie�even in thease as in Chapters 7&17 when we onstrut models of Set Theory in whihAC fails.Now, let us turn bak to König's Lemma. In order to prove König's Lemmawe do not need full AC, sine it would be enough if every family of non-empty�nite sets had a hoie funtion� the family would onsist of all subsets ofneighbours of verties. However, as we will see later, even this weaker form ofAC is a proper axiom and is independent of the other axioms of Set Theory(f. Proposition 7.7). Thus, depending on the axioms of Set Theory we startwith, AC�as well as some weakened forms of it �may fail, and onsequently,König's Lemma may beome unprovable. On the other hand, as we will see inChapter 5, König's Lemma may be used as a non-trivial hoie priniple.Thus, this �rst example shows that � with respet to our de�nition ofCombinatoris given above� some �objets satisfying ertain riteria,� may,but need not, exist.The next example an be seen as a problem in in�nitary Extremal Combi-natoris. The word �extremal� desribes the nature of problems dealt within this �eld and refers to the seond part of our de�nition of Combinatoris,namely �how large or how small olletions satisfying ertain riteria mightbe.�If the objets onsidered are in�nite, then the answer, how large or howsmall ertain sets are, depends again on the underlying axioms of Set Theory,as the next example shows.Reaping Families: A family R of in�nite subsets of the natural num-bers N is said to be reaping if for every olouring of N with two oloursthere exists a monohromati set in the family R.For example, the set of all in�nite subsets of N is suh a family. The reap-ing number r�a so-alled ardinal harateristi of the ontinuum� is thesmallest ardinality (i.e., size) of a reaping family. In general, a ardinal har-ateristi of the ontinuum is typially de�ned as the smallest ardinality ofa subset of a given set S whih has ertain ombinatorial properties, where Sis of the same ardinality as the ontinuum R.



4 Consider the ardinal harateristi r (i.e., the size of the smallest reapingfamily). Sine r is a well-de�ned ardinality we an ask: How large is r ? Canit be ountable? Is it always equal to the ardinality of the ontinuum?Let us just show that a reaping family an never be ountable: Let A =
{Ai : i ∈ N} be any ountable family of in�nite subsets of N. For eah i ∈ N,pik ni and mi from the set Ai in suh a way that, at the end, for all i wehave ni < mi < ni+1. Now we olour all ni's blue and all the other numbersred. For this olouring, there is no monohromati set in A , and hene, Aannot be a reaping family. The Continuum Hypothesis, denoted CH, statesthat every subset of the ontinuum R is either ountable or of ardinality c,where c denotes the ardinality of R. Thus, if we assume CH, then any reapingfamily is of ardinality c. The same holds if we assume Martin's Axiom whihwill be introdued in Chapter 13.On the other hand, with the foring tehnique� invented by Paul Cohenin the early 1960s� one an show that the axioms of Set Theory do notdeide whether or not the ardinals r and c are equal. The foring tehniqueis introdued in Part II and a model in whih r < c is given in Chapter 18.Thus, the seond example shows that � depending on the additional ax-ioms of Set Theory we start with�we an get di�erent answers when we tryto �deide how large or how small ertain olletions might be.�Many more ardinal harateristis like hom and par (see below) are intro-dued in Chapter 8. Possible (i.e., onsistent) relations between these ardi-nals are investigated in Part II and more systematially in Part III � wherethe ardinal harateristis are also used to distinguish the ombinatorial fea-tures of ertain foring notions.Another �eld of Combinatoris is the so-alled Ramsey Theory, and sinemany results in this work rely on Ramsey-type theorems, let us give a briefdesription of Ramsey Theory.Loosely speaking, Ramsey Theory (whih an be seen as a part of extremalCombinatoris) is the branh of Combinatoris whih deals with struturespreserved under partitions, or olourings. Typially, one looks at the follow-ing kind of question: If a partiular objet (e.g., algebrai, geometri or om-binatorial) is arbitrarily oloured with �nitely many olours, what kinds ofmonohromati strutures an we �nd?For example, van der Waerden's Theorem, whih will be proved inChapter 11, tells us that for any positive integers r and n, there is a positiveinteger N suh that for every r-olouring of the set {0, 1, . . . , N} we �ndalways a monohromati (non-onstant) arithmeti progression of length n.Even though van der Waerden's Theorem is one of the earliest re-sults in Ramsey Theory, the most famous result in Ramsey Theory is surelyRamsey's Theorem (whih will be disussed in detail in the next hapter):



5Ramsey's Theorem: Let n be any positive integer. If we olour all
n-element subsets of N with �nitely many olours, then there existsan in�nite subset of N all of whose n-element subsets have the sameolour.There is also a �nite version of Ramsey's Theorem whih gives an answerto problems like the following:How many people must be invited to a party in order to make sure thatthree of them mutually shook hands on a previous oasion or three of themmutually did not shake hands on a previous oasion?It is quite easy to show that at least six people must be invited. On the otherhand, if we ask how many people must get invited suh that there are �vepeople who all mutually shook hands or did not shake hands on a previousoasion, then the preise number is not known� but it is onjetured thatit is su�ient to invite 43 people.As we shall see later, Ramsey's Theorem has many� sometimes unex-peted� appliations. For example, if we work in Set Theory without AC,then Ramsey's Theorem an help to onstrut a hoie funtion, as we willsee in Chapter 4. Sometimes we get Ramsey-type (or anti-Ramsey-type) re-sults even for partitions into in�nitely many lasses (i.e., using in�nitely manyolours). For example, one an show that there is a olouring of the pointsin the Eulidean plane with ountably many olours, suh that no two pointsof any �opy of the rationals� have the same olour. This result an be seenas an anti-Ramsey-type theorem (sine we are far away from �monohromatistrutures�), and it shows that Ramsey-type theorems annot be generalisedarbitrarily. However, onerning Ramsey's Theorem, we an ask for a �nie�family F of in�nite subsets ofN, suh that for every olouring of the n-elementsubsets of N with �nitely many olours, there exists a homogenous set in thefamily F , where an in�nite set x ⊆ N is alled homogeneous if all n-elementsubsets of x have the same olour. Now, �nie� ould mean �as small as pos-sible� but also �being an ultra�lter.� In the former ase, this leads to thehomogeneous number hom, whih is the smallest ardinality of a family Fwhih ontains a homogeneous set for every 2-olouring of the 2-element sub-sets of N. One an show that hom is unountable and� like for the reapingnumber� that the axioms of Set Theory do not deide whether or not homis equal to c (see Chapter 18). The latter ase, where �nie� means �being anultra�lter,� leads to so-alled Ramsey ultra�lters. It is not di�ult to showthat Ramsey ultra�lters exist if one assumes CH or Martin's Axiom (see Chap-ter 10), but on the other hand, the axioms of Set Theory alone do not implythe existene of Ramsey ultra�lters (see Proposition 25.11). A somewhatanti-Ramsey-type question would be to ask how many 2-olourings of the 2-element subsets of N we need to make sure that no single in�nite subset of Nis almost homogeneous for all these olourings, where a set H is alled almosthomogeneous if there is a �nite set K suh that H \K is homogeneous. Thisquestion leads to the partition number par. Again, par is unountable and the



6axioms of Set Theory do not deide whether or not par is equal to c (see forexample Chapter 18).Ramsey's Theorem, as well as Ramsey Theory in general, play an impor-tant role throughout this book. Espeially in all hapters of Part I, exept forChapter 3, we shall meet � sometimes unexpetedly�Ramsey's Theoremin one form or other. NotesGiose�o Zarlino. All itations of Zarlino (1517 � 1590) are taken from Part IIIof his book entitled Le Istitutioni Harmonihe (f. [1℄). This setion of Zarlino's In-stitutioni is onerned primarily with the art of ounterpoint, whih is, aordingto Zarlino, the onordane or agreement born of a body with diverse parts, its var-ious melodi lines aommodated to the total omposition, arranged so that voiesare separated by ommensurable, harmonious intervals. The word �ounterpoint�presumably originated at the beginning of the 14th entury and was derived from�puntus ontra puntum,� �.e., point against point or note against note. Zarlinohimself was an Italian musi theorist and omposer. While he omposed a numberof masses, motets and madrigals, his prinipal laim to fame is as a musi theorist:For example, Zarlino was ahead of his time in proposing that the otave should bedivided into twelve equal semitones � for the lute, that is to say, he advoated apratie in the 16th entury whih was universally adopted three enturies later.He also advoated equal temperament for keyboard instruments and just intonationfor unaompanied voal musi and strings � a system whih has been suessfullypratied up to the present day. Furthermore, Zarlino arranged the modes in a di�er-ent order of suession, beginning with the Ionian mode instead of the Dorian mode.This arrangement seems almost to have been ditated by a propheti antiipationof the hange whih was to lead to the abandonment of the modes in favour of anewer tonality, for his series begins with a form whih orresponds exatly with ourmodern major mode and ends with the prototype of the desending minor sale ofmodern musi. (For the terminology of musi theory we refer the interested readerto Benson [2℄.)Zarlino's most notable student was the musi theorist and omposer VinenzoGalilei, the father of Galileo Galilei.König's Lemma and Ramsey's Theorem. A proof of König's Lemma an befound in König's book on Graph Theory [3, VI, �2, Satz 6℄, where he alled the resultUnendlihkeitslemma. As a �rst appliation of the Unendlihkeitslemma he provedthe following theorem of de la Vallée Poussin: If E is a subset of the open unitinterval (0, 1) whih is losed in R and I is a set of open intervals overing E, thenthere is a natural number n, suh that if one partitions (0, 1) into 2n intervals oflength 2−n, eah of these intervals ontaining a point of E is ontained in an intervalof I . Using the Unendlihkeitslemma, König also showed that van der Waerden'sTheorem is equivalent to the following statement: If the positive integers are �nitelyoloured, then there are arbitrarily long monohromati arithmeti progressions. Ina similar way we will use König's Lemma to derive the Finite Ramsey Theoremfrom Ramsey's Theorem (f. Corollary 2.3).
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Part I
Topis in Combinatorial Set Theory





2Overture: Ramsey's Theorem
Musiians in the past, as well as the best of themoderns, believed that a ounterpoint or other mu-sial omposition should begin on a perfet onso-nane, that is, a unison, �fth, otave, or ompoundof one of these. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558The Nuleus of Ramsey TheoryMost of this text is onerned with sets of subsets of the natural numbers,so, let us start there: The set {0, 1, 2, . . .} of natural numbers (or of non-negative integers) is denoted by ω. It is onvenient to onsider a naturalnumber n as an n-element subset of ω, namely as the set of all numberssmaller than n, so, n = {k ∈ ω : k < n}. In partiular, 0 = ∅, where ∅ isthe empty set. For any n ∈ ω and any set S, let [S]n denote the set of all
n-element subsets of S (e.g., [S]0 = {∅}). Further, the set of all �nite subsetsof a set S is denoted by [S]<ω.For a �nite set S let |S| denote the number of elements in S, also alledthe ardinality of S.A set S is alled ountable if there is an enumeration of S, i.e., if S = ∅or S = {xi : i ∈ ω}. In partiular, every �nite set is ountable. However, whenwe say that a set is ountable we usually mean that it is a ountably in�niteset. For any set S, [S]ω denotes the set of all ountably in�nite subsets of S,in partiular, sine every in�nite subset of ω is ountable, [ω]ω is the set of allin�nite subsets of ω.Let S be an arbitrary non-empty set. A binary relation �∼ � on S is anequivalene relation if it is
• re�exive (i.e., for all x ∈ S: x ∼ x),
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• symmetri (i.e., for all x, y ∈ S: x ∼ y ↔ y ∼ x), and
• transitive (i.e., for all x, y, z ∈ S: x ∼ y ∧ y ∼ z → x ∼ z).The equivalene lass of an element x ∈ S, denoted [x]̃ , is the set {

y ∈
S : x ∼ y

}. We would like to reall the fat that, sine �∼� is an equivalenerelation, for any x, y ∈ S we have either [x]̃ = [y]̃ or [x]̃ ∩ [y]̃ = ∅. A set
A ⊆ S is a set of representatives if for eah equivalene lass [x]̃ we have
|A∩ [x]̃ | = 1; in other words, A has exatly one element in ommon with eahequivalene lass. It is worth mentioning that in general, the existene of aset of representatives relies on the Axiom of Choie (see Chapter 5).For sets A and B, let AB denote the set of all funtions f : A → B.For f ∈ AB and S ⊆ A let f [S] := {

f(x) : x ∈ S
} and let f |S ∈ SB (therestrition of f to S) be suh that for all x ∈ S, f(x) = f |S(x).Further, for sets A and B, let the set-theoreti di�erene of A and B bethe set A \B := {a ∈ A : a /∈ B}.For some positive n ∈ ω, let us olour all n-element subsets of ω withthree olours, say red, blue, and yellow. In other words, eah n-element setof natural numbers {k1, . . . , kn} is oloured either red, or blue, or yellow.Now one an ask whether there is an in�nite subset H of ω suh that allits n-element subsets have the same olour (i.e., [H ]n is monohromati).Suh a set we would all homogeneous (for the given olouring). In theterminology above, this question reads as follows: Given any olouring (i.e.,funtion) π : [ω]n → 3, where 3 = {0, 1, 2}, does there exist a setH ∈ [ω]ω suhthat π|[H]n is onstant? Alternatively, one an de�ne an equivalene relation�∼ � on [ω]n by stipulating x ∼ y i� π(x) = π(y) and ask whether thereexists a set H ∈ [ω]ω suh that [H ]n is inluded in one equivalene lass. Theanswer to this question is given by Ramsey's Theorem 2.1 below, but beforewe state and prove this theorem, let us say a few words about its bakground.Ramsey proved his theorem in order to investigate a problem in formallogi, namely the problem of �nding a regular proedure to determine thetruth or falsity of a given logial formula in the language of First-Order Logi,whih is also the language of Set Theory (f. Chapter 3). However, Ramsey'sTheorem is a purely ombinatorial statement and was the nuleus� butnot the earliest result� of a whole ombinatorial theory, the so-alledRamseyTheory. We would also like to mention that Ramsey's original theorem, whihwill be disussed later, is somewhat stronger than the theorem stated belowbut is, like König's Lemma, not provable without assuming some form of theAxiom of Choie (see Proposition 7.8).Theorem 2.1 (Ramsey's Theorem). For any number n ∈ ω, for any pos-itive number r ∈ ω, for any S ∈ [ω]ω, and for any olouring π : [S]n → r,there is always an H ∈ [S]ω suh that H is homogeneous for π, i.e., the set

[H ]n is monohromati.Before we prove Ramsey's Theorem, let us onsider a few examples: Inthe �rst example we olour the set of prime numbers P with two olours.



The nuleus of Ramsey Theory 13A Wieferih prime is a prime number p suh that p2 divides 2p−1 − 1,denoted p2 | 2p−1 − 1� reall that by Fermat's Little Theorem we have
p | 2p−1−1 for any prime p. Now, de�ne the 2-olouring π1 of P by stipulating

π1(p) =

{
0 if p is a Wieferih prime,
1 otherwise.Let H0 = {p ∈ P : p2 | 2p−1 − 1} and H1 = P \H0. The only numbers whihare known to belong to H0 are 1093 and 3511. On the other hand, it is notknown whether H1 is in�nite. However, by the In�nite Pigeon-Hole Priniplewe know that at least one of the two sets H0 and H1 is in�nite, whih givesus a homogeneous set for π1.As a seond example, de�ne the 2-olouring π2 of the set of 2-elementsubsets of {7l : l ∈ ω} by stipulating

π2
(
{n,m}

)
=

{
0 if nm +mn + 1 is prime,
1 otherwise.An easy alulation modulo 3 shows that the set H = {42k + 14 : k ∈ ω} ⊆

{7l : l ∈ ω} is homogeneous for π2; in fat, for all {n,m} ∈ [H ]2 we have
3 | (nm +mn + 1).Before we give a third example, we prove the following speial ase ofRamsey's Theorem.Proposition 2.2. For any positive number r ∈ ω, for any S ∈ [ω]ω, and forany olouring π : [S]2 → r, there is always an H ∈ [S]ω suh that [H ]2 ismonohromati.Proof. The proof is in fat just a onsequene of the In�nite Pigeon-Hole Prini-ple; �rstly, the In�nite Pigeon-Hole Priniple is used to onstrut homogeneoussets for ertain 2-olourings τ and then it is used to show the existene of ahomogeneous set for π.Let S0 = S and let a0 = min(S0). De�ne the r-olouring τ0 : S0 \{a0} → rby stipulating τ0(b) := π

(
{a0, b}

). By the In�nite Pigeon-Hole Priniple thereis an in�nite set S1 ⊆ S0 \ {a0} suh that τ0|S1
is onstant (i.e., τ0|S1

is aonstant funtion) and let ρ0 := τ0(b), where b is any member of S1. Now,let a1 = min(S1) and de�ne the r-olouring τ1 : S1 \ {a1} → r by stipulating
τ1(b) := π

(
{a1, b}

). Again we �nd an in�nite set S2 ⊆ S1 \ {a1} suh that
τ1|S2

is onstant and let ρ1 := τ1(b), where b is any member of S2. Proeedingthis way we �nally get in�nite sequenes a0 < a1 < . . . < an < . . . and
ρ0, ρ1, . . .. Notie that by onstrution, for all n ∈ ω and all k > n we have
π
(
{an, ak}

)
= τn(ak) = ρn. De�ne the r-olouring τ : {an : n ∈ ω} → r bystipulating τ(an) := ρn. Again by the In�nite Pigeon-Hole Priniple there is anin�nite set H ⊆ {an : n ∈ ω} suh that τ |H is onstant, whih implies that His homogeneous for π, i.e., [H ]2 is monohromati. ⊣



14 2 Ramsey's TheoremAs a third example, onsider the 17-olouring π3 of the set of 9-elementsubsets of P de�ned by stipulating
π3

(
{p1, . . . , p9}

)
= c ⇐⇒ p1 · p2 · . . . · p9 ≡ c mod 17 .For 0 ≤ k ≤ 16 let Pk = {p ∈ P : p ≡ k mod 17}. Then, by Dirih-let's theorem on primes in arithmeti progression, Pk is in�nite whenever

gcd(k, 17) = 1, i.e., for all positive numbers k ≤ 16. Thus, by an easy alu-lation modulo 17 we get that for 1 ≤ k ≤ 16, Pk is homogeneous for π3.Now we give a omplete proof of Ramsey's Theorem 2.1:Proof of Ramsey's Theorem. The proof is by indution on n. For n = 2 weget Proposition 2.2. So, we assume that the statement is true for n ≥ 2 andprove it for n + 1. Let π : [ω]n+1 → r be any r-olouring of [ω]n+1. For eahinteger a ∈ ω let πa be the r-olouring of [ω \ {a}
]n de�ned as follows:

πa(x) = π
(
x ∪ {a}

)By indution hypothesis, for eah S′ ∈ [ω]ω and for eah a ∈ S′ there is an
HS′

a ∈
[
S′ \ {a}

]ω suh that HS′

a is homogeneous for πa. Construt now anin�nite sequene a0 < a1 < . . . < ai < . . . of natural numbers and an in�nitesequene S0 ⊇ S1 ⊇ . . . ⊇ Si ⊇ . . . of in�nite subsets of ω as follows: Let
S0 = S and a0 = min(S), and in general let

Si+1 = HSi
ai
, and ai+1 = min

{
a ∈ Si+1 : a > ai

}
.It is lear that for eah i ∈ ω, the set [{am : m > i}

]n is monohromati for
πai ; let τ(ai) be its olour (i.e., τ is a olouring of {ai : i ∈ ω} with at most rolours). By the In�nite Pigeon-Hole Priniple there is an H ⊆ {ai : i ∈ ω} suhthat τ is onstant on H , whih implies that π|[H]n+1 is onstant, too. Indeed,for any x0 < . . . < xn in H we have π({x0, . . . , xn}) = πx0

(
{x1, . . . , xn}

)
=

τ(x0), whih ompletes the proof. ⊣Corollaries of Ramsey's TheoremIn �nite Combinatoris, the most important onsequene of Ramsey's The-orem 2.1 is its �nite version:Corollary 2.3 (Finite Ramsey Theorem). For all m,n, r ∈ ω, where
r ≥ 1 and n ≤ m, there exists an N ∈ ω, where N ≥ m, suh that for everyolouring of [N ]n with r olours, there exists a set H ∈ [N ]m, all of whose
n-element subsets have the same olour.Proof. Assume towards a ontradition that the Finite Ramsey Theoremfails. So, there arem,n, r ∈ ω, where r ≥ 1 and n ≤ m, suh that for all N ∈ ω



Corollaries of Ramsey's Theorem 15with N ≥ m there is a olouring πN : [N ]n → r suh that no H ∈ [N ]mis homogeneous, i.e., [H ]n is not monohromati. We shall onstrut an r-olouring π of [ω]n suh that no in�nite subset of ω is homogeneous for π,ontraditing Ramsey's Theorem. The r-olouring π will be indued by anin�nite branh through a �nitely branhing tree, where the in�nite branh isobtained by König's Lemma. Thus, we �rst need an in�nite, �nitely branhingtree. For this, onsider the following graph G: The vertex set of G onsists of
∅ and all olourings πN : [N ]n → r, where N ≥ m, suh that no H ∈ [N ]mis homogeneous for πN . There is an edge between ∅ and eah r-olouring
πm of [m]n, and there is an edge between the olourings πN and πN+1 i�
πN ≡ πN+1|N (i.e., for all x ∈ [N ]n, πN+1(x) = πN (x)). In partiular, thereis no edge between two di�erent r-olouring of [N ]n. By our assumption, thegraphG is in�nite. Further, by onstrution, it is yle-free, onneted, �nitelybranhing, and has a root, namely ∅. In other words, G is an in�nite, �nitelybranhing tree and therefore, by König's Lemma, ontains an in�nite branhof r-olourings, say (∅, πm, πm+1, . . . , πm+i, . . .), where for all i, j ∈ ω, theolouring πm+i+j is an extension of the olouring πm+i.At this point we would like to mention that sine for any N ∈ ω the setof all r-olouring of [N ]n an be ordered, for example lexiographially, we donot need any non-trivial form of the Axiom of Choie to onstrut an in�nitebranh.Now, the in�nite branh (∅, πm, πm+1, . . .) indues an r-olouring π of [ω]nsuh that no m-element subset of ω is homogeneous. In partiular, there is noin�nite set H ∈ [ω]ω suh that π|[H]n is onstant, whih is a ontradition toRamsey's Theorem 2.1 and ompletes the proof. ⊣The following orollary is a geometrial onsequene of the Finite Ram-sey Theorem 2.3:Corollary 2.4. For every positive integer n there exists an N ∈ ω with thefollowing property: If P is a set of N points in the Eulidean plane withoutthree ollinear points, then P ontains n points whih form the verties of aonvex n-gon.Proof. By the Finite Ramsey Theorem 2.3, let N be suh that for every
2-olouring of [N ]3 there is a set H ∈ [N ]n suh that [H ]3 is monohromati.Now let N points in the plane be given, and number them from 1 to N inan arbitrary but �xed way. Colour a triple (i, j, k), where i < j < k, red, iftravelling from i to j to k is in lokwise diretion; otherwise, olour it blue. Bythe hoie of N , there are n ordered points so that every triple has the sameolour (i.e., orientation) from whih one veri�es easily (e.g., by onsidering theonvex hull of the n points) that these points form the verties of a onvex
n-gon. ⊣The following theorem� disovered more than a deade before Ramsey'sTheorem� is perhaps the earliest result in Ramsey Theory:



16 2 Ramsey's TheoremCorollary 2.5 (Shur's Theorem). If the positive integers are �nitelyoloured (i.e., oloured with �nitely many olours), then there are three dis-tint positive integers x, y, z of the same olour, with x+ y = z.Proof. Let r be a positive integer and let π be any r-olouring of ω \ {0}.Let N ∈ ω be suh that for every r-olouring of [N ]2 there is a homogeneous
3-element subset of N . De�ne the olouring π∗ : [N ]2 → r by stipulating
π∗(i, j) = π(|i − j|), where |i − j| is the modulus or absolute value of thedi�erene i − j. Sine N ontains a homogeneous 3-element subset (for π∗),there is a triple 0 ≤ i < j < k < N suh that π∗(i, j) = π∗(j, k) = π∗(i, k),whih implies that the numbers x = j − i, y = k − j, and z = k − i, have thesame olour, and in addition we have x+ y = z. ⊣The next result is a purely number-theoretial result and follows quite easilyfrom Ramsey's Theorem. However, somewhat surprisingly, it is unprovablein Number Theory, or more preisely, in Peano Arithmeti (whih will bedisussed in Chapter 3). Before we an state the orollary, we have to introduethe following notion: A non-empty set S ⊆ ω is alled large if S has more than
min(S) elements. Further, for n,m ∈ ω let [n,m] := {i ∈ ω : n ≤ i ≤ m}.Corollary 2.6. For all n, k, r ∈ ω with r ≥ 1, there is an m ∈ ω suh thatfor any r-olouring of [

[n,m]
]k, there exists a large homogeneous set.Proof. Let n, k, r ∈ ω, where r ≥ 1, be some arbitrary but �xed numbers.Let π : [ω \ n]k → r be any r-olouring of the k-element subsets of {i ∈ ω :

i ≥ n}. By Ramsey's Theorem 2.1 there exists an in�nite homogeneous set
H ∈ [ω \n]ω. Let a = min(H) and let S denote the least a+1 elements of H .Then S is large and [S]k is monohromati.The existene of a �nite number m with the required properties nowfollows� using König's Lemma� in the very same way as the Finite RamseyTheorem followed from Ramsey's Theorem (see the proof of the FiniteRamsey Theorem 2.3). ⊣Generalisations of Ramsey's TheoremEven though Ramsey's theorems are very powerful ombinatorial results, theyan still be generalised. The following result will be used later in Chap-ter 7 in order to prove that the Prime Ideal Theorem� introdued in Chap-ter 5� holds in the ordered Mostowski permutation model (but it will not beused anywhere else in this book).In order to illustrate the next theorem, as well as to show that it is optimalto some extent, we onsider the following two examples: Firstly, de�ne the 2-olouring π1 of [ω]2 × [ω]3 × [ω]1 by stipulating
π1

(
{x1, x2}, {y1, y2, y3}, {z1}

)
=

{
1 if 2x1·x2+ 13y1·y2·y3+ 17z1− 3 is prime,
0 otherwise.



Generalisations of Ramsey's Theorem 17Let H1 = {3 · k : k ∈ ω}, H2 = {2 · k : k ∈ ω}, and H3 = {6 · k : k ∈ ω}. Thenan easy alulation modulo 7 shows that [H1]
2 × [H2]

3 × [H3]
1 is an in�nitemonohromati set.Seondly, de�ne the 2-olouring π2 of [ω]1 × [ω]1 by stipulating

π2
(
{x}, {y}

)
=

{
1 if x < y,
0 otherwise.It is easy to see that wheneverH1 andH2 are in�nite subsets of ω, then [H1]

1×
[H2]

1 is not monohromati; on the other hand, we easily �nd arbitrarily large�nite sets M1,M2 ⊆ ω suh that [M1]
1 × [M2]

1 is monohromati.Thus, if [ω]n1 × . . .× [ω]nl is oloured with r olours, then, in general, weannot expet to �nd in�nite subsets of ω, say H1, . . . , Hl, suh that [H1]
n1 ×

. . .×[Hl]
nl is monohromati; but we always �nd arbitrarily large �nite subsetsof ω:Theorem 2.7. Let r, l, n1, . . . , nl ∈ ω with r ≥ 1 be given. For every m ∈ ωwith m ≥ max{n1, . . . , nl} there is some N ∈ ω suh that whenever [N ]n1 ×

. . .× [N ]nl is oloured with r olours, then there are M1, . . . ,Ml ∈ [N ]m suhthat [M1]
n1 × . . .× [Ml]

nl is monohromati.Proof. The proof is by indution on l and the indution step uses a so-alledprodut-argument. For l = 1 the statement is equivalent to the Finite Ram-sey Theorem 2.3. So, assume that the statement is true for l ≥ 1 and let usprove it for l+1. By indution hypothesis, for every r ≥ 1 there is an Nl (de-pending on r) suh that for every r-olouring of [Nl]n1 × . . .× [Nl]
nl there are

M1, . . . ,Ml ∈ [Nl]
m suh that [M1]

n1 × . . . × [Ml]
nl is monohromati. Now,the ruial idea in order to apply the Finite Ramsey Theorem is to onsiderthe oloured l-tuples in (

[Nl]
m
)l as new olours. More preisely, let ul be thenumber of di�erent l-tuples in (
[Nl]

m
)l and let rl := ul · r. Notie that eaholour in rl orresponds to a pair 〈t, c〉, where t is an l-tuple in (

[Nl]
m
)l and cis one of r olours. Notie also that rl is very large ompared to r. Now, by theFinite Ramsey Theorem 2.3, there is a number Nl+1 ∈ ω suh that when-ever [Nl+1]

nl+1 is oloured with rl olours, then there exists anMl+1 ∈ [Nl+1]
msuh that [Ml+1]

nl+1 is monohromati. Let N = max{Nl, Nl+1} and let π beany r-olouring of [Nl]n1 × . . . × [Nl]
nl × [N ]nl+1 . For every F ∈ [N ]nl+1 let

πF be the r-olouring of [Nl]n1 × . . .× [Nl]
nl de�ned by stipulating

πF (X) = π
(
〈X,F 〉

)
.By the de�nition of N , for every F ∈ [N ]nl+1 there is a lexiographially�rst l-tuple (

MF
1 , . . . ,M

F
l

)
∈

(
[Nl]

m
)l suh that [

MF
1

]n1 × . . . ×
[
MF
l

]nl ismonohromati for πF . By de�nition of rl we an de�ne an rl-olouring πl+1on [N ]nl+1 as follows: Every set F ∈ [N ]nl+1 is oloured aording to the l-tuple t = (
MF

1 , . . . ,M
F
l

) (whih an be enoded as one of ul numbers) and the



18 2 Ramsey's Theoremolour c = πF (X), where X is any element of the set [MF
1

]n1 × . . .×
[
MF
l

]nl ;beause [MF
1

]n1×. . .×
[
MF
l

]nl is monohromati for πF , c is well-de�ned andone of r olours. In other words, for every F ∈ [N ]nl+1 , πl+1(F ) orrespond toa pair 〈t, c〉, where t ∈ (
[Nl]

m
)l and c is one of r olours. Finally, by de�nitionof N , there is a set Ml+1 ∈ [N ]m suh that [Ml+1]

nl+1 is monohromati for
πl+1, whih implies that for all F, F1, F2 ∈ [Ml+1]

nl+1 we have:
•

[
MF

1

]n1 × . . .×
[
MF
l

]nl is monohromati for πF ,
•

(
MF1

1 , . . . ,MF1

l

)
=

(
MF2

1 , . . . ,MF2

l

)
,

• and restrited to the set [MF
1

]n1 × . . .×
[
MF
l

]nl , the olourings πF1

l and
πF2

l are idential.Hene, there are M1, . . . ,Ml+1 ∈ [N ]m suh that π|[M1]n1×...×[Ml+1]
nl+1 isonstant, whih ompletes the proof. ⊣A very strong generalisation of Ramsey's Theorem in terms of partitionsis the Partition Ramsey Theorem 11.4. However, sine the proof of thisgeneralisation is quite involved, we postpone the disussion of that result untilChapter 11 and onsider now some other possible generalisations of Ramsey'sTheorem: Firstly one ould �nitely olour all �nite subsets of ω, seondly oneould olour [ω]n with in�nitely many olours, and �nally, one ould �nitelyolour all the in�nite subsets of ω. However, below we shall see that noneof these generalisations works, but �rst, let us onsider Ramsey's originaltheorem, whih is � at least in the absene of the Axiom of Choie�also ageneralisation of Ramsey's Theorem.Ramsey's Original Theorem.The theorem whih Ramsey proved originally is somewhat stronger than whatwe proved above. In our terminology, it states as follows:Ramsey's Original Theorem. For any in�nite set A, for any number n ∈ ω,for any positive number r ∈ ω, and for any olouring π : [A]n → r, there isan in�nite set H ⊆ A suh that [H ]n is monohromati.Notie that the di�erene is just that the in�nite set A is not neessarily asubset of ω, and therefore, it does not neessarily ontain a ountable in�nitesubset. However, this di�erene is ruial, sine one an show that, like König'sLemma, this statement is not provable without assuming some form of theAxiom of Choie (AC). On the other hand, if one has AC, then every in�niteset has a ountably in�nite subset, and so Ramsey's Theorem implies theoriginal version. Ramsey was aware of this fat and stated expliitly that he isassuming the axiom of seletions (i.e., AC). Even though we do not need fullAC in order to proveRamsey's Original Theorem, there is no way to avoidsome non-trivial kind of hoie, sine there are models of Set Theory in whihRamsey's Original Theorem fails (f. Proposition 7.8). Consequently,



Generalisations of Ramsey's Theorem 19Ramsey's Original Theorem an be used as a hoie priniple, whih willbe disussed in Chapter 5.Finite Colourings of [ω]<ωAssume we have oloured all the �nite subsets of ω with two olours, say redand blue. Can we be sure that there is an in�nite subset of ω suh that all its�nite subsets have the same olour? The answer to this question is negativeand it is not hard to �nd a ounterexample (e.g., olour a set x ∈ [ω]<ω blue,if |x| is even; otherwise, olour it red).Thus, let us ask for slightly less. Is is there at least an in�nite subset of ωsuh that for eah n ∈ ω, all its n-element subsets have the same olour? Theanswer to this question is also negative: Colour a non-empty set x ∈ [ω]<ωred, if x has more than min(x) elements (i.e., x is large); otherwise, olour itblue. Now, let I be an in�nite subset of ω and let n = min(I). We leave it asan exerise to the reader to verify that [I]n+1 is dihromati.The piture hanges if we are asking just for an almost homogeneous sets: Anin�nite setH ⊆ ω is alled almost homogeneous for a olouring π : [ω]n → r(where n ∈ ω and r is a positive integer), if there is a �nite set K ⊆ ω suhthat H \ K is homogeneous for π. Now, for a positive integer r onsiderany olouring π̄ : [ω]<ω → r. Then, for eah n ∈ ω, π̄|[ω]n is a olouring
πn : [ω]n → r. Is there an in�nite set H ⊆ ω whih is almost homogeneousfor all πn's simultaneously? The answer to this question is a�rmative and isgiven by the following result.Proposition 2.8. Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly �nite)sets of positive integers, and for eah k ∈ ω let πk : [ω]nk → rk be a olouring.Then there exists an in�nite set H ⊆ ω whih is almost homogeneous for eah
πk (k ∈ ω).Proof. A �rst attempt to onstrut the required almost homogeneous setwould be to start with an I0 ∈ [ω]ω whih is homogeneous for π0, then takean I1 ∈ [I0]

ω whih is homogeneous for π1, et etera, and �nally take theintersetion of all the Ik's. Even though this attempt fails � sine it is verylikely that we end up with the empty set � it is the right diretion. In fat, ifthe intersetion of the Ik's would be non-empty, it would be homogeneous forall πk's, whih is more than what is required. In order to end up with an in�-nite set we just have to modify the above approah� the trik, whih is usedalmost always when the word �almost� is involved, is alled diagonalisation.The proof is by indution on k: ByRamsey's Theorem 2.1 there exists an
H0 ∈ [ω]ω whih is homogeneous for π0. Assume we have already onstruted
Hk ∈ [ω]ω (for some k ≥ 0) suh that Hk is homogeneous for πk. Let ak =
min(Hk) and let Sk = Hk \ {ak}. Then, again by Ramsey's Theorem 2.1,there exists an Hk+1 ∈ [Sk]

ω suh that Hk+1 is homogeneous for πk+1. Let
H = {ak : k ∈ ω}. Then, by onstrution, for every k ∈ ω we have that
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H \ {a0, . . . , ak−1} is homogeneous for πk, whih implies that H is almosthomogeneous for all πk's simultaneously. ⊣Now we ould ask what is the least number of 2-olourings of 2-element subsetsof ω we need in order to make sure that no single in�nite subset of ω is almosthomogeneous for all olourings simultaneously? By Proposition 2.8 we knowthat ountably many olourings are not su�ient, but as we will see later, theaxioms of Set Theory do not deide how large this number is (f. Chapter 18).The dual question would be as follows: How large must a family of in�nitesubsets of ω be, in order to make sure that for eah 2-olouring of the 2-element subsets of ω we �nd a set in the family whih is homogeneous forthis olouring? Again, the axioms of Set Theory do not deide how large thisnumber is (f. Chapter 18).Going to the In�niteThere are two parameters involved in a olouring π : [ω]n → r, namely n and
r. Let �rst onsider the ase when n = 2 and r = ω. In this ase, we obviouslyannot hope for any in�nite homogeneous or almost homogeneous set. How-ever, there are still in�nite subsets of ω whih are homogeneous in a broadersense whih leads to the Canonial Ramsey Theorem. Even though theCanonial Ramsey Theorem is a proper generalisation of Ramsey's The-orem, we will not disuss it here (but see Related Result 0).In the ase when n = ω and r = 2 we annot hope for an in�nite homo-geneous set, as the following example illustrates (ompare this result withChapter 5 |Related Result 38):In the presene of the Axiom of Choie there is a 2-olouring of [ω]ω suh thatthere is no in�nite set, all whose in�nite subsets have the same olour.The idea is to onstrut (or more preisely, to prove the existene of) a olour-ing of [ω]ω with say red and blue in suh a way that whenever an in�nite set
x ∈ [ω]ω is oloured blue, then for eah a ∈ x, x \ {a} is oloured red, andvie versa.For this, de�ne an equivalene relation on [ω]ω as follows: for x, y ∈ [ω]ωlet

x ∼ y ⇐⇒ x△y is �nitewhere x△y = (x \ y) ∪ (y \ x) is the symmetri di�erene of x and y. It iseasily heked that the relation �∼� is indeed an equivalene relation on [ω]ω.Further, let A ⊆ [ω]ω be any set of representatives, i.e., A has exatly oneelement in ommon with eah equivalene lass. Sine the existene of the set
A relies on the Axiom of Choie, the given proof is not entirely onstrutive.Colour now an in�nite set x ∈ [ω]ω blue, if |x△rx| is even, where rx ∈
(A ∩ [x]̃ ); otherwise, olour it red. Sine two sets x, y ∈ [ω]ω with �nitesymmetri di�erene are always equivalent, every in�nite subset of ω must



Notes 21ontain blue as well as red oloured in�nite subsets.So, there is a olouring π : [ω]ω → {0, 1} suh that for no x ∈ [ω]ω, π|[x]ωis onstant. On the other hand, if the olouring is not too sophistiated wemay �nd a homogeneous set: For A ⊆ [ω]ω de�ne πA : [ω]ω → {0, 1} bystipulating πA (x) = 1 i� x ∈ A . Now we say that the set A ⊆ [ω]ω has theRamsey property if there exists an xh ∈ [ω]ω suh that πA |[x]ω is onstant.In other words, A ⊆ [ω]ω has the Ramsey property if and only if there existsan xh ∈ [ω]ω suh that either [xh]
ω ⊆ A or xh]ω ∩ A = ∅. The Ramseyproperty is related to the ardinal h (f. Chapter 8) and will be disussed inChapter 9.A slightly weaker property than the Ramsey property is the so-alleddoughnut property : If a and b are subsets of ω suh that b \ a is in�nite,then we all the set [a, b]ω := {x ∈ [ω]ω : a ⊆ x ⊆ b} a doughnut. (Whysuh sets are alled �doughnuts� is left to the reader's imagination.) Now, a set

A ⊆ [ω]ω is said to have the doughnut property if there exists an doughnut
[a, b]ω (for some a and b) suh that either [a, b]ω ⊆ A or [a, b]ω ∩A = ∅. Ob-viously, every set with the Ramsey property has also the doughnut property(onsider doughnuts of the form [∅, b]ω). On the other hand, it is not di�ultto show that, in the presene of the Axiom of Choie, there are sets with thedoughnut property whih fail to have the Ramsey property (just modify theexample given above). NotesRamsey's Theorem. Frank Plumpton Ramsey (1903-1930), the elder brother ofArthur Mihael Ramsey (who was Arhbishop of Canterbury from 1961 to 1974),proved his famous theorem in [34℄ and the part of the volume in whih his artileappeared was issued on the 16th of Deember in 1929, but the volume itself belongsto the years 1929 and 1930 (whih aused some onfusion about the year Ramsey'sartile was atually published). However, Ramsey submitted his paper already inNovember 1928. For Ramsey's paper and its relation to First-Order Logi, as wellas for an introdution to Ramsey Theory in general, we refer the reader to thelassial textbook by Graham, Rothshild, and Spener [16℄ (for Ramsey's otherpapers on Logi see [35℄). In [34℄, Ramsey's Theorem 2.1 appears as Theorem Aand the Finite Ramsey Theorem 2.3 is proved as a orollary and appears asTheorem B. Although Ramsey's Theorem is aurately attributed to Ramsey,its popularisation stems from the lassial paper of Erd®s and Szekerés [9℄, wherethey proved (independently of Ramsey) Corollary 2.4 �whih an be seen asa variant of the Finite Ramsey Theorem 2.3 in a geometrial ontext (see alsoMorris and Soltan [27℄). The elegant proof we gave for Corollary 2.4 is due toTarsy (f. Lewin [25℄ or Graham, Rothshild, and Spener [16, p. 26℄).Shur's Theorem. Shur's original paper [36℄ was motivated by Fermat's LastTheorem, and he atually proved the following result: For all natural numbers m,if p is prime and su�iently large, then the equation xm + ym = zm has a non-zerosolution in the integers modulo p. A proof of this theorem an also be found in



22 2 Ramsey's TheoremGraham, Rothshild, and Spener [16, Setion 3.1℄. For some historial bakgroundand for the early development of Ramsey Theory (before Ramsey) see Soifer [38℄.The Paris-Harrington Result. As mentioned above, Corollary 2.6 is true butunprovable in Peano Arithmeti (also alled First-Order Arithmeti). This result wasthe �rst natural example of suh a statement and is due to Paris and Harrington [31℄(see also Graham, Rothshild, and Spener [16, Setion 6.3℄). For other statementsof that type see Paris [30℄.It is worth mentioning that Peano Arithmeti is, in a suitable sense, equivalentto Zermelo-Fraenkel Set Theory with the Axiom of In�nity replaed by its negation,whih is a reasonable formalisation of standard ombinatorial reasoning about �nitesets.Rado's generalisation of the Finite Ramsey Theorem. Theorem 2.7, whihis the only proper generalisation of the Finite Ramsey Theorem shown in thisbook so far, is due to Rado [32℄ (see also page 113, Problems 4&5 of Jeh [23℄).Ramsey sets and doughnuts. Even though the Ramsey property and the dough-nut property look very similar, there are sets whih have the Ramsey property, butwhih fail to have the doughnut property. For the relation between the doughnutproperty and other regularity properties see for example Halbeisen [18℄ or Brendle,Halbeisen, and Löwe [4℄ (see also Chapter 9 |Related Result 60).Related Results0. Canonial Ramsey Theorem. The following result, known as the CanonialRamsey Theorem, is due to Erd®s and Rado (f. [8, Theorem I℄): Wheneverwe have a olouring π of [ω]n, for some n ∈ ω, with an arbitrary (e.g., in�nite)set of olours, there exist an in�nite set H ⊆ ω and a set I ⊆ {1, 2, . . . , n} suhthat for any ordered n-element subsets {k1 < . . . < kn}, {l1 < . . . < ln} ∈ [H ]nwe have π({k1, . . . , kn}) = π
(
{l1, . . . , ln}

)
⇐⇒ ki = li for all i ∈ I . The 2npossible hoies for I orrespond to the so-alled anonial olourings of [ω]n.As an example let us onsider the ase when n = 2: Let π be an arbitraryolouring of [ω]2 and let H ∈ [ω]ω and I ⊆ {1, 2} be as above. Then we are inexatly one of the following four ases for all {k1 < k2}, {l1 < l2} ∈ [H ]2 (f. [8,Theorem II℄):(1) If I = ∅, then π({k1, k2}) = π

(
{l1, l2}

).(2) If I = {1, 2}, then π({k1, k2}) = π
(
{l1, l2}

) i� {k1, k2} = {l1, l2}.(3) If I = {1}, then π({k1, k2}) = π
(
{l1, l2}

) i� k1 = l1.(4) If I = {2}, then π({k1, k2}) = π
(
{l1, l2}

) i� k2 = l2.Obviously, if π is a �nite olouring of [ω]n, then we are always in ase (1), whihgives us just Ramsey's Theorem 2.1.1. Ramsey numbers. The least number of people that must be invited to a party,in order to make sure that n of them mutually shook hands before or m of themmutually did not shake hands before, is denoted by R(n,m), and the numbers
R(n,m) are alled Ramsey numbers. Notie that by the Finite RamseyTheorem, Ramsey numbers R(n,m) exist for all integers n,m ∈ ω. Very fewRamsey numbers are atually known. It is easy to show that R(2, 3) = 3 (in



Related Results 23general, R(2, n) = n), and we leave it as an exerise to show that R(3, 3) = 6. Aomprehensive list of what is known about small Ramsey numbers is maintainedby Radziszowski [33℄.2. Monohromati triangles in K6-free graphs. Erd®s and Hajnal [10℄ asked for agraph whih ontains no K6 (i.e., no omplete graph on 6 verties) but has theproperty that whenever its edges are 2-oloured there must be a monohromatitriangle. A minimal example for suh a graph was provided by Graham [14℄:On the one hand he showed that if a 5-yle is deleted from a K8, then theresulting graph ontains no K6 and has the property that whenever its edgesare 2-oloured there is a monohromati triangle. On the other hand, if a graphon 7 verties ontains no K6, then there is a 2-olouring of the edges with nomonohromati triangle.3. Hindman's Theorem. If F ∈ [ω]<ω, then we write ΣF for Σa∈F a, where asusual we de�ne Σ∅ := 0. Hindman's Theorem states that if ω is �nitelyoloured, then there is an x ∈ [ω]ω suh that {ΣF : F ∈ [x]<ω ∧ F 6= ∅} ismonohromati (f. Hindman [21, Theorem 3.1℄ or Hindman and Strauss [22,Corollary 5.10℄ where referenes to alternative proofs are given on page 102).Using Hindman's Theorem as a strong Pigeon-Hole Priniple, Milliken provedin [26℄ a strengthened version of Ramsey's Theorem 2.1 whih inludes Hind-man's Theorem as well as Ramsey's Theorem 2.1. Sine Milliken's result wasproved independently by Taylor (f. [39℄), it is usually alled Milliken-TaylorTheorem. In order to state this result we have to introdue some notation.Two �nite sets K1,K2 ⊆ ω are said to be unmeshed if max(K1) < min(K2)or max(K2) < min(K1). If I and H are two sets of pairwise unmeshed �-nite subsets of ω and every member of I is the union of (�nitely many) mem-bers of H , then we write I ⊑ H . Further, let 〈ω〉ω denote the set of all in-�nite sets of pairwise unmeshed �nite subsets of ω, and for H ∈ 〈ω〉ω let
〈H〉n := {I : |I | = n and I ⊑ H}. Now, the Milliken-Taylor Theoremstates as follows: If all the n-element sets of pairwise unmeshed �nite subsetsof ω are �nitely oloured, then there exists an H ∈ 〈ω〉ω suh that 〈H〉n ismonohromati.4. Colourings of the plane. Erd®s [7℄ proved that there is a olouring of theEulidean plane with ountably many olours, suh that any two points ata rational distane have di�erent olours. This result was strengthened byKomjáth [24℄ in the following way: Let Q be the set of rational numbers andlet Q := {(q, 0) : q ∈ Q} be a opy of the rationals in the Eulidean plane.Then there exists a olouring of the Eulidean plane with ountably manyolours, suh that for any rigid motion σ of the plane, every olour oursin σ[Q] =

{
σ(p) : p ∈ Q

} exatly one.5. Finite olourings of Q. If we olour the rational numbers Q with �nitely manyolours, is there always an in�nite homogeneous set whih is order-isomorphito Q ? In general, this is not the ase: Let {qn : n ∈ ω} be an enumeration of
Q (see Chapter 4, in partiular Related Result 14) and olour a pair {qi, qj}blue if qi < qj ↔ i < j, otherwise, olour it red. Then it is easy to see that anin�nite homogeneous set whih is order-isomorphi to Q would yield an in�nitedereasing sequene of natural numbers, whih is obviously not possible. Onthe other hand, for every positive integer n ∈ ω there is a smallest number
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tn ∈ ω suh that if [Q]n is �nitely oloured then there is an in�nite set X ⊆ Qwhih is order-isomorphi to Q suh that [X]n is oloured with at most tnolours. For this see Devlin [6℄ or Vuksanovi¢ [41℄, where it is shown that suhnumbers exist and that the sequene of numbers tn oinides with the so-alledtangent numbers (f. Sloane [37, A000182℄). In partiular, t1 = 1 and for n ≥ 2,
tn =

∑n−1
i=1

(
2n−2
2i−1

)
titn−i.6. Symmetry and olourings. Banakh and Protasov investigated in [2℄ the follow-ing problem: Is it true that for every n-olouring of the group Zn there existsan in�nite monohromati subset of Zn whih is symmetri with respet toa entral re�etion. It turns out that the answer is always positive (for all n).However, there exists a 4-olouring of Z3 without in�nite, symmetri, monohro-mati set. For more general results we refer the reader to Banakh, Verbitski, andVorobets [3℄.7. Wieferih primes∗. The so-alled Wieferih primes were �rst introdued byWieferih in [42℄ in relation to Fermat's Last Theorem. As mentioned above,the only known Wieferih primes (less than 1.25 ·1015) are 1093 and 3511 (foundin 1913 and 1922 respetively). It is not known if there are in�nitely many primesof this type, even though it is onjetured that this is the ase (see for exampleHalbeisen and Hungerbühler [19℄). Moreover, it is not even known whether thereare in�nitely many non-Wieferih primes� although it is very likely to be thease.8. Sums and produts. As a onsequene of Ramsey's Theorem we get thatif ω is �nitely oloured, then there are in�nite sequenes of positive integers

(x0, x1, . . . , xk, . . .) and (y0, y1, . . . , yk, . . .) suh that {xi+xj : i, j ∈ ω∧i < j} aswell as {yi·yj : i, j ∈ ω∧i < j} is monohromati (but not neessarily of the sameolour). On the other hand, it is known (f. Hindman and Strauss [22, Chap-ter 17.2℄) that one an olour the positive integers with �nitely many oloursin suh a way that there is no in�nite sequene (x0, x1, . . . , xk, . . .) suh that
{xi + xj : i, j ∈ ω ∧ i < j} ∪ {xi · xj : i, j ∈ ω ∧ i < j} is monohromati.9. The graph of pairwise sums and produts∗. One an show that if ω is 2-oloured,then there are in�nitely many pairs of distint positive integers x and y suhthat x+ y has the same olour as x · y. For this onsider the graph on ω with njoined to m if for some distint x, y ∈ ω we have x+ y = n and x · y = m. Now,notie that it is enough to show that this so-alled graph of pairwise sums andproduts ontains in�nitely many triangles (f. Halbeisen [17℄).Suppose now that ω is �nitely oloured. Are there two distint positive integers
x and y suh that x+ y has the same olour as x · y ? This problem�whih isequivalent to asking whether the hromati number of the graph of pairwise sumsand produts is �nite or in�nite� is still open (f. Hindman and Strauss [22,Question 17.18℄). A partial result is given in Halbeisen [17℄, where it is shownthat suh numbers x and y exist if ω is 3-oloured.10. Problems in Ramsey Theory∗. For a variety of open problems from RamseyTheory we refer the reader to Graham [15℄ (it might be worth mentioning thatGraham is o�ering modest rewards for most of the presented problems).11. Appliations of Ramsey Theory to Banah Spae Theory. There are many� andsometimes quite unexpeted� appliations of Ramsey Theory to Banah Spae



Referenes 25Theory (see for example Odell [28℄, Gowers [13℄, or Argyros and Todor£evi¢ [1℄).Let us mention just the following two appliations:An unexpeted appliation of Ramsey Theory to Banah Spae Theory is due toBrunel and Suheston [5℄: If x1, x2, . . . is an in�nite normalised basi sequenein a Banah spae X and εn ց 0 (a sequene of positive real numbers whihtends to 0), then one an �nd an in�nite subsequene y1, y2, . . . of x1, x2, . . .whih has the following property: For any positive n ∈ ω, any sequene ofsalars (a1, . . . , an) ∈ [−1, 1]n and any natural numbers n ≤ i0 < . . . < in−1and n ≤ j0 < . . . < jn−1 we have
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∣∣∣∣ < εn .The limit ‖∑n
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3The Axioms of Zermelo-Fraenkel Set Theory
Every mathematial siene relies upon demon-stration rather than argument and opinion. Cer-tain priniples, alled premises, are granted, anda demonstration is made whih resolves everythingeasily and learly. To arrive at suh a demonstra-tion the means must be found for making it aessi-ble to our judgment. Mathematiians, understand-ing this, devised signs, not separate from matterexept in essene, yet distant from it. These werepoints, lines, planes, solids, numbers, and ount-less other haraters, whih are depited on paperwith ertain olours, and they used these in plaeof the things symbolised. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558Why Axioms ?In the middle and late 19th entury, members of the then small mathemat-ial ommunity began to look for a rigorous foundation of Mathematis. Inaordane with the Eulidean model for reason, the ideal foundation on-sists of a few simple, lear priniples, so-alled axioms, on whih the rest ofknowledge an be built via �rm and reliable thoughts free of ontraditions.However, at the time it was not lear what assumptions should be made andwhat operations should be allowed in mathematial reasoning.At the beginning of the last book of Politeia, Plato develops his theoryof ideas. Translated into the mathematial setting, Plato's theory of ideasreads as follows: Even though there may be more than one human approahto Mathematis, there is only one idea of Mathematis (i.e., a unique math-ematial world), and from this idea alone we an attain real knowledge� all



30 3 The Axioms of Zermelo-Fraenkel Set Theoryhuman approahes are just opinions. In partiular, the mathematial worldalready exists and is just waiting to be disovered. So, from a Platoni pointof view it would make sense to searh for the unique set of true axioms forSet Theory� also beause the axioms of Set Theory are supposed to desribethe world of �real� Mathematis.However, if we onsider Set Theory as a mathematial disipline, then,like in any other �eld of Mathematis, there is no true axiom system, andmoreover, we are even allowed to weaken the axioms or to extend them byadditional assumptions in order to get weaker or stronger theories. This isdone for example in Group Theory in order to study semigroups or monoids,or to fous on abelian groups.It is often the ase that a mathematial theory is developed long beforeits formal axiomatisation, and in rare instanes, mathematial theories werealready partially developed before mathematiians were aware of them, whihhappened with Group Theory: Around the year 1600 in England it was dis-overed that by altering the �ttings around eah bell in a bell tower, it waspossible for eah ringer to maintain preise ontrol of when his (there were nofemale ringers then) bell sounded. This enabled the ringers to ring the bellsin any partiular order, and either maintain that order or permute the orderin a preise way. (For tehnial reasons, not every permutation is allowed. Infat, just produts of mutually disjoint elementary transpositions may be used,that means that two bells an exhange their plaes only if they are adjaentlyrung before-hand.) So, in the �rst half of the 17th entury the ringers tried toontinuously hange the order of the bells for as long as possible, while notrepeating any partiular order, and return to rounds at the end. This gameevolved into a hallenge to ring the bells in every possible order, without anyrepeats, and return to rounds at the end. Thus, bell-ringers began to investi-gate permutations and Stedman's work Campanologia (Cambridge, 1677) anfairly be said to be the �rst work in whih Group Theory was suessfullyapplied to a �musial� situation and onsequently, Stedman an be regardedas the �rst group theorist. This also shows that permutations� the proto-type of �nite groups�were �rst studied in the 17th entury in the ontextof the hange-ringing, and therefore had a pratial appliation long beforethey were used in Lagrange's work of 1770�1771 on the theory of algebraiequations.Let us now turn bak to Set Theory. The history of Set Theory is ratherdi�erent from the history of most other areas of Mathematis. Usually a longproess an be traed in whih ideas evolve until an ultimate �ash of inspira-tion, often by a number of mathematiians almost simultaneously, produesa disovery of major importane. Set Theory however is the reation of onlyone person, namely of Georg Cantor (1845�1918), who �rst disovered thatin�nite sets may have di�erent sizes, i.e., ardinalities. In fat, the birth ofSet Theory dates to 1873 when Cantor proved that the set of real numbers isunountable. Until then, no one envisioned the possibility that in�nities omein di�erent sizes, and moreover, mathematiians had no use for the atual in-



First-order logi in a nutshell 31�nite � in ontrast to the potential in�nite, as it is introdued by Aristotle inPhysis Book III. The di�erene between atual and potential in�nite is thatthe latter just means �unlimited� or �arbitrarily large� (e.g., there are arbi-trarily large� and therefore arbitrarily many� prime numbers), whereas theformer means that there are in�nite objets whih atually exist (e.g., thereexists a set ontaining all, i.e., in�nitely many, prime numbers). Moreover,Cantor also showed that for every in�nite set, there is a set of larger ardinal-ity, whih implies that there is no largest set. Cantor never introdued formalaxioms for Set Theory, even though he was taitly using most of the axiomsintrodued later by Zermelo and Fraenkel. However, Cantor onsidered a setas any olletion of well-distinguished objets of our mind, whih leads di-retly to Russell's Paradox: Firstly, the olletion of all sets is a set whihis a member of itself. Seondly, the set of negative natural numbers is empty,and hene annot be a member of itself (otherwise, it would not be empty).Now, all a set x good if x is not a member of itself and let C be the olletionof all sets whih are good. Is C, as a set, good or not? If C is good, then C isnot a member of itself, but sine C ontains all sets whih are good, C is amember of C, a ontradition. Otherwise, if C is a member of itself, then Cmust be good, again a ontradition. In order to avoid this paradox we haveto exlude the olletion C from being a set, but then, we have to give reasonswhy ertain olletions are sets and others are not. The axiomati way to dothis is desribed by Zermelo as follows: Starting with the historially grownSet Theory, one has to searh for the priniples required for the foundationsof this mathematial disipline. In solving the problem we must, on the onehand, restrit these priniples su�iently to exlude all ontraditions and,on the other hand, take them su�iently wide to retain all the features of thistheory.The priniples, whih are alled axioms, will tell us how to get new setsfrom already existing ones. In fat, most of the axioms of Set Theory areonstrutive to some extent, i.e., they tell us how new sets are onstrutedfrom already existing ones and what elements they ontain.However, before we state the axioms of Set Theory we would like to intro-due informally the formal language in whih these axioms will be formulated.First-Order Logi in a NutshellFirst-Order Logi is the system of Symboli Logi onerned not only to rep-resent the logial relations between sentenes or propositions as wholes (likePropositional Logi), but also to onsider their internal struture in termsof subjet and prediate. First-Order Logi an be onsider as a kind of lan-guage whih is distinguished from higher-order languages in that it does notallow quanti�ation over subsets of the domain of disourse or other objetsof higher type. Nevertheless, First-Order Logi is strong enough to formaliseall of Set Theory and thereby virtually all of Mathematis. In other words,



32 3 The Axioms of Zermelo-Fraenkel Set TheoryFirst-Order Logi is an abstrat language that in one partiular ase is thelanguage of Group Theory, and in another ase is the language of Set Theory.The goal of this brief introdution to First-Order Logi is to illustrate andsummarise some of the basi onepts of this language and to show how it isapplied to �elds like Group Theory and Peano Arithmeti (two theories whihwill aompany us for a while).Syntax: Formulae, Formal Proofs, and ConsistenyLike any other written language, First-Order Logi is based on an alphabet,whih onsists of the following symbols:(a) Variables suh as v0, v1, x, y, . . . whih are plae holders for objets ofthe domain under onsideration (whih an for example be the elementsof a group, natural numbers, or sets).(b) Logial operators whih are �¬� (not), �∧� (and), �∨� (or), �→� (im-plies), and �↔� (if and only if, abbreviated i� ).() Logial quanti�ers whih are the existential quanti�er �∃� (there is orthere exists) and the universal quanti�er �∀� (for all or for eah), wherequanti�ation is restrited to objets only and not to formulae or sets ofobjets (but the objets themselves may be sets).(d) Equality symbol �= �, whih stands for the partiular binary equalityrelation.(e) Constant symbols like the number 0 in Peano Arithmeti, or the neutralelement e in Group Theory. Constant symbols stand for �xed individualobjets in the domain.(f) Funtion symbols suh as ◦ (the operation in Group Theory), or +, · , s(the operations in Peano Arithmeti), Funtion symbols stand for �xedfuntions taking objets as arguments and returning objets as values.With eah funtion symbol we assoiate a positive natural number, itso-alled �arity� (e.g., �◦� is a 2-ary or binary funtion, and the suessoroperation �s� is a 1-ary or unary funtion).(g) Relation symbols or prediate onstants (suh as ∈ in Set Theory)stand for �xed relations between (or properties of) objets in the domain.Again we assoiate an �arity� with eah relation symbol (e.g., �∈� is abinary relation).The symbols in (a)�(d) form the ore of the alphabet and are alled logialsymbols. The symbols in (e)�(g) depend on the spei� topi we are investi-gating and are alled non-logial symbols. The set of non-logial symbolswhih are used in order to formalise a ertain mathematial theory is alledthe language of this theory, denoted by L , and formulae whih are for-mulated in a language L are usually alled L -formulae. For example if weinvestigate groups, then the only non-logial symbols we use are �e� and �◦�,thus, L = {e, ◦} is the language of Group Theory.



Syntax: formulae, formal proofs, and onsisteny 33A �rst step towards a proper language is to build words (i.e., terms) withthese symbols.Terms:(T1) Eah variable is a term.(T2) Eah onstant symbol is a term.(T3) If t1, . . . , tn are terms and F is an n-ary funtion symbol, then Ft1 · · · tnis a term.It is onvenient to use auxiliary symbols like brakets in order to make terms,relations, and other expressions easier to read. For example we usually write
F (t1, . . . , tn) rather than Ft1 · · · tn.To some extent, terms orrespond to words, sine they denote objets of thedomain under onsideration. Like real words, they are not statements andannot express or desribe possible relations between objets. So, the nextstep is to build sentenes (i.e., formulae) with these terms.Formulae:(F1) If t1 and t2 are terms, then t1 = t2 is a formula.(F2) If t1, . . . , tn are terms and R is an n-ary relation symbol, then Rt1 · · · tnis a formula.(F3) If ϕ is a formula, then ¬ϕ is a formula.(F4) If ϕ and ψ are formulae, then (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ), and (ϕ↔ ψ) areformulae. (To avoid the use of brakets one ould write these formulaefor example in Polish notation, i.e., ∧ϕψ, ∨ϕψ, et etera.)(F5) If ϕ is a formula and x a variable, then ∃xϕ and ∀xϕ are formulae.Formulae of the form (F1) or (F2) are the most basi expressions we have,and sine every formula is a logial onnetion or a quanti�ation of theseformulae, they are alled atomi formulae.For binary relations R it is onvenient to write xRy instead of R(x, y). Forexample we write x ∈ y instead of ∈(x, y), and we write x /∈ y rather than
¬(x ∈ y).If a formula ϕ is of the form ∃xψ or of the form ∀xψ (for some formula ψ)and x ours in ψ, then we say that x is in the range of a logial quanti�er. Avariable x ourring at a partiular plae in a formula ϕ is either in the rangeof a logial quanti�er or it is not in the range of any logial quanti�er. In theformer ase this partiular instane of the variable x is bound in ϕ, and inthe latter ase it is free in ϕ. Notie that it is possible that a ertain variableours in a given formula bound as well as free (e.g., in ∃z(x = z)∧∀x(x = y),the variable x is both bound and free, whereas z is just bound and y is justfree). However, one an always rename the bound variables ourring in agiven formula ϕ suh that eah variable in ϕ is either bound or free. Forformulae ϕ, the set of variables ourring free in ϕ is denoted by free(ϕ). A



34 3 The Axioms of Zermelo-Fraenkel Set Theoryformula ϕ is a sentene if it ontains no free variables (i.e., free(ϕ) = ∅). Forexample ∀x(x = x) is a sentene but (x = x) is not.Sometimes it is useful to indiate expliitly whih variables our free in agiven formula ϕ, and for this we usually write ϕ(x1, . . . , xn) to indiate that
{x1, . . . , xn} ⊆ free(ϕ).If ϕ(x) is a formula (i.e., x ∈ free(ϕ)), and t a term, then ϕ(x/t) is theformula we get after replaing all free instanes of x by t. A so-alled substi-tution ϕ(x/t) is admissible i� no free ourrene of x in ϕ is in the rangeof a quanti�er that binds any variable ontained in t (i.e., for eah variable vappearing in t, no plae where x ours free in ϕ is in the range of �∃v� or�∀v�).So far we have letters, and we an build words and sentenes. However,these sentenes are just strings of symbols without any inherent meaning.Later we shall interpret formulae in the intuitively natural way by giving thesymbols the intended meaning (e.g., �∧� meaning �and�, �∀x� meaning �forall x�, et etera). But before we shall do so, let us stay a little bit longeron the syntatial side � nevertheless, one should onsider the formulae alsofrom a semantial point of view.Below we shall label ertain formulae or types of formulae as axioms,whih are used in onnetion with inferene rules in order to derive furtherformulae. From a semantial point of view we an think of axioms as �true�statements from whih we dedue or prove further results. We distinguishtwo types of axioms, namely logial axioms and non-logial axioms (whihwill be disussed later). A logial axiom is a sentene or formula ϕ whihis universally valid (i.e., ϕ is true in any possible universe, no matter howthe variables, onstants, et etera, ourring in ϕ are interpreted). Usuallyone takes as logial axioms some minimal set of formulae that is su�ient forderiving all universally valid formulae (suh a set is given below).If a symbol is involved in an axiom whih stands for an arbitrary relation,funtion, or even for a �rst-order formula, then we usually onsider the state-ment as an axiom shema rather than a single axiom, sine eah instane ofthe symbol represents a single axiom. The following list of axiom shemata isa system of logial axioms.Let ϕ, ϕ1, ϕ2, and ψ, be arbitrary �rst-order formulae:L1 : ϕ→ (ψ → ϕ)L2 : (

ψ → (ϕ1 → ϕ2)
)
→

(
(ψ → ϕ1) → (ψ → ϕ2)

)L3 : (ϕ ∧ ψ) → ϕL4 : (ϕ ∧ ψ) → ψL5 : ϕ→
(
ψ → (ψ ∧ ϕ)

)L6 : ϕ→ (ϕ ∨ ψ)L7 : ψ → (ϕ ∨ ψ)L8 : (ϕ1 → ϕ3) →
(
(ϕ2 → ϕ3) →

(
(ϕ1 ∨ ϕ2) → ϕ3

))L9 : (ϕ→ ψ) →
(
(ϕ→ ¬ψ) → ¬ϕ

)



Syntax: formulae, formal proofs, and onsisteny 35L10: ¬ϕ→ (ϕ→ ψ)L11: ϕ ∨ ¬ϕIf t is a term and the substitution ϕ(x/t) is admissible, then:L12: ∀xϕ(x) → ϕ(t)L13: ϕ(t) → ∃xϕ(x)If ψ is a formula suh that x /∈ free(ψ), then:L14: ∀x
(
ψ → ϕ(x)

)
→

(
ψ → ∀xϕ(x)

)L15: ∀x
(
ϕ(x) → ψ

)
→

(
∃xϕ(x) → ψ

)What is not overed yet is the symbol �= �, so, let us have a loser look atthe binary equality relation. The de�ning properties of equality an alreadybe found in Book VII, Chapter 1 of Aristotle's Topis, where one of the rulesto deide whether two things are the same is as follows: . . . you should lookat every possible prediate of eah of the two terms and at the things of whihthey are prediated and see whether there is any disrepany anywhere. Foranything whih is prediated of the one ought also to be prediated of the other,and of anything of whih the one is a prediate the other also ought to be aprediate.In our formal system, the binary equality relation is de�ned by the follow-ing three axioms.If t, t1, . . . , tn, t′1, . . . , t′n are any terms, R an n-ary relation symbol (e.g., thebinary relation symbol �= �), and F an n-ary funtion symbol, then:L16: t = tL17: (
t1 = t′1 ∧ · · · ∧ tn = t′n

)
→

(
R(t1, . . . , tn) → R(t′1, . . . , t

′
n)
)L18: (

t1 = t′1 ∧ · · · ∧ tn = t′n
)
→

(
F (t1, . . . , tn) = F (t′1, . . . , t

′
n)
)Finally, we de�ne the logial operator �↔� by stipulating

ϕ↔ ψ ⇐⇒ (ϕ→ ψ) ∧ (ψ → ϕ) ,i.e., ϕ↔ ψ is just an abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ).This ompletes the list of our logial axioms. In addition to these axioms, weare allowed to state arbitrarily many theory-spei� assumptions, so-allednon-logial axioms. Suh axioms are for example the three axioms of GroupTheory, denoted GT, or the axioms of Peano Arithmeti, denoted PA.GT: The language of Group Theory is LGT = {e, ◦ }, where �e� is a onstantsymbol and �◦� is a binary funtion symbol.GT0: ∀x∀y∀z
(
x◦(y◦z) = (x◦y)◦z

) (i.e., �◦� is assoiative)GT1: ∀x(e◦x = x) (i.e., �e� is a left-neutral element)GT2: ∀x∃y(y◦x = e) (i.e., every element has a left-inverse)



36 3 The Axioms of Zermelo-Fraenkel Set TheoryPA: The language of Peano Arithmeti is LPA = {0, s,+, · }, where �0� is aonstant symbol, �s� is a unary funtion symbol, and �+� and � · � are binaryfuntion symbols.PA1: ∀x
(s(x) 6= 0)PA2: ∀x∀y

(s(x) = s(y) → x = y
)PA3: ∀x(x + 0 = x)PA4: ∀x∀y

(
x+ s(y) = s(x+ y)

)PA5: ∀x(x · 0 = 0)PA6: ∀x∀y
(
x · s(y) = (x · y) + x

)If ϕ is any LPA-formula with x ∈ free(ϕ), then:PA7: (
ϕ(0) ∧ ∀x

(
ϕ(x) → ϕ(s(x)))) → ∀xϕ(x).It is often onvenient to add ertain de�ned symbols to a given languageso that the expressions get shorter or at least are easier to read. For ex-ample in Peano Arithmeti � whih is an axiomati system for the naturalnumbers� we usually replae the expression s(0) with 1 and onsequentlys(x) by x + 1. Probably, we would like to introdue an ordering �<� on thenatural numbers. We an do this by stipulating1 := s(0) , x < y ⇐⇒ ∃z

(
(x + z) + 1 = y

)
.We usually use � :=� to de�ne onstants or funtions, and �⇐⇒� to de�nerelations. Obviously, all that an be expressed in the language LPA ∪ {1, <}an also be expressed in LPA.So far we have a set of logial and non-logial axioms in a ertain languageand an de�ne, if we wish, as many new onstants, funtions, and relationsas we like. However, we are still not able to dedue anything from the givenaxioms, sine we have neither inferene rules nor the notion of formal proof.Surprisingly, just two inferene rules are su�ient, namely:Modus Ponens: ϕ→ ψ, ϕ

ψ
and Generalisation: ϕ

∀xϕIn the former ase we say that ψ is obtained from ϕ → ψ and ϕ by ModusPonens, and in the latter ase we say that ∀xϕ (where x an be any variable)is obtained from ϕ by Generalisation.Using these two inferene rules, we are able to de�ne the notion of formalproof : Let T be a possibly empty set of non-logial axioms (usually sentenes),formulated in a ertain language L . An L -formula ψ is provable from T (orprovable in T), denoted T ⊢ ψ, if there is a �nite sequene ϕ1, . . . , ϕn of L -formulae suh that ϕn is equal to ψ (i.e., the formulae ϕn and ψ are idential),and for all i with 1 ≤ i ≤ n we have:



Syntax: formulae, formal proofs, and onsisteny 37
• ϕi is a logial axiom, or
• ϕi ∈ T, or
• there are j, k < i suh that ϕj is equal to the formula ϕk → ϕi, or
• there is a j < i suh that ϕi is equal to the formula ∀xϕj .If a formula ψ is not provable in T, i.e., if there is no formal proof for ψwhih uses just formulae from T, then we write T 0 ψ.Formal proofs, even of very simple statements, an get quite long andtriky. So, before we give an example of a formal proof, let us state a theoremwhih allows us to simplify formal proofs:Theorem 3.1 (Dedution Theorem). If {ψ1, . . . , ψn} ∪ {ϕ1, . . . , ϕk} ⊢
ϕ, where Generalisation is not applied to the free variables of the formulae
ϕ1, . . . , ϕk (e.g., if these formulae are sentenes), then

{ψ1, . . . , ψn} ⊢
(
ϕ1 ∧ . . . ∧ ϕk

)
→ ϕ .Now, as an example of a formal proof let us show the equality relation issymmetri. We �rst work with Tx=y, onsisting only of the formula x = y,and show that Tx=y ⊢ y = x, in other words we show that {x = y} ⊢ y = x :

ϕ1: (x = y ∧ x = x) → (x = x→ y = x) instane of L17

ϕ2: (x = y ∧ x = x) → x = x instane of L4

ϕ3: ϕ1 →
(
ϕ2 →

(
(x = y ∧ x = x) → y = x

)) instane of L2

ϕ4: ϕ2 →
(
(x = y ∧ x = x) → y = x

) from ϕ3 and ϕ1by Modus Ponens
ϕ5: (x = y ∧ x = x) → y = x from ϕ4 and ϕ2by Modus Ponens
ϕ6: x = x instane of L16

ϕ7: x = y (x = y) ∈ Tx=y
ϕ8: x = x→

(
x = y → (x = y ∧ x = x)

) instane of L5

ϕ9: x = y → (x = y ∧ x = x) from ϕ8 and ϕ6by Modus Ponens
ϕ10: x = y ∧ x = x from ϕ9 and ϕ7by Modus Ponens
ϕ11: y = x from ϕ5 and ϕ9by Modus PonensThus, we have {x = y} ⊢ y = x, and by the Dedution Theorem 3.1 weget that ⊢ x = y → y = x, and �nally, by Generalisation we get

⊢ ∀x∀y(x = y → y = x) .



38 3 The Axioms of Zermelo-Fraenkel Set TheoryWe leave it as an exerise to the reader to show that the equality relationis also transitive, and sine the equality relation is also re�exive (by L16), itis an equivalene relation.Furthermore, we say that two formulae ϕ and ψ are equivalent, denoted
ϕ ≡ ψ, if ⊢ ϕ ↔ ψ. In other words, if ϕ ≡ ψ, then� from a logial point ofview� ϕ and ψ state exatly the same, and therefore we ould all ϕ ↔ ψa tautology, whih means saying the same thing twie. However, in Logi, aformula ϕ is a tautology if ⊢ ϕ. Thus, the formulae ϕ and ψ are equivalentif and only if ϕ↔ ψ is a tautology.A few examples:
• ϕ∨ψ ≡ ψ∨ϕ , ϕ∧ψ ≡ ψ∧ϕ This shows that �∨� and �∧� are ommutative(up to equivalene). Moreover, �∨� and �∧� are (up to equivalene) alsoassoiative� a fat whih we taitly used already.
• ¬¬ϕ ≡ ϕ , (ϕ ∨ ψ) ≡ ¬(¬ϕ ∧ ¬ψ) This shows for example how �∨� anbe replaed with �¬� and �∧�.
• (ϕ → ψ) ≡ (¬ϕ ∨ ψ) This shows how the logial operator �→� an bereplaed with �¬� and �∨�.
• ∀xϕ ≡ ¬∃x¬ϕ This shows how �∀� an be replaed with �¬� and �∃�.Thus, some of the logial operators are redundant and we ould work forexample with just �¬�, �∧�, and �∃�. However, it is more onvenient to use allof them.Let T be a set of L -formulae. We say that T is onsistent, denoted Con(T),if there is no L -formula ϕ suh that T ⊢ (ϕ ∧ ¬ϕ), otherwise T is alledinonsistent, denoted ¬Con(T).Proposition 3.2. Let T be a set of L -formulae.(a) If ¬Con(T), then for every L -formula ψ we have T ⊢ ψ.(b) If Con(T) and T ⊢ ϕ for some L -formula ϕ, then T 0 ¬ϕ.Proof. (a) Let ψ be any L -formula and assume that T ⊢ (ϕ ∧ ¬ϕ) for some
L -formula ϕ. Then T ⊢ ψ:

ϕ1: ϕ ∧ ¬ϕ provable from T by assumption
ϕ2: (ϕ ∧ ¬ϕ) → ϕ instane of L3

ϕ3: ϕ from ϕ2 and ϕ1 by Modus Ponens
ϕ4: (ϕ ∧ ¬ϕ) → ¬ϕ instane of L4

ϕ5: ¬ϕ from ϕ4 and ϕ1 by Modus Ponens
ϕ6: ¬ϕ → (ϕ→ ψ) instane of L10

ϕ7: ϕ → ψ from ϕ6 and ϕ5 by Modus Ponens
ϕ8: ψ from ϕ7 and ϕ3 by Modus Ponens



Semantis: models, ompleteness, and independene 39(b) Assume that T ⊢ ϕ and T ⊢ ¬ϕ. Then T ⊢ (ϕ ∧ ¬ϕ), i.e., ¬Con(T):
ϕ1: ϕ provable from T by assumption
ϕ2: ¬ϕ provable from T by assumption
ϕ3: ϕ→

(
¬ϕ → (ϕ ∧ ¬ϕ)

) instane of L5

ϕ4: ¬ϕ→ (ϕ ∧ ¬ϕ) from ϕ3 and ϕ1 by Modus Ponens
ϕ5: ϕ ∧ ¬ϕ from ϕ4 and ϕ2 by Modus Ponens

⊣Notie that Proposition 3.2.(a) implies that from an inonsistent set of ax-ioms T one an prove everything and T would be ompletely useless. So, if wedesign a set of axioms T, we have to make sure that T is onsistent. However,as we shall see later, in many ases this task is impossible.Semantis: Models, Completeness, and IndependeneLet T be any set of L -formulae (for some languageL ). There are two di�erentways to approah T, namely the syntatial and the semantial way. The abovepresented syntatial approah onsiders the set T just as a set of well-formedformulae� regardless of their intended sense or meaning� from whih wean prove some other formulae.On the other hand, we an onsider T also from a semantial point of viewby interpreting the symbols of the language L in a reasonable way, and thenseeking for a model in whih all formulae of T are true. To be more preise,we �rst have to de�ne how models are built and what �true� means:Let L be an arbitrary but �xed language. An L -struture A onsists ofa (non-empty) set or olletion A, alled the domain of A, together with amapping whih assigns to eah onstant symbol c ∈ L an element cA of A, toeah n-ary relation symbol R ∈ L a set of n-tuples RA of elements of A, andto eah n-ary funtion symbol F ∈ L a funtion FA from n-tuples of A to
A. Further, the interpretation of variables is given by a so-alled assignment:An assignment in an L -struture A is a mapping j whih assigns to eahvariable an element of the domain A. Finally, an L -interpretation I is a pair
(A, j) onsisting of an L -struture A and an assignment j in A. For a variable
x, an element a ∈ A, and an assignment j in A we de�ne the assignment j axby stipulating

j ax (y) =

{
a if y = x,
j(y) otherwise.Further, for an interpretation I = (A, j) let I ax := (A, j ax).



40 3 The Axioms of Zermelo-Fraenkel Set TheoryWe assoiate with every interpretation I = (A, j) and every term t anelement I(t) from the domain A as follows:
• For a variable x let I(x) := j(x).
• For a onstant symbol c ∈ L let I(c) := cA.
• For an n-ary funtion symbol F ∈ L and terms t1, . . . , tn let

I
(
F (t1, . . . , tn)

)
:= FA

(
I(t1), . . . , I(tn)

)
.Now, we are able to de�ne preisely the notion of a formula ϕ being trueunder an interpretation I = (A, j), in whih ase we write I � ϕ and say that

ϕ holds in I. The de�nition is by indution on the omplexity of the formula
ϕ (where it is enough to onsider formulae ontaining� besides terms andrelations� just the logial operators �¬� and �∧�, and the logial quanti�er�∃�):
• If ϕ is of the form t1 = t2, then

I � t1 = t2 ⇐⇒ I(t1) is the same element as I(t2) .
• If ϕ is of the form R(t1, . . . , tn), then

I � R(t1, . . . , tn) ⇐⇒
(
I(t1), . . . , I(tn)

) belongs to RA .
• If ϕ is of the form ¬ψ, then

I � ¬ψ ⇐⇒ it is not the ase that I � ψ .
• If ϕ is of the form ∃xψ, then

I � ∃xψ ⇐⇒ there is an element a ∈ A suh that I ax � ψ .
• If ϕ is of the form ψ1 ∧ ψ2, then

I � ψ1 ∧ ψ2 ⇐⇒ I � ψ1 and I � ψ2 .Notie that sine the domain of I is non-empty we always have I � ∃x(x = x).Now, let T be an arbitrary set of L -formulae. Then an L -struture A is amodel of T if for every assignment j in A and for eah formula ϕ ∈ T wehave (A, j) � ϕ, i.e., ϕ holds in the L -interpretation I = (A, j). We usuallydenote models by bold letters like M, N, V, et etera. Instead of saying �Mis a model of T� we just write M � T. If ϕ fails in M, then we write M 2 ϕ,whih is equivalent to M � ¬ϕ (this is beause for any L -formula ϕ we haveeither M � ϕ or M � ¬ϕ).For example S7 (i.e., the set of all permutations of seven di�erent items) isa model of GT, where the interpretation of the binary operation is ompositionand the neutral element is interpreted as the identity permutation. In this ase,the elements of the domain of S7 an be real and an even be heard, namely



Semantis: models, ompleteness, and independene 41when the seven items are seven bells and a peal of for example StedmanTriples onsisting of all 5040 permutations of the seven bells is rung�whihhappens quite often, sine Stedman Triples are very popular with hange-ringers. However, the objets of models of mathematial theories usually donot belong to our physial world and are not more real than for example thenumber zero or the empty set.The following two theorems, whih we state without proofs, are the mainonnetions between the syntatial and the semantial approah to �rst-ordertheories. On the one hand, the Soundness Theorem 3.3 just tells us thatour dedution system is sound, i.e., if a sentene ϕ is provable from T then
ϕ is true in eah model of T. On the other hand, Gödel's CompletenessTheorem 3.4 tells us that our dedution system is even omplete, i.e., everysentene whih is true in all models of T is provable from T. As a onsequenewe get that T ⊢ ϕ if and only if ϕ is true in eah model of T. In partiular, ifT is empty, this implies that every tautology (i.e., universally valid formula)is provable.Theorem 3.3 (Soundness Theorem). Let T be a set of L -sentenes andlet ϕ be any L -sentene. If T ⊢ ϕ, then in any model M suh that M � Twe have M � ϕ.Theorem 3.4 (Gödel's Completeness Theorem). Let T be a set of L -sentenes and let ϕ be any L -sentene. Then T ⊢ ϕ or there is a model Msuh that M � T ∪ {¬ϕ}. In other words, if for every model M � T we have
M � ϕ, then T ⊢ ϕ. (Notie that this does not imply the existene of a modelof T.)One of the main onsequenes of Gödel's Completeness Theorem 3.4is that formal proofs� whih are usually quite long and involved� an bereplaed with informal ones: Let T be a onsistent set of L -formulae and let
ϕ be any L -sentene. Then, by Gödel's Completeness Theorem 3.4, inorder to show that T ⊢ ϕ it is enough to show that M � ϕ whenever M � T.In fat, we would take an arbitrary model M of T and show that M � ϕ.As an example let us show that GT ⊢ (y◦x = e) → (x◦y = e): Firstly, let
G be a model of GT, with domain G, and let x and y be any elements of G. ByGT2 we know that every element of G has a left-inverse. In partiular, y hasa left-inverse, say ȳ, and we have ȳ◦y = e. By GT1 we have x◦y = (ȳ◦y)◦(x◦y),and by GT0 we get (ȳ◦y)◦(x◦y) = ȳ◦

(
(y◦x)◦y

). Now, if y◦x = e, then we have
x◦y = ȳ◦y and onsequently we get x◦y = e. Notie that we taitly used thatthe equality relation is symmetri and transitive.We leave it as an exerise to the reader to �nd the orresponding formalproof of this basi result in Group Theory. In a similar way one an showthat every left-neutral element is also a right-neutral element (alled neutralelement) and that there is just one neutral element in a group.The following result, whih is a onsequene of Gödel's CompletenessTheorem 3.4, shows that every onsistent set of formulae has a model.



42 3 The Axioms of Zermelo-Fraenkel Set TheoryProposition 3.5. Let T be any set of L -formulae. Then Con(T) if and onlyif T has a model.Proof. (⇒) If T has no model, then, by Gödel's Completeness Theo-rem 3.4, for every L -formula ψ we have T ⊢ ψ (otherwise, there would be amodel of T ∪ {¬ψ}, and in partiular for T). So, for ψ being ϕ ∧ ¬ϕ we getT ⊢ (ϕ ∧ ¬ϕ), hene T is inonsistent.(⇐) If T is inonsistent, then, by Proposition 3.2.(a), for every L -formula ψwe have T ⊢ ψ, in partiular, T ⊢ ϕ∧¬ϕ. Now, the Soundness Theorem 3.3implies that in all models M � T we have M � ϕ ∧ ¬ϕ; thus, there are nomodels of T. ⊣A set of sentenes T is usually alled a theory. A onsistent theory T (in aertain language L ) is said to be omplete if for every L -sentene ϕ, eitherT ⊢ ϕ or T ⊢ ¬ϕ. If T is not omplete, we say that T is inomplete.The following result is an immediate onsequene of Proposition 3.5.Corollary 3.6. Every onsistent theory is ontained in a omplete theory.Proof. Let T be a theory in the language L . If T is onsistent, then it has amodel, say M. Now let T be the set of all L -sentenes ϕ suh that M � ϕ.Obviously, T is a omplete theory whih ontains T. ⊣Let T be a set of L -formulae and let ϕ be any L -formula not ontainedin T. ϕ is said to be onsistent relative to T (or that ϕ is onsistentwith T) if Con(T) implies Con(T∪{ϕ}) (later we usually write T+ϕ insteadof T ∪ {ϕ}). If both ϕ and ¬ϕ are onsistent with T, then ϕ is said to beindependent of T. In other words, if Con(T), then ϕ is independent of T ifneither T ⊢ ϕ nor T ⊢ ¬ϕ. By Gödel's Completeness Theorem 3.4 weget that if Con(T) and ϕ is independent of T, then there are models M1 and
M2 of T suh that M1 � ϕ and M2 � ¬ϕ. A typial example of a statementwhih is independent of GT is ∀x∀y(x◦y = y◦x) (i.e., the binary operation isommutative), and indeed, there are abelian as well as non-abelian groups.In order to prove that a ertain statement ϕ is independent of a given(onsistent) theory T, one ould try to �nd two di�erent models of T suhthat ϕ holds in one model and fails in the other. However, this task is quitedi�ult, in partiular if one annot prove that T has a model at all (as ithappens for Set Theory).Limits of First-Order LogiWe begin this setion with a useful result, alled Compatness Theorem.On the one hand, it is just a onsequene of the fat that formal proofs are�nite (i.e., �nite sequenes of formulae). On the other hand, the Compat-ness Theorem is the main tool to prove that a ertain sentene (or a set ofsentenes) is onsistent with a given theory. In partiular, the Compatness



Limits of �rst-order logi 43Theorem is impliitly used in every set-theoreti onsisteny proof whih isobtained by foring (for details see Chapter 16).Theorem 3.7 (Compatness Theorem). Let T be an arbitrary set of L -formulae. Then T is onsistent if and only if every �nite subset Φ of T isonsistent.Proof. Obviously, if T is onsistent, then every �nite subset Φ of T must beonsistent. On the other hand, if T is inonsistent, then there is a formula ϕsuh that T ⊢ ϕ∧¬ϕ. In other words, there is a proof of ϕ∧¬ϕ from T. Now,sine every proof is �nite, there are only �nitely many formulae of T involvedin this proof, and if Φ is this �nite set of formulae, then Φ ⊢ ϕ ∧ ¬ϕ, whihshows that Φ, a �nite subset of T, is inonsistent. ⊣A simple appliation of the Compatness Theorem 3.7 shows that if PAis onsistent, then there is more than one model of PA (i.e., beside the in-tended model of natural numbers with domain N, there are also so-allednon-standard models of PA with larger domains):Firstly we extend the language LPA = {0, s,+, · } by adding a new onstantsymbol n. Seondly we extend PA by adding the formulaen 6= 0︸ ︷︷ ︸
ϕ0

, n 6= s(0)︸ ︷︷ ︸
ϕ1

, n 6= s(s(0))
︸ ︷︷ ︸

, . . .

ϕ2and let Ψ be the set of these formulae. Now, if PA has a model N with domainsay N, and Φ is any �nite subset of Ψ, then, by interpreting n in a suitableway,N is also a model of PA∪Φ, whih implies that PA∪Φ is onsistent. Thus,by the Compatness Theorem 3.7, PA ∪ Ψ is also onsistent and thereforehas a model, say Ñ. Now, Ñ � PA ∪ Ψ, but sine n is di�erent from everystandard natural number of the form s(s(. . . s(0) . . .)), the domain of Ñ mustbe essentially di�erent from N (sine it ontains a kind of in�nite number,whereas all standard natural numbers are �nite).This example shows that we annot axiomatise Peano Arithmeti in First-Order Logi in suh a way that all the models we get have essentially the samedomain N.By Proposition 3.5 we know that a set of �rst-order formulae T is onsistentif and only if it has a model, i.e., there is a model M suh that M � T. So,in order to prove for example that the axioms of Set Theory are onsistentwe only have to �nd a single model in whih all these axioms hold. However,as a onsequene of the following theorems�whih we state again withoutproof� this turns out to be impossible (at least if one restrits oneself tomethods formalisable in Set Theory).Theorem 3.8 (Gödel's Inompleteness Theorem). Let T be a onsis-tent set of �rst-order L -formulae whih is su�iently strong to de�ne theonept of natural numbers and to prove ertain basi arithmetial fats (e.g.,



44 3 The Axioms of Zermelo-Fraenkel Set TheoryPA is suh a theory, but also slightly weaker theories would su�e). Then thereis always an L -sentene ϕ whih is independent of T, i.e., neither T ⊢ ϕ norT ⊢ ¬ϕ (or in other words, there are models M1 and M2 of T suh that
M1 � ϕ and M2 � ¬ϕ).In partiular we get that there are number-theoreti statements whih anneither be proved nor disproved in PA (i.e., the theory PA is inomplete).Moreover, the following onsequene of Gödel's Inompleteness Theo-rem 3.4 shows that not even the onsisteny of PA an be proved with number-theoretial methods.Theorem 3.9 (Gödel's Seond Inompleteness Theorem). Let T bea set of �rst-order L -formulae. Then the statement Con(T), whih says thatT 0 ϕ ∧ ¬ϕ for some L -formula ϕ, an be formulated as a number-theoretisentene ConT. Now, if T is onsistent and is su�iently strong to de�ne theonept of natural numbers and to prove ertain basi arithmetial fats, thenT 0 ConT, i.e., T annot prove its own onsisteny. In partiular, PA 0 ConPA.On the one hand, Gödel's Inompleteness Theorem tells us that in anytheory T whih is su�iently strong, there are always statements whih areindependent of T (i.e., whih an neither be proved nor disproved in T). Onthe other hand, statements whih are independent of a given theory (e.g.,of Set Theory or of Peano Arithmeti) are often very interesting, sine theysay something unexpeted, but in a language we an understand. From thispoint of view it is good to have Gödel's Inompleteness Theorem whihguarantees the existene of suh statements in theories like Set Theory orPeano Arithmeti.In Part II we shall present a tehnique with whih we an prove the inde-pendene of ertain set-theoretial statements from the axioms of Set Theory,whih are introdued and disussed below.The Axioms of Zermelo-Fraenkel Set TheoryIn 1905, Zermelo began to axiomatise Set Theory and in 1908 he publishedhis �rst axiomati system onsisting of seven axioms. In 1922, Fraenkel andSkolem independently improved and extended Zermelo's original axiomatisystem, and the �nal version was presented again by Zermelo in 1930. In thishapter we give the resulting axiomati system alled Zermelo-Fraenkel SetTheory, denoted ZF, whih ontains all axioms of Set Theory exept the Axiomof Choie, whih will be introdued and disussed in Chapter 5. Alongside theaxioms of Set Theory we develop the theory of ordinals and give variousnotations whih will be used throughout this book.The language of Set Theory ontains only one non-logial symbol, namelythe binary membership relation, denoted by ∈, and there exists just one



Extensionality 45type of objets, namely sets. In other words, every objet in the domain isa set and there are no other objets than sets. However, to make life easier,instead of ∈(a, b) we write a ∈ b (or on rare oasions also b ∋ a) and saythat �a is an element of b�, or that �a belongs to b�. Later we will extendthe language of Set Theory by de�ning some onstants (like �∅� and �ω �),relations (like �⊆ �), and operations (like the power set operation �P �), butin fat, all that an be formulated in Set Theory, an be written as a formulaontaining only the non-logial relation �∈� (but for obvious reasons, we willusually not do so).0. The Axiom of Empty Set
∃x∀z(z /∈ x)This axiom not only postulates the existene of a set without any elements,i.e., an empty set, it also shows that the set-theoreti universe is non-empty,beause it ontains at least an empty set (of ourse, the logial axioms L16and L13 already inorporate this fat).1. The Axiom of Extensionality

∀x∀y
(
∀z(z ∈ x↔ z ∈ y) → x = y

)This axiom says that any sets x and y having the same elements are equal.Notie that the onverse� whih is x = y implies that x and y have the sameelements � is just a onsequene of the logial axiom L17.The Axiom of Extensionality also shows that the empty set, postulated bythe Axiom of Empty Set, is unique. For assume that there are two empty sets
x0 and x1, then we have ∀z(z /∈ x0 ∧ z /∈ x1), whih implies that ∀z(z ∈ x0 ↔
z ∈ x1), and therefore, x0 = x1.Let us introdue the following notation: If ϕ(x) is any �rst-order formulawith free variable x (i.e., x ours at a partiular plae in the formula ϕ whereit is not in the range of any logial quanti�er), then

∃!xϕ(x) ⇐⇒ ∃x
(
ϕ(x) ∧ ∀z

(
ϕ(z) → z = x

))With this de�nition we an reformulate the Axiom of Empty Set as follows:
∃!x∀z(z /∈ x)and this unique empty set is denoted by ∅.We say that y is a subset of x, denoted y ⊆ x, if ∀z(z ∈ y → z ∈ x).Notie that the empty set is a subset of every set. If y is a proper subset of

x, i.e., y ⊆ x and y 6= x, then this is sometimes denoted by y  x.One of the most important onepts in Set Theory is the notion of ordinalnumber, whih an be seen as a trans�nite extension of the natural numbers.



46 3 The Axioms of Zermelo-Fraenkel Set TheoryIn order to de�ne the onept of ordinal numbers, we have to give �rst somede�nitions: Let z ∈ x. Then z is alled an ∈-minimal element of x, if
∀y(y /∈ z ∨ y /∈ x), or equivalently, ∀y(y ∈ z → y /∈ x). A set x is orderedby ∈ if for any sets y1, y2 ∈ x we have y1 ∈ y2, or y1 = y2, or y1 ∋ y2,but we do not require the three ases to be mutually exlusive. Now, a set
x is alled well-ordered by ∈ if it is ordered by ∈ and every non-emptysubset of x has an ∈-minimal element. Further, a set x is alled transitiveif ∀y(y ∈ x → y ⊆ x). Notie that if x is transitive and z ∈ y ∈ x, then thisimplies z ∈ x. A set is alled an ordinal number, or just an ordinal, if itis transitive and well-ordered by ∈. Ordinal numbers are usually denoted byGreek letters like α, β, γ, λ, et etera, and the olletion of all ordinal numbersis denoted by Ω. We will see later, when we know more properties of ordinals,that Ω is not a set. However, we an onsider �α ∈ Ω� just as an abbreviationfor �α is an ordinal�, and thus, there is no harm in using the symbol Ω in thisway, even though Ω is not an objet of the set-theoreti universe.Fat 3.10. If α ∈ Ω, then either α = ∅ or ∅ ∈ α.Proof. Sine α ∈ Ω, α is well-ordered by ∈. Thus, either α = ∅, or, sine
α ⊆ α, α ontains an ∈-minimal element, say x0. Now, by transitivity of α,for all z ∈ x0 we have z ∈ α, and sine x0 is ∈-minimal we get x0 = ∅. ⊣Notie that until now, we annot prove the existene of any ordinal� or evenof any set � beside the empty set, postulated by the Axiom of Empty Set. Thiswill hange with the following axiom.2. The Axiom of Pairing

∀x∀y∃!u
(
u = {x, y}

)where {x, y} denotes the set whih ontains just the elements x and y. Inorder to write this axiom in a more formal way, let us introdue the followingnotation: If ϕ(z) is any �rst-order formula with free variable z, and x is anyset, then
∀z ∈ x

(
ϕ(z)

)
⇐⇒ ∀z

(
(z ∈ x) → ϕ(z)

)
,and similarly

∃z ∈ x
(
ϕ(z)

)
⇐⇒ ∃z

(
(z ∈ x) ∧ ϕ(z)

)
.More formally the Axiom of Pairing reads as follows:

∀x∀y∃u
(
x ∈ u ∧ y ∈ u ∧ ∀z ∈ u(z = x ∨ z = y)

)If in the above formula we set x = y, then u = {x, x}, whih is, by theAxiom of Extensionality, the same as {x}. Thus, by the Axiom of Pairing, if
x is a set, then also {x} is a set. Starting with ∅, an iterated appliation ofthe Axiom of Pairing yields for example the sets ∅, {∅},

{
{∅}

}
,
{{

{∅}
}}
, . . . ,



Union 47and {
∅, {∅}

}
,
{
{∅},

{
∅, {∅}

}}
, . . . Among these sets, ∅, {∅}, and {

∅, {∅}
} areordinals, but for example {

{∅}
} is not an ordinal.So far, we did not exlude the possibility that a set may be an element ofitself, and in fat, we need the Axiom of Foundation in order to do so. However,we an already show that no ordinal is an element of itself:Fat 3.11. If α ∈ Ω, then α /∈ α.Proof. Assume towards a ontradition that α ∈ α. Then {α} is a non-emptysubset of α and therefore ontains an ∈-minimal element. Now, sine {α} justontains the element α, the ∈-minimal element of {α} must be α, but on theother hand, α ∈ α implies that α is not ∈-minimal, a ontradition. ⊣For any sets x and y, the Axiom of Extensionality implies that {x, y} =

{y, x}. So, it does not matter in whih order the elements of a 2-element setare written down. However, with the Axiom of Pairing we an easily de�neordered pairs, denoted 〈x, y〉, as follows:
〈x, y〉 =

{
{x}, {x, y}

}Notie that 〈x, y〉 = 〈x′, y′〉 i� x = x′ and y = y′, and further notie thatthis de�nition also makes sense in the ase when x = y�at least as longas we know that {
{x}

} is supposed to denote an ordered pair. By a similartrik, one an also de�ne ordered triples by stipulating for example 〈x, y, z〉 :=〈
x, 〈y, z〉

〉, ordered quadruples, et etera, but the notation beomes hard toread and it requires additional methods to distinguish for example betweenordered pairs and ordered triples. However, when we have more axioms athand we an de�ne arbitrary tuples more elegantly.3. The Axiom of Union
∀x∃u∀z

(
z ∈ u↔ ∃w ∈ x (z ∈ w)

)More informally, for all sets x there exists the union of x, denoted ⋃
x, on-sisting of all sets whih belong to a member of x.For sets x and y, let x∪ y :=

⋃{x, y} denote the union of x and y. Notiethat x =
⋃{x}. For x ∪ y, where x and y are disjoint (i.e., do not have anyommon elements) we sometimes write x ∪̇ y, and for x = {yι : ι ∈ I} wesometimes write ⋃

ι∈I yι instead of ⋃x.Now, with the Axiom of Union and the Axiom of Pairing, and by stipulating
x+1 := x∪{x}, we an for example build the following sets (whih are in fatordinals): 0 := ∅, 1 := 0 + 1 = 0 ∪ {0} = {0}, 2 := 1 + 1 = 1 ∪ {1} = {0, 1},
3 := 2 + 1 = 2 ∪ {2} = {0, 1, 2}, and so on. In partiular, if a set x of thistype is already de�ned, we get that x+1 = {0, 1, 2, . . . , x}. This onstrutionleads to the following de�nition:A set x suh that ∀y(y ∈ x→ (y ∪ {y}) ∈ x

) is alled indutive. On the one



48 3 The Axioms of Zermelo-Fraenkel Set Theoryhand, ∅ is indutive. On the other hand, we annot prove the existene of anon-empty indutive set without the aid of the following axiom.4. The Axiom of In�nity
∃I

(
∅ ∈ I ∧ ∀y ∈ I

(
(y ∪ {y}) ∈ I

))More informally, the Axiom of In�nity postulates the existene of a non-emptyindutive set ontaining ∅. All the sets 0, 1, 2, . . . onstruted above�whihwe reognise as natural numbers�must belong to every indutive set and infat, the �smallest� indutive set ontains just these sets.5. The Axiom Shema of SeparationFor eah �rst-order formula ϕ(z, p1, . . . , pn) with free(ϕ) ⊆ {z, p1, . . . , pn}, thefollowing formula is an axiom:
∀x∀p1 . . .∀pn∃y∀z

(
z ∈ y ↔

(
z ∈ x ∧ ϕ(z, p1, . . . , pn)

))Informally, for eah set x and every �rst-order formula ϕ(z), {z ∈ x : ϕ(z)
}is a set.One an think of the sets p1, . . . , pn as parameters of ϕ, whih are usuallysome �xed sets. For example for ϕ(z, p) ≡ z ∈ p we get that for any sets xand p there exists a set y suh that z ∈ y ↔ (z ∈ x ∧ z ∈ p). In other words,for any sets x0 and x1, the olletion of all sets whih belong to both, x0 and

x1, is a set. This set is alled the intersetion of x0 and x1 and is denotedby x0 ∩ x1. In general, for non-empty sets x we de�ne
⋂
x =

{
z ∈ ⋃

x : ∀y ∈ x (z ∈ y)
}whih is the intersetion of all sets whih belong to x. (In order to see that⋂

x is a set, let ϕ(z, x) ≡ ∀y ∈ x (z ∈ y) and apply the Axiom Shemaof Separation to ⋃
x.) Notie also that x ∩ y =

⋂{x, y}. Furthermore, for
x = {yι : ι ∈ I} we sometimes write ⋂

ι∈I yι instead of ⋂x. Another exampleis when ϕ(z, p) ≡ z /∈ p. In this ase, for p = y, we get that {z ∈ x : z /∈ y} isa set, denoted x \ y, whih is alled the set-theoreti di�erene of x and y.Let us now turn bak to ordinal numbers:Theorem 3.12. (a) If α, β ∈ Ω, then α ∈ β or α = β or α ∋ β, where thesethree ases are mutually exlusive.(b) If α ∈ β ∈ Ω, then α ∈ Ω.() If α ∈ Ω, then also (
α ∪ {α}

)
∈ Ω.(d) Ω is transitive and is well-ordered by ∈, or more preisely, Ω is transitive,is ordered by ∈, and every non-empty lass C ⊆ Ω has an ∈-minimal element.



Separation 49Proof. (a) Firstly, notie that by Fat 3.11 the three ases α ∈ β, α = β,
α ∋ β, are mutually exlusive.Let α, β ∈ Ω be given. If α = β, then we are done. So, let us assume that
α 6= β. Without loss of generality we may assume that α \ β 6= ∅.We �rst show that α∩β is the ∈-minimal element of α \β: Let γ be an ∈-minimal element of α \β. Sine α is transitive and γ ∈ α, ∀u(u ∈ γ → u ∈ α),and sine γ is an ∈-minimal element of α \ β, ∀u(u ∈ γ → u ∈ β), whihimplies γ ⊆ α∩β. On the other hand, if there is a w ∈ (α∩β) \ γ, then, sine
α is ordered by ∈ and γ 6= w (γ /∈ β ∋ w), we must have γ ∈ w, and sine
β is transitive and w ∈ β, this implies that γ ∈ β, whih ontradits the fatthat γ ∈ (α \ β). Hene, γ = α ∩ β is the ∈-minimal element of α \ β. Now, ifalso β \α 6= ∅, then we would get that α∩ β is also the ∈-minimal element of
β \ α, whih is obviously a ontradition.Thus, α \ β 6= ∅ implies that β \ α = ∅, or in other words, β ⊆ α, whih isthe same as saying β = α ∩ β. Consequently we get that β is the ∈-minimalelement of α \ β, in partiular, β ∈ α.(b) Let α ∈ β ∈ Ω. Sine β is transitive, α is ordered by ∈. So, it remains toshow that α is transitive and well-ordered by ∈.well-ordered by ∈ : Beause β is transitive, every subset of α is also a subsetof β and onsequently ontains an ∈-minimal element.transitive: Let δ ∈ γ ∈ α. We have to show that δ ∈ α. Sine β is transitive,
δ ∈ β, and sine β is ordered by ∈, we have either δ ∈ α or δ = α or α ∈ δ. If
δ ∈ α, we are done, and if δ = α or α ∈ δ, then the set {α, γ, δ} ⊆ β does nothave an ∈-minimal element, whih ontradits the fat that β is well-orderedby ∈.() We have to show that α ∪ {α} is transitive and well-ordered by ∈.transitive: If β ∈ (α ∪ {α}), then either β ∈ α or β = α, and in both ases wehave β ⊆ (α ∪ {α}).well-ordered by ∈ : Sine α is an ordinal, α ∪ {α} is ordered by ∈. Let now
x ⊆ (α ∪ {α}) be a non-empty set. If x = {α}, then α is obviously an ∈-minimal element of x. Otherwise, x ∩ α 6= ∅, and sine α ∈ Ω, x ∩ α has an
∈-minimal element, say γ. Sine α is transitive we have x∩ γ = ∅ (otherwise,
γ would not be ∈-minimal in x ∩ α), whih implies that γ is ∈-minimal in x.(d)Ω is transitive and ordered by ∈ : This is part (b) and part (a) respetively.
Ω is well-ordered by ∈ : Let C ⊆ Ω be a non-empty lass of ordinals. If C = {α}for some α ∈ Ω, then α is the ∈-minimal element of C. Otherwise, C ontainsan ordinal δ0 suh that δ0 ∩ C 6= ∅ and let x := δ0 ∩ C. Then x is a non-empty set of ordinals. Now, let α ∈ x and let γ be an ∈-minimal elementof x ∩ (α ∪ {α}). By de�nition, γ ∈ (α ∪ {α}), and sine (α ∪ {α}) ∈ Ω,
γ ⊆ (α ∪ {α}). Thus, every ordinal γ′ ∈ γ belongs to α ∪ {α}, but by thede�nition of γ, γ′ annot belong to x∩ (α∪ {α}), whih implies that γ is also
∈-minimal in x, and onsequently in C. ⊣



50 3 The Axioms of Zermelo-Fraenkel Set TheoryBy Theorem 3.12.(d) we get that Ω is transitive and well-ordered by ∈.Thus, if Ω would be a set, Ω would be an ordinal number and therefore wouldbelong to itself, but this is a ontradition to Fat 3.11.In general, a olletion of sets, satisfying for example a ertain formula,whih is not neessarily a set is alled a lass. For example Ω is a lass whihis not a set (it onsists of all transitive sets whih are well-ordered by ∈).Even though proper lasses (i.e., lasses whih are not sets) do not belongto the set-theoreti universe, it is sometimes onvenient to handle them likesets, e.g., taking intersetions or extrating ertain subsets or sublasses fromthem.ByTheorem 3.12.() we know that if α ∈ Ω, then also (α∪{α}) ∈ Ω. Now,for ordinals α ∈ Ω let α+1 := α∪{α}. Part (a) of the following result � whihis just a onsequene of Theorem 3.12�motivates this notation.Corollary 3.13. (a) If α, β ∈ Ω and α ∈ β, then α+1 ⊆ β. In other words,
α+ 1 is the least ordinal whih ontains α.(b) For every ordinal α ∈ Ω we have either α =

⋃
α or there exists β ∈ Ωsuh that α = β + 1.Proof. (a) Assume α ∈ β, then {α} ⊆ β, and sine β is transitive, we alsohave α ⊆ β; thus, α+ 1 = α ∪ {α} ⊆ β.(b) Sine α is transitive, ⋃α ⊆ α. Thus, if α 6= ⋃
α, then α \ ⋃

α 6= ∅. Let
β be ∈-minimal in α \ ⋃

α. Then β ∈ α and β + 1 ∈ Ω, and by part (a) wehave β + 1 ⊆ α. On the one hand, α ∈ β + 1 would imply that α ∈ α, aontradition to Fat 3.11. On the other hand, β + 1 ∈ α would imply that
β ∈ ⋃

α, whih ontradits the hoie of β. Thus, we must have β+1 = α. ⊣This leads to the following de�nitions: An ordinal α is alled a suessorordinal if there exists an ordinal β suh that α = β+1; otherwise, it is alleda limit ordinal. In partiular, ∅ (or equivalently 0) is a limit ordinal.We are now ready to de�ne the set of natural numbers ω, whih will turnout to be the least non-empty limit ordinal. By the Axiom of In�nity we knowthat there exists an indutive set I. Below we show that there exists also asmallest indutive set. For this, let IΩ = I ∩ Ω; more preisely,
IΩ = {α ∈ I : α is an ordinal} .Then IΩ is a set of ordinals and by Theorem 3.12.(), IΩ is even an indutiveset. Now, if there exists no α ∈ IΩ suh that α is non-empty and indutive,let ω := IΩ, otherwise, de�ne

ω =
⋂{

α ∈ IΩ : ∅ ∈ α and α is indutive} .By de�nition, ∅ ∈ ω and for all β ∈ ω we have β+1 ∈ ω, i.e., ω is indutive andontains ∅. In partiular,⋃ω = ω, whih shows that ω is a limit ordinal. Againby de�nition, ω does not properly ontain any indutive set whih ontains ∅.



Power Set 51In partiular, ω does not ontain any limit ordinal other than ∅ (sine suhan ordinal would be an indutive set ontaining ∅), and therefore, ω is thesmallest non-empty limit ordinal.The ordinals belonging to ω are alled natural numbers. One an alsode�ne natural numbers indutively as we have done above: 0 := ∅, and forany natural number n, n + 1 := n ∪ {n} = {0, 1, 2, . . . , n}. Notie that eahnatural number n is the set {k ∈ ω : k < n}, where k < n ⇐⇒ k ∈ n. Furthernotie that sine ω is the smallest non-empty limit ordinal, all natural numbersexept 0 are suessor ordinals. Now, a set A is alled �nite if there existsa bijetion between A and a natural number n ∈ ω, otherwise, A is alledin�nite. Thus, all natural numbers are �nite and ω is the smallest in�nite(i.e., not �nite) ordinal number.The following theorem is a onsequene of the fat that Ω is transitive andwell-ordered by ∈ (whih is just Theorem 3.12.(d)).Theorem 3.14 (Transfinite Indution Theorem). Let C ⊆ Ω be alass of ordinals and assume that:(a) if α ∈ C, then α+ 1 ∈ C,(b) if α is a limit ordinal and ∀β ∈ α(β ∈ C), then α ∈ C.Then C is the lass of all ordinals. (Notie that by (b) we have 0 ∈ C, inpartiular, C 6= ∅.)Proof. Assume towards a ontradition that C 6= Ω and let α0 be the ∈-minimal ordinal whih does not belong to C (suh an ordinal exists by The-orem 3.12.(d)). Now, α0 an be neither a suessor ordinal, sine this wouldontradit (a), nor a limit ordinal, sine this would ontradit (b). Thus, α0does not exist whih implies that Ω \ C = ∅, i.e., C = Ω. ⊣The following result is just a reformulation of the Transfinite IndutionTheorem.Corollary 3.15. For any �rst-order formula ϕ(x) with free variable x wehave
∀α ∈ Ω

(
∀β ∈ α

(
ϕ(β)

)
→ ϕ(α)

)
→ ∀α ∈ Ω

(
ϕ(α)

)
.Proof. Let C ⊆ Ω be the lass of all ordinals α ∈ Ω suh that ϕ(α) holds andapply the Transfinite Indution Theorem 3.14. ⊣When some form of Corollary 3.15 is involved we usually do not mention theorresponding formula ϕ and just say �by indution on . . .� or �by trans�niteindution�.6. The Axiom of Power Set

∀x∃y∀z(z ∈ y ↔ z ⊆ x)



52 3 The Axioms of Zermelo-Fraenkel Set TheoryInformally, the Axiom of Power Set states that for eah set x there is a set
P(x), alled the power set of x, whih onsists of all subsets of x.With the Axiom of Power Set (and other axioms like the Axiom of Unionor the Axiom Shema of Separation) we an now de�ne notions like funtions,relations, and sequenes: Let A and B be arbitrary sets. Then

A×B =
{
〈x, y〉 : x ∈ A ∧ y ∈ B

}where 〈x, y〉 =
{
{x}, {x, y}

}; thus, A×B ⊆ P
(
P(A ∪B)

). Further, let
AB =

{
f ⊆ A×B : ∀x ∈ A∃!y ∈ B (〈x, y〉 ∈ f)

}
.An element f ∈ AB, usually denoted by f : A→ B, is alled a funtion ormapping from A to B, where A is alled the domain of f , denoted dom(f).For f : A → B we usually write f(x) = y instead of 〈x, y〉 ∈ f . If S is aset, then the image of S under f is denoted by f [S] = {

f(x) : x ∈ S
} and

f |S =
{
〈x, y〉 ∈ f : x ∈ S

} is the restrition of f to S. Furthermore, for afuntion f : A→ B, f [A] is alled the range of f , denoted ran(f).A funtion f : A→ B is surjetive, or onto, if ∀y ∈ B ∃x ∈ A
(
f(x) = y

).We sometimes emphasise the fat that f is surjetive by writing f : A։ B.A funtion f : A → B is injetive, also alled one-to-one, if we have
∀x1 ∈ A∀x2 ∈ A

(
f(x1) = f(x2) → x1 = x2

). To emphasise the fat that f isinjetive we sometimes write f : A →֒ B.A funtion f : A → B is bijetive if it is injetive and surjetive. If
f : A→ B is bijetive, then

∀y ∈ B ∃!x ∈ A
(
〈x, y〉 ∈ f

)and therefore,
f−1 :=

{
〈y, x〉 : 〈x, y〉 ∈ f

}
∈ BAis a funtion whih is even bijetive. So, if there is a bijetive funtion from

A to B, then there is also one from B to A and we sometimes just say thatthere is a bijetion between A and B. Notie that if f : A→ B is injetive,then f is a bijetion between A and f [A].Let x be any non-empty set and assume that for eah i ∈ x we haveassigned a set Ai. For A =
⋃
i∈xAi, where ⋃

i∈xAi :=
⋃{Ai : i ∈ x}, the set

∏

i∈x

Ai =
{
f ∈ xA : ∀i ∈ x

(
f(i) ∈ Ai

)}is alled the Cartesian produt of the sets Ai (i ∈ x). Notie that if all sets
Ai are equal to a given set A, then ∏

i∈xAi =
xA. If x = n for some n ∈ ω, inabuse of notation we also write An instead of nA by identifying nA with theset

An = A× . . .×A︸ ︷︷ ︸
n-times .



Power Set 53Similarly, for α ∈ Ω we sometimes identify a funtion f ∈ αA with the se-quene 〈f(0), f(1), . . . , f(β), . . .〉α of length α, and vie versa. Sequenes (oflength α) are usually denoted by using angled brakets (and by using α as asubsript), e.g., 〈s0, . . . , sβ, . . .〉α or 〈sβ : β < α〉.For any set A and any n ∈ ω, a set R ⊆ An is alled an n-ary relation on A.If n = 2, then R ⊆ A×A is also alled a binary relation. A binary relation
R on A is a well-ordering of A, if there is an ordinal α ∈ Ω and a bijetion
f : A→ α suh that

R(x, y) ⇐⇒ f(x) ∈ f(y) .For any set A, let seq(A) be the set of all �nite sequenes whih an be formedwith elements of A, or more formally:
seq(A) =

⋃

n∈ω

AnFurthermore, let seq1-1(A) be those sequenes of seq(A) in whih no elementappears twie. Again more formally, this reads as follows:
seq1-1(A) = {

σ ∈ seq(A) : σ is injetive}The last notion we introdue in this setion is the notion of ardinality:Two sets A and B are said to have the same ardinality, denoted |A| = |B|,if there is a bijetion between A and B. Notie that ardinality equality isan equivalene relation. For example |ω × ω| = |ω|, e.g., de�ne the bijetion
f : ω × ω → ω by stipulating f(〈n,m〉

)
= m+ 1

2 (n+m)(n+m+ 1).If |A| = |B′| for some B′ ⊆ B, then the ardinality of A is less than orequal to the ardinality of B, denoted |A| ≤ |B|. Notie that |A| ≤ |B| i�there is an injetion from A into B. Finally, if |A| 6= |B| but |A| ≤ |B|, thenardinality of A is said to be stritly less than the ardinality of B, denoted
|A| < |B|. Notie that the relation �≤� is re�exive and transitive. The notationsuggests that |A| ≤ |B| and |B| ≤ |A| implies |A| = |B|. This is indeed thease and a onsequene of the following result.Lemma 3.16. Let A0, A1, A be sets suh that A0 ⊆ A1 ⊆ A. If |A| = |A0|,then |A| = |A1|.Proof. If A1 = A or A1 = A0, then the statement is trivial. So, let us assumethat A0  A1  A and let C = A\A1, i.e., A\C = A1. Further, let f : A→ A0be a bijetion and de�ne g : P(A) → P(A0) by stipulating g(D) := f [D].Let ϕ(z, p1, p2, p3) be the following formula:
z ∈ p1 ∧ 〈0, p2〉 ∈ z ∧ ∀n ∈ ω∃u∃v

(
〈n, u〉 ∈ z ∧ 〈u, v〉 ∈ p3 ∧ 〈n+ 1, v〉 ∈ z

)By the Axiom Shema of Separation, for x = p1 = ωP(A), p2 = C, and p3 = g,there exists a set y suh that z ∈ y ↔
(
z ∈ ωP(A) ∧ ϕ(z,ωP(A), C, g)

).By indution on n and by assembling the various partial funtions produed



54 3 The Axioms of Zermelo-Fraenkel Set Theoryby the indution into a single funtion, one gets that y ontains just a singlefuntion, say z0 : ω → P(A). In fat, z0(0) = C and for all n ∈ ω we have
z0(n+ 1) = f

[
z0(n)

]. Now, let
C̄ =

⋃{
z0(n) : n ∈ ω

}and de�ne the funtion f̃ : A→ A by stipulating
f̃(x) =

{
f(x) x ∈ C̄,

x otherwise.By de�nition of f̃ and sine f is a bijetion whih maps C into A0, f̃ [C̄] =
C̄ \C. Moreover, the funtion f̃ is injetive. To see this, let x, y ∈ A be distintand onsider the following three ases:(1) If x, y ∈ C̄, then f̃(x) = f(x) and f̃(y) = f(y), and sine f is injetive weget f̃(x) 6= f̃(y).(2) If x, y ∈ A \ C̄, then f̃(x) = x and f̃(y) = y, and hene, f̃(x) 6= f̃(y).(3) If x ∈ C̄ and y ∈ A \ C̄, then f̃(x) = f(x) ∈ C̄ and f̃(y) = y /∈ C̄, andtherefore, f̃(x) 6= f̃(y).We already know that f̃ [C̄] = C̄\C and by de�nition we have f̃ [A\C̄] = A\C̄.Hene,

f̃ [A] = (A \ C̄) ∪̇ (C̄ \ C) = A \ C = A1whih shows that |A| = |A1|. ⊣Theorem 3.17 (Cantor-Bernstein Theorem). Let A and B be any sets.If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.Proof. Let f : A →֒ B be a one-to-one mapping from A into B, and g : B →֒ Abe a one-to-one mapping from B into A. Further, let A0 := (g ◦ f)[A] and
A1 := g[B]. Then |A0| = |A| and A0 ⊆ A1 ⊆ A, hene, by Lemma 3.16,
|A| = |A1|, and sine |A1| = |B| we have |A| = |B|. ⊣As an appliation of the Cantor-Bernstein Theorem 3.17 let us show thatthe set of real numbers, denoted by R, has the same ardinality as P(ω).Proposition 3.18. |R| = |P(ω)|.Proof. Cantor showed that every real number r > 1 an be written in a uniqueway as a produt of the form

r =
∏

n∈ω

(
1 +

1

qn

)where all qn's are positive integers and for all n ∈ ω we have qn+1 ≥ q2n. Suhproduts are alled Cantor produts. So, for every real number r > 1 there



Replaement 55exists a unique in�nite sequene q0(r), q1(r), . . . , qn(r), . . . of positive integerswith qn+1 ≥ q2n (for all n ∈ ω) suh that r = ∏
n∈ω

(
1 + 1

qn

).Let us �rst show that |R| ≤ |P(ω): For r ∈ R let
f(r) =

{∑

j≤n

qj(r)(2
j + 1) : n ∈ ω

}
.De�ne the funtion h : R → R by stipulating h(x) := 1 + ex, where e is theEuler number and ex =

∑
n∈ω(x

n/n!) . Then h is a bijetion between R andthe set of real numbers r > 1. We leave it as an exerise to the reader to verifythat the omposition f ◦h is an injetive mapping from R into P(ω).To see that |P(ω)| ≤ |R|, onsider for example the funtion g(x) = ∑

n∈x

3−n,where g(∅) := 0, whih is obviously a injetive mapping from P(ω) into R(or more preisely, into the interval [0, 32 ]).So, by the Cantor-Bernstein Theorem 3.17, |R| = |P(ω)|. ⊣7. The Axiom Shema of ReplaementFor every �rst-order formula ϕ(x, y, p) with free(ϕ) ⊆ {x, y, p}, where p anbe an ordered n-tuple of parameters, the following formula is an axiom:
∀A∀p

(
∀x ∈ A∃!y ϕ(x, y, p) → ∃B ∀x ∈ A∃y ∈ B ϕ(x, y, p)

)In other words, for every set A and for eah lass funtion F (i.e., a ertainlass of ordered pairs of sets) de�ned on A, F [A] = {F (x) : x ∈ A} is a set.Or even more informally, images of sets under funtions are sets.The Axiom Shema of Replaement is needed to build sets like {
Pn(ω) : n ∈

ω
}, where P0(ω) := ω and Pn+1(ω) := P

(
Pn(ω)

).Another appliation of the Axiom Shema of Replaement is the followingresult, whih will be used for example to de�ne ordinal addition (see Theo-rem 3.20) or to build the umulative hierarhy of sets (see Theorem 3.22).Theorem 3.19 (Transfinite Reursion Theorem). Let F be a lassfuntion whih is de�ned for all sets. Then there is a unique lass funtion Gde�ned on Ω suh that for eah α ∈ Ω we have
G(α) = F (G|α) , where G|α =

{
〈β,G(β)〉 : β ∈ α

}
.Proof. If suh a lass funtion G exists, then, by the Axiom Shema of Re-plaement, for every ordinal α, ran(G|α) is a set, and onsequently, G|α is afuntion with dom(G|α) = α. This leads to the following de�nition: For δ ∈ Ω,a funtion g with dom(g) = δ is alled a δ-approximation if

∀β ∈ δ
(
g(β) = F (g|β)

)
.In other words, g is an δ-approximation if and only if g has the followingproperties:



56 3 The Axioms of Zermelo-Fraenkel Set Theory(a) If β + 1 ∈ δ, then g(β + 1) = F
(
g|β ∪

{
〈β, g(β)〉

}).(b) If β ∈ δ is a limit ordinal, then g(β) = F (g|β).In partiular, by (b) we get g(0) = F (∅). For example g1 =
{
〈0, F (∅)〉

}is a 1-approximation; in fat, g1 is the unique 1-approximation. Similarly,
g2 =

{
〈0, F (∅)〉,

〈
1, F (〈0, F (∅)〉)

〉} is the unique 2-approximation.Firstly, notie that for all ordinals δ and δ′, if g is an δ-approximation and
g′ is an δ′-approximation, then g|δ∩δ′ = g′|δ∩δ′ . Otherwise, there would be asmallest ordinal β0 suh that g(β0) 6= g′(β0), but by (a) and (b), β0 would beneither a suessor ordinal nor a limit ordinal.Seondly, notie that for eah ordinal δ there exists a δ-approximation.Otherwise, by Theorem 3.12.(d), there would be a smallest ordinal δ0 suhthat there is no δ0-approximation. In partiular, for eah δ ∈ δ0 there wouldbe a δ-approximation, and by the Axiom Shema of Replaement, the olletionof all δ-approximations (for δ ∈ δ0) is a set, where the union of this set is a
δ′-approximation for some δ′ ∈ Ω. Now, if δ0 is a limit ordinal, then δ′ = δ0and we get a δ0-approximation, and if δ0 is a suessor ordinal, then δ0 = δ′+1and we get a δ0-approximation by (a). So, in both ases we get a ontraditionto our assumption that there is no δ0-approximation.Now, for eah α ∈ Ω de�ne G(α) := g(α), where g is the δ-approximationfor any δ suh that α ∈ δ. ⊣By trans�nite reursion we are able to de�ne addition, multipliation, andexponentiation of arbitrary ordinal numbers:Ordinal Addition: For arbitrary ordinals α ∈ Ω we de�ne:(a) α+ 0 := α.(b) α+ (β + 1) := (α+ β) + 1, for all β ∈ Ω.() If β ∈ Ω is non-empty and a limit ordinal, then α+ β :=

⋃
δ∈β(α+ δ).Notie that addition of ordinals is in general not ommutative (e.g., 1 + ω =

ω 6= ω + 1).Ordinal Multipliation: For arbitrary ordinals α ∈ Ω we de�ne:(a) α · 0 := 0.(b) α · (β + 1) := (α · β) + α, for all β ∈ Ω.() If β ∈ Ω is a limit ordinal, then α · β :=
⋃
δ∈β(α · δ).Notie that multipliation of ordinals is in general not ommutative (e.g.,

2 · ω = ω 6= ω + ω = ω · 2).



Replaement 57Ordinal Exponentiation: For arbitrary ordinals α ∈ Ω we de�ne:(a) α0 := 1.(b) αβ+1 := αβ · α, for all β ∈ Ω.() If β ∈ Ω is non-empty and a limit ordinal, then αβ :=
⋃
δ∈β(α

δ+1).Notie that for example 2ω = ω, whih should not be onfused with ardinalexponentiation de�ned in Chapter 5.Theorem 3.20. Addition, multipliation, and exponentiation of ordinals areproper binary operations on Ω.Proof. We just prove it for addition (the proof for the other operations issimilar): For eah α ∈ Ω de�ne a lass funtion Fα by stipulating Fα(x) := ∅if x is not a funtion; and if x is a funtion, then let
Fα(x) =





α if x = ∅,
x(β) ∪

{
x(β)

} if dom(x) = β + 1 and β ∈ Ω,⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.By the Transfinite Reursion Theorem 3.19, for eah α ∈ Ω there isa unique lass funtion Gα de�ned on Ω suh that for eah β ∈ Ω we have
Gα(β) = Fα(Gα|β), and in partiular we get Gα(β) = α+ β. ⊣Even though addition and multipliation of ordinals are not ommutative,they are still assoiative.Proposition 3.21. Addition and multipliation of ordinals de�ned as aboveare assoiative operations.Proof. We have to show that for all α, β, γ ∈ Ω, (α + β) + γ = α + (β + γ)and (α · β) · γ = α · (β · γ). We give the proof just for addition and leave theproof for multipliation as an exerise to the reader.Let α and β be arbitrary ordinals. The proof is by indution on γ ∈ Ω.For γ = 0 we obviously have (α + β) + 0 = α+ β = α+ (β + 0). Now, let usassume that (α+ β) + γ = α+ (β + γ) for some γ. Then:

(α + β) + (γ + 1) =
(
(α + β) + γ

)
+ 1 (by de�nition of �+�)

=
(
α+ (β + γ)

)
+ 1 (by our assumption)

= α+
(
(β + γ) + 1

) (by de�nition of �+�)
= α+

(
β + (γ + 1)

) (by de�nition of �+�)Finally, let γ be a limit ordinal. Notie �rst that α+(β+γ) =
⋃
δ∈(β+γ) α+δ =⋃

(β+γ′)∈(β+γ) α+(β+γ′) =
⋃
γ′∈γ α+(β+γ′). Thus, if (α+β)+γ′ = α+(β+γ′)for all γ′ ∈ γ, then

(α+ β) + γ =
⋃

γ′∈γ

(α+ β) + γ′ =
⋃

γ′∈γ

α+ (β + γ′) = α+ (β + γ) .

⊣



58 3 The Axioms of Zermelo-Fraenkel Set Theory8. The Axiom of Foundation
∀x

(
∃z(z ∈ x) → ∃y ∈ x (y ∩ x = ∅)

)As a onsequene of the Axiom of Foundation we get that there is no in�nite de-sending sequene x0 ∋ x1 ∋ x2 ∋ · · · sine otherwise, the set {x0, x1, x2, . . .}would ontradit the Axiom of Foundation. In partiular, there is no set x suhthat x ∈ x and there are also no yles like x0 ∈ x1 ∈ · · · ∈ xn ∈ x0. Asa matter of fat we would like to mention that if one assumes the Axiom ofChoie, then the non-existene of suh in�nite desending sequenes an beproved to be equivalent to the Axiom of Foundation.The axiom system ontaining the axioms 0�8 is alled Zermelo-FraenkelSet Theory and is denoted by ZF. In fat, ZF ontains all axioms of SetTheory exept the Axiom of Choie.Even though the Axiom of Foundation is irrelevant outside Set Theory, itis extremely useful in the metamathematis of Set Theory, sine it allows usto arrange all sets in a umulative hierarhy and let us de�ne ardinalities assets.Models of ZFBy indution on α ∈ Ω, de�ne the following sets:
V0 = ∅

Vα =
⋃
β∈αVβ if α is a limit ordinal

Vα+1 = P(Vα)and let
V =

⋃

α∈Ω

Vα .Notie that by onstrution, for eah α ∈ Ω, Vα is a set. Again by indutionon α ∈ Ω one an easily show that the sets Vα have the following properties:
• Eah Vα is transitive.
• If α ∈ β, then Vα  Vβ .
• α ⊆ Vα and α ∈ Vα+1.These fats are visualised by the following �gure:
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∅

∧
Ω

Vω
❵♣ω

Vα+1❵♣α

Before we an prove that the lass V, alled the umulative hierarhy,ontains all set, we have to introdue the notion of transitive losure: Let Sbe an arbitrary set. By indution on n ∈ ω de�ne
S0 = S , Sn+1 =

⋃
Sn ,and �nally

TC(S) =
⋃

n∈ω

Snwhere⋃n∈ω Sn :=
⋃{Sn : n ∈ ω}. For example x1 ∈ S1 i� ∃x0 ∈ S0(x0 ∋ x1),and in general, xn+1 ∈ Sn+1 i� ∃x0 ∈ S0 · · · ∃xn ∈ Sn(x0 ∋ x1 ∋ · · · ∋ xn+1).Notie that by the Axiom of Foundation, every desending sequene of the form

x0 ∋ x1 ∋ · · · must be �nite.By onstrution, TC(S) is transitive, i.e., x ∈ TC(S) implies x ⊆ TC(S),and we further have S ⊆ TC(S). Moreover, sine every transitive set T mustsatisfy ⋃
T ⊆ T , it follows that the set TC(S) is the smallest transitive setwhih ontains S. Thus,

TC(S) =
⋂{

T : T ⊇ S and T is transitive}and onsequently the set TC(S) is alled the transitive losure of S.Theorem 3.22. For every set x there is an ordinal α suh that x ∈ Vα. Inpartiular, the lass V is equal to the set-theoreti universe.Proof. Assume towards a ontradition that there exists a set x whih doesnot belong to V. Let x̄ := TC
(
{x}

) and let w := {z ∈ x̄ : z /∈ V}, i.e.,
w = x̄ \

{
z′ ∈ x̄ : ∃α ∈ Ω (z′ ∈ Vα)

}. Sine x ∈ w we have w 6= ∅, andby the Axiom of Foundation there is a z0 ∈ w suh that (z0 ∩ w) = ∅. Sine
z0 ∈ w we have z0 /∈ V, whih implies that z0 6= ∅, but for all u ∈ z0 there isa least ordinal αu suh that u ∈ Vαu

. By the Axiom Shema of Replaement,
{αu : u ∈ z0} is a set, and moreover, α =

⋃{αu : u ∈ z0} ∈ Ω. This impliesthat z0 ⊆ Vα and onsequently we get z0 ∈ Vα+1, whih ontradits the fatthat z0 /∈ V and ompletes the proof. ⊣



60 3 The Axioms of Zermelo-Fraenkel Set TheoryIt is natural to ask whether there exists some kind of upper bound or eilingfor the set-theoreti universeV or if there exists arbitrarily large sets. In orderto address this questions we have to introdue the notion of ardinal numbers.Cardinals in ZFLet A be an arbitrary set. The ardinality of A, denoted |A|, ould be de�nedas the lass of all sets B whih have the same ardinality as A (i.e., forwhih there exists a bijetion between A and B), but this would have thedisadvantage that exept for A = ∅, |A| would not belong to the set-theoretiuniverse. However, with the Axiom of Foundation the ardinality of a set Aan be de�ned as a proper set:
|A| =

{
B ∈ Vβ0 : there exists a bijetion between B and A}where β0 is the least ordinal number for whih there is a B ∈ Vβ0 suh that

B has the same ardinality as A. Notie that for example |∅| = {∅}, where
{∅} ⊆ V1 (in this ase, β0 = 1). The set |A| is alled a ardinal number,or just a ardinal. Notie that A is not neessarily a member of |A|. Furthernotie that |A| = |B| i� there is a bijetion between A and B, and as abovewe write |A| ≤ |B| if |A| = |B′| for some B′ ⊆ B. Cardinal numbers areusually denoted by Fraktur letters like m and n. A ardinal number is �nite ifit is the ardinality of a natural number n ∈ ω, otherwise it is in�nite. Finiteardinals are usually denoted by letters like n,m, . . . An in�nite ardinal whihontains a well-orderable set is traditionally alled an aleph and onsequentlydenoted by an �ℵ�, e.g., ℵ0 := |ω|. The following fat summarises some simpleproperties of alephs.Fat 3.23. All sets whih belong to an aleph an be well-ordered and theardinality of any ordinal is an aleph. Further, for any ordinals α, β ∈ Ω wehave |α| < |β| or |α| = |β| or |α| > |β|, and these three ases are mutuallyexlusive.A non-empty set A is alled unountable if there is no enumeration of theelements of A, or equivalently, no mapping from ω to A is surjetive.By the Axiom of In�nity we know that there is an in�nite set and we have seenthat there is even a smallest in�nite ordinal, namely ω, whih is of ourse aountable set. Now, the question arises whether every in�nite set is ountable.We answer this question in two steps: First we show that the set of realnumbers is unountable, and then we show that in general, for every set Athere exists a set of stritly greater ardinality than A�whih implies thatthere is no largest ardinal.Proposition 3.24. The set of real numbers is unountable.



Cardinals in ZF 61Proof. By Proposition 3.18 we already know that there is a bijetion be-tween R and P(ω). Further we have |P(ω)| = |ω2|. Indeed, for every
x ∈ P(ω) let χx ∈ ω2 be suh that

χx(n) =

{
1 if n ∈ x,
0 otherwise.So, it is enough to show that no mapping from ω to ω2 is surjetive. Let

g : ω −→ ω2

n 7−→ fnbe any mapping from ω to ω2. De�ne the funtion f ∈ ω2 by stipulating
f(n) = 1− fn(n) .Then for eah n ∈ ω we have f(n) 6= fn(n), so, f is distint from everyfuntion fn (n ∈ ω), whih shows that g is not surjetive. ⊣For ardinals m = |A| let 2m :=

∣∣P(A)
∣∣. By modifying the proof above wean show the following result:Theorem 3.25 (Cantor's Theorem). For every ardinal m, 2m > m.Proof. Let A ∈ m be arbitrary. It is enough to show that there is an injetionfrom A into P(A), but there is no surjetion from A onto P(A).Firstly, the funtion

f : A −→ P(A)

x 7−→ {x}is obviously injetive, and therefore we get m ≤ 2m.Seondly, let g : A→ P(A) be an arbitrary funtion. Consider the set
A′ =

{
x ∈ A : x /∈ g(x)

}
.As a subset of A, the set A′ is an element of P(A). If there would be an x0 ∈ Asuh that g(x0) = A′, then x0 ∈ A′ ↔ x0 /∈ g(x0), but sine g(x0) = A′,

x0 /∈ g(x0) ↔ x0 /∈ A′. Thus, x0 ∈ A′ ↔ x0 /∈ A′, whih is obviously aontradition and shows that g is not surjetive. ⊣As an immediate onsequene of Cantor's Theorem 3.25 we get that thereare arbitrarily large ardinal numbers. Before we show that there are alsoarbitrarily large ordinal numbers, let us summarise some basi fats aboutwell-orderings: Reall that a binary relation R ⊆ A × A is a well-orderingof A, if there is an α ∈ Ω and a bijetion f : A → α suh that R(x, y) i�
f(x) ∈ f(y).The following proposition is ruial in order to de�ne the order type of awell-ordering.



62 3 The Axioms of Zermelo-Fraenkel Set TheoryProposition 3.26. If α, β ∈ Ω and f : α → β is a bijetion suh that for all
γ1 ∈ γ2 ∈ α we have f(γ1) ∈ f(γ2), then α = βProof. If α 6= β, then, by Theorem 3.12.(a), we have either α ∈ β or β ∈ α.Without loss of generality we assume that α ∈ β. Thus, there is a η ∈ β \ α.Sine f is a bijetion, there is a γ ∈ α suh that f(γ) = η, and sine η /∈ α,
f(γ) 6= η� in fat, f(γ) ∈ η. Let γ0 be the ∈-minimal ordinal in α suhthat f(γ0) 6= γ0, in partiular, f |γ0 is the identity. The situation we have isillustrated by the following �gure:

α

β

∅ ∅ = f(∅)

δ δ = f(δ)

γ0 γ0 = f(δ0)

δ0

f(γ0)

Sine f(δ) = δ for all δ ∈ γ0, γ0 ∈ f(γ0). Let δ0 = f−1(γ0). By the de�nitionof γ0 we have γ0 ∈ δ0, whih implies f(γ0) ∈ f(δ0), or equivalently, f(γ0) ∈ γ0,a ontradition. ⊣As an immediate onsequene we get that eah well-ordering R of A orre-sponds to exatly one ordinal, alled the order type of R, denoted o.t.(R),suh that there exists a bijetion f : A → o.t.(R) with the property that forall a1, a2 ∈ A we have a1Ra2 ⇐⇒ f(a1) ∈ f(a2). Indeed, for every b ∈ Ade�ne Ab = {a ∈ A : aRb} and let f : A → Ω suh that for eah b ∈ A thereexists a unique ordinal β suh that f [Ab] = β; then o.t.(R) = f [A]. Moreover,by Theorem 3.12.(a), if R1 and R2 are well-orderings of any two subsets of A,then we have o.t.(R1) ∈ o.t.(R2) or o.t.(R1) = o.t.(R2) or o.t.(R1) ∋ o.t.(R2),where the three ases are mutually exlusive.Theorem 3.27 (Hartogs' Theorem). For every ardinal m there is asmallest aleph, denoted ℵ(m), suh that ℵ(m) � m.Proof. Let A ∈ m be arbitrary and let R ⊆ P(A× A) be the set of all well-orderings of subsets of A. For every R ∈ R, o.t.(R) is an ordinal, and for every
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R ∈ R and any β ∈ o.t.(R) there is an R′ ∈ R suh that o.t.(R′) = β, whihshows that

α =
{
o.t.(R) : R ∈ R

}is an ordinal. By de�nition, for every β ∈ α there is a well-ordering RS of some
S ⊆ A suh that o.t.(RS) = β, whih implies that |β| ≤ |A|. On the otherhand, |α| ≤ |A| would imply that α ∈ α, whih is obviously a ontradition.Let ℵ(m) := |α|, then ℵ(m) � m and for eah ℵ < ℵ(m) we have ℵ ≤ m. ⊣Corollary 3.28. For every ordinal number α and for every ardinal number
m, there exists an ordinal number β suh that |β| > |α| and |β| � m.Proof. For the �rst inequality let α ∈ Ω and let n = |α|. By Hartogs'Theorem 3.27 there is an aleph, namely ℵ(n), suh that ℵ(n) � n. Now, sine
n and ℵ(n) both ontain well-ordered sets we have n < ℵ(n). Let w ∈ ℵ(n) bea well-ordered set and let β be the order type of w. Then ℵ(n) = |β| > |α| = n.For the seond inequality let β be the order type of a well-ordered setwhih belongs to ℵ(m); then |β| � m. ⊣On the Consisteny of ZFZermelo writes in [118, p. 262℄ that he was not able to show that the sevenaxioms for Set Theory given in that artile are onsistent. Even though it isessential to know whether a theory is onsistent or not, by Gödel's Se-ond Inompleteness Theorem 3.9 we know that for a su�iently strongonsistent theory, there is no way to prove its onsisteny within this theory.To apply this result for Set Theory, we �rst have to show that ZF is �su�-iently strong�. In other words, we have to show that ZF is strong enough tode�ne the onept of natural numbers and to prove ertain basi arithmetialfats. We do this by showing that ω � PA: Firstly, Proposition 3.21 showsthat addition and multipliation is assoiative. Seondly, by replaing Ω with
ω in Corollary 3.15 we get the Indution Shema for natural numbers:Proposition 3.29 (Indution Shema). If ϕ(0) and ϕ(n) → ϕ(n+1) forall n ∈ ω, then we have ϕ(n) for all n ∈ ω.Hene, every model of ZF ontains a model of PA (i.e., if ZF is onsistent, thenso is PA). However, by Gödel's Seond Inompleteness Theorem 3.9, ifZF is onsistent (what we believe or at least assume), then ZF annot prove itsown onsisteny (i.e., annot provide a model for itself). In other words, thereis no mathematial proof for the onsisteny of ZF within ZF, whih meansthat there is no way to onstrut or to de�ne a model of ZF without the aidof some onepts that go beyond what is provided in ordinary Mathematis.More formally, any proof for Con(ZF) has to be arried out in some theoryT whih ontains some information that is not in ZF, and whose onsistenyannot be proved within T.



64 3 The Axioms of Zermelo-Fraenkel Set TheoryTo sum up, either ZF is inonsistent� whih is hopefully not the ase� orany proof of the onsisteny of ZF has to be arried out in a theory whoseonsisteny is not provable within that theory.NotesSome of the papers mentioned below, or at least their translation into English, anbe found in the olletion [109℄ edited by van Heijenoort (whose biography is writtenby Feferman [35℄).Milestones in Logi. Before we disuss the development of Set Theory, let usgive a brief overview of the history of Logi (see Bohe«ski [11℄ for a omprehensiveproblem history of formal logi, providing also large quotes from historial texts).Organon. Aristotle's logial treatises ontain the earliest formal study of Logi(i.e., of Propositional Logi, whih is onerned about logial relations betweenpropositions as wholes) and onsequently he is ommonly onsidered the �rst lo-giian. Aristotle's logial works were grouped together by the anient ommentatorsunder the title Organon, onsisting of Categories, On Interpretation, Prior Analyt-is, Posterior Analytis, Topis, and On Sophistial Refutations. Aristotle's workwas so outstanding and ahead of his time that nothing signi�ant had been addedto his views during the following two millennia.The Laws of Thought. In 1854, Boole published in An Investigation of the Lawsof Thought [15℄ (see also [14℄) a new approah to Logi by reduing it to a kind ofalgebra and thereby inorporated Logi into Mathematis: Boole notied that Aris-totle's Logi was essentially dealing with lasses of objets and he further observedthat these lasses an be denoted by symbols like x, y, z, subjet to the ordinaryrules of algebra, with the following interpretations.(a) xy denotes the lass of members of x whih are also members of y.(b) If x and y have no members in ommon, then x+ y denotes the lass of objetswhih belong either to x or to y.() I− x denotes all the objets not belonging to the lass x.(d) x = 0 means that the lass x has no members.However, Boole's Logi was still Propositional Logi, but just 25 years later thisweakness was eliminated.Begri�sshrift. In 1879, Frege published in his Begri�sshrift [42℄ the most im-portant advane in Logi sine Aristotle. In this work, Frege presented for the �rsttime what we would reognise today as a logial system with negation, impliation,universal quanti�ation, logial axioms, et etera. Even though Frege's ahievementin Logi was a major step towards First-Order Logi, his work had led to someontraditions � disovered by Russell � and further steps had to be taken.Peano Arithmeti. Written in Latin, [89℄ was Peano's �rst attempt at an ax-iomatisation of Mathematis� and in partiular of Arithmeti� in a symboli lan-guage. The initial arithmeti notions are number, one, suessor, is equal to, andnine axioms are stated onerning theses notions. (Today, �= � belongs to the un-derlying language of Logi, and so, Peano's axioms dealing with equality beomeredundant; further, we start the natural numbers with zero, rather than one.) Con-erning the problem whether the natural numbers an be onsidered as symbolswithout inherent meaning, we refer the reader to the disussion between Müller [83℄



Notes 65and Bernays [6℄. For Peano's work in Logi, and in partiular for the developmentof the axioms for natural numbers, we refer the reader to Jourdain [67, pp. 270�314℄(where one an also �nd some omments by Peano) and to Wang [111℄. Aordingto Jourdain (f. [67, p. 273℄), Peano [89℄ sueeded in writing out wholly in sym-bols the propositions and proofs of a omplete treatise on the arithmeti of positivenumbers. However, in the arithmetial demonstrations, Peano made extensive useof Grassmann's work [54℄, and in fundamental questions of arithmeti as well as inthe theory of logial funtions, he used Dedekind's work [24℄. The main feature ofWang's paper [111℄ is the printing of a letter (mentioned by Noether on page 490 of[25℄) from Dedekind to a headmaster in Hamburg, dated 27 February, 1890. In thatletter, Dedekind points out the appearane of non-standard models of axioms fornatural numbers (see Kaye [71℄) and explains how one ould avoid suh unintendedmodels by using his Kettentheorie (i.e., onept of hains) whih he developed in[24℄. He also refers to Frege's works [42, 43℄ and notes that Frege's method of de�ninga kind of �suessor relation� agrees in essene with his onept of hains.Prinipia Mathematia. One of these steps was taken by Russell and Whiteheadin their Prinipia Mathematia [113℄, whih is a three-volume work on the founda-tions of Mathematis, published between 1910 and 1913. It is an attempt to deriveall mathematial truths from a well-de�ned set of axioms and inferene rules insymboli logi. The main inspiration and motivation for the Prinipia Mathematiawas Frege's earlier work on Logi, espeially the ontraditions disovered by Russell(as mentioned above). The questions remained whether a ontradition ould alsobe derived from the axioms given in the Prinipia Mathematia, and whether thereexists a mathematial statement whih ould neither be proven nor disproven in thesystem (for Russell's searh for truth we refer the reader to Doxiadis and Papadim-itriou [27℄). It took another twenty odd years until these questions were answered byGödel's Inompleteness Theorem, but before, the logial axioms had to be settled.Grundzüge der theoretishen Logik. In 1928, Akermann and Hilbert publishedin their Grundzüge der theoretishen Logik [66℄ to some extent the �nal versionof logial axioms (for the development of these axioms see Hilbert [61, 62, 64℄).Our approah to First-Order Logi is partially taken from the �rst few setionsof the hyper-textbook for students by Detlovs and Podnieks (these setions are anextended translation of the orresponding hapters of Detlovs [26℄). For other rulesof inferene see for example Hermes [60℄ or Ebbinghaus, Flum, and Thomas [28, 29℄.Über die Vollständigkeit des Logikkalküls. Gödel proved the CompletenessTheorem in his dotoral dissertation Über die Vollständigkeit des Logikkalküls [46℄whih was ompleted in 1929. In 1930, he published the same material as in thedotoral dissertation in a rewritten and shortened form in [47℄. The standard prooffor Gödel's Completeness Theorem is Henkin's proof, whih an be found in [58℄(see also [59℄) as well as in most other textbooks on Logi. A slightly di�erentapproah an be found for example in Kleene [72, �72℄.Über formal unentsheidbare Sätze der Prinipia Mathematia. In 1930, Gödelannouned in [48℄ his Inompleteness Theorem (published later in [49℄), whihis probably the most famous theorem in Logi. The theorem as it is stated aboveis Satz VI of [49℄, and Gödel's Seond Inompleteness Theorem 3.9, whihis in fat a onsequene of the proof of that theorem, is Satz XI of [49℄. Gödel'sInompleteness Theorem 3.4 is disussed in great detail in Mostowski [82℄ (seealso Goldstern and Judah [53, Chapter 4℄); and for a di�erent proof of Gödel'sInompleteness Theorem, not just a di�erent version of Gödel's proof, see Put-



66 3 The Axioms of Zermelo-Fraenkel Set Theorynam [95℄. For more historial bakground� as well as for Gödel's platonism�werefer the reader to Goldstein [51℄.Now, let us disuss the development of Set Theory: To some extent, Set Theory isthe theory of in�nite sets; but, what is the in�nite and does it exist?The in�nite. As mentioned before, there are two di�erent kinds of in�nite, namelythe atual in�nite and the potential in�nite. To illustrate the di�erene, let us on-sider the olletion of prime numbers. Eulid proved that for any prime number pthere is a prime number p′ whih is larger than p (see [31, Book IX℄). This shows thatthere are arbitrarily many prime numbers, and therefore, the olletion of primesis �potentially� in�nite. However, he did not laim that the olletion of all primenumbers as a whole �atually� exists. (The di�erene between atual and potentialin�nite is disussed in greater detail for example in Bernays [7, Teil II℄).Two quite similar attempts to prove the objetive existene of the (atual) in-�nite are due to Bolzano [12, 13, �13℄ and Dedekind [24, �5, No. 66℄, and both aresimilar to the approah suggested in Plato's Parmenides [94, 132a-b℄ (for a philo-sophial view to the notion of in�nity we refer the reader to Manosu [78℄). How-ever, Russell [99, Chapter XIII, p. 139 �.℄ (see also [101, Chapter XLIII℄) shows thatthese attempts must fail. Moreover, he demonstrates that the in�nite is neitherself-ontraditory nor demonstrable logially and writes that we must onlude thatnothing an be known a priori as to whether the number of things in the world is�nite or in�nite. The onlusion is, therefore, to adopt a Leibnizian phraseology,that some of the possible worlds are �nite, some in�nite, and we have no means ofknowing to whih of these two kinds our atual world belongs. The axiom of in�nitywill be true in some possible worlds and false in others; whether it is true or falsein this world, we annot tell (f. [99, p. 141℄).If the in�nite exists, the problem still remains how one would reognise in�nitesets, or in other words, how one would de�ne the prediate �in�nite�. Dedekindprovided a de�nition in [24, �5, No. 64℄, whih is � as Shröder [103, p. 303 f.℄ pointedout� equivalent to the de�nition given three years earlier by Peire (f. [91, p. 202℄or [5, p. 51℄). However, the fat that an in�nite set an be mapped injetively intoa proper subset of itself � whih is the key idea of Dedekind's de�nition of in�nitesets �was already disovered and learly explained about 250 years earlier by Galilei(see [45, First Day℄). Another de�nition of the in�nite�whih will be omparedwith Dedekind's de�nition in Chapter 7 � an be found in von Neumann [86, p. 736℄.More de�nitions of �niteness, as well as their dependenies, an be found for examplein Lévy [75℄ and in Spi²iak and Vojtá² [106℄.Birth of Set Theory. As mentioned above, the birth of Set Theory dates to 1873when Cantor proved that the set of real numbers is unountable. One ould evenargue that the exat birth date is 7 Deember 1873, the date of Cantor's letter toDedekind informing him of his disovery.Cantor's �rst proof that there is no bijetion between the set of real numbers andthe set of natural numbers used an argument with nested intervals (f. [18, �2℄ or [23,p. 117℄). Later, he improved the result by showing that 2m > m for every ardinal m(f. [20℄ or [23, III. 8℄), whih is nowadays alled Cantor's Theorem. The argumentused in the proof of Proposition 3.24 �whih is in fat just a speial ase ofCantor's Theorem� is sometimes alled Cantor's diagonal argument. The word�diagonal� omes from the diagonal proess used in the proofs of Proposition 3.24and Cantor's Theorem. The diagonal proess is a tehnique of onstruting a



Notes 67new member of a set of lists whih is distint from all members of a given list. Thisis done by arranging �rst the list as a matrix, whose diagonal gives informationabout the xth term of the xth row of the matrix. Then, by hanging eah term ofthe diagonal, we get a new list whih is distint from every row of the matrix (seealso Kleene [72, �2℄).For a brief biography of Cantor and for the development of Set Theory see forexample Fraenkel [41℄, Shoen�ies [102℄, and Kanamori [68℄.Russell's Paradox. The fat that a naïve approah to the notion of �set� leadsto ontraditions was disovered by Russell in June 1901 while he was working onhis Priniples of Mathematis [101℄ (see also Grattan-Guinness [55℄). When Russellpublished his disovery, other mathematiians and set-theorists like Zermelo (see[115, footnote p. 118 f.℄ or Rang and Thomas [96℄) had already been aware of thisantinomy, whih� aording to Hilbert� had a downright atastrophi e�et whenit beame known throughout the world of Mathematis (f. [63, p. 169℄ or [65, p. 190℄).However, Russell was the �rst to disuss the ontradition at length in his publishedworks, the �rst to attempt to formulate solutions and the �rst to appreiate fully itsimportane. For example the entire Chapter X of [101℄ was dediated to disussingthis paradox (in partiular see [101, Chapter X, �102℄). In order to prevent the emer-gene of antinomies and paradoxes in Set Theory and in Logi in general, Russelldeveloped in [101, Appendix B℄ (see also [98℄) his theory of logial types whih rulesout self-referene. Aording to this theory, self-referential statements are neithertrue nor false, but meaningless.Russell's Paradox as well as some other antinomies an also be found in Fraenkel,Bar-Hillel, and Lévy [36, Chapter I℄.Axiomatisation of Set Theory. In 1908, Zermelo published in [118℄ his �rstaxiomati system onsisting of seven axioms, whih he alled:1. Axiom der Bestimmtheitwhih orresponds to the Axiom of Extensionality2. Axiom der Elementarmengenwhih inludes the Axiom of Empty Set as well as the Axiom of Pairing3. Axiom der Aussonderungwhih orresponds to the Axiom Shema of Separation4. Axiom der Potenzmengewhih orresponds to the Axiom of Power Set5. Axiom der Vereinigungwhih orresponds to the Axiom of Union6. Axiom der Auswahlwhih orresponds to the Axiom of Choie7. Axiom des Unendlihenwhih orresponds to the Axiom of In�nityIn 1930, Zermelo presented in [116℄ his seond axiomati system, whih he alled ZF-system, in whih he inorporated ideas of Fraenkel [38℄, Skolem [104℄, and von Neu-mann [85, 86, 88℄. (see also Zermelo [114℄). In fat, he added the Axiom Shema of



68 3 The Axioms of Zermelo-Fraenkel Set TheoryReplaement and the Axiom of Foundation to his former system, anelled the Axiomof In�nity (sine he thought that it does not belong to the general theory of sets), anddid not mention expliitly the Axiom of Choie (beause of its di�erent harater andsine he onsidered it as a general logial priniple). For Zermelo's published workin Set Theory, desribed and analysed in its historial ontext, see Zermelo [117℄,Kanamori [70℄ and Ebbinghaus [30℄.The need for the Axiom Shema of Replaement was �rst notied by Fraenkel (see[117, p. 23℄) who introdued a ertain form of it in [38℄ (another form of it he gavein [37, De�nition 2, p. 158℄). However, the present form was introdued by von Neu-mann [87℄ (see the note below on the Transfinite Reursion Theorem). As amatter of fat we would like to mention that the Axiom Shema of Replaementwas al-ready used impliitly by Cantor in 1899 (f. [23, p. 444, line 3℄). Beside Fraenkel, alsoSkolem realised that Zermelo's �rst axiomati system was not su�ient to provide aomplete foundation for the usual theory of sets and introdued� independently ofFraenkel � in 1922 the Axiom Shema of Replaement (see [104℄ or [105, p. 145 f.℄).In [104℄, he also gave a proper de�nition of the notion �de�nite proposition� and,based on a theorem of Löwenheim [77℄, he disovered the following fat [105, p. 139℄(stated in Chapter 15 as Löwenheim-Skolem Theorem 15.1): If the axioms areonsistent, there exists a domain in whih the axioms hold and whose elements anall be enumerated by means of the positive �nite integers . At a �rst glane thislooks strange, sine we know for example that the set of real numbers is unount-able. However, this so-alled Skolem Paradox�whih we will meet in a slightlydi�erent form in Chapter 15� is not a paradox in the sense of an antinomy, it isjust a somewhat unexpeted feature of formal systems (see also Kleene [72, p. 426 f.℄and von Plato [110℄).Conerning the terminology we would like to mention that the de�nition ofordered pairs given above was introdued by Kuratowski [74, Dé�nition V, p. 171℄(ompare with Hausdor� [57, p. 32℄ and see also Kanamori [69, �5℄), and that thein�nite set whih orresponds to ω =
{
∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

} wasintrodued by von Neumann [84℄. For more historial bakground see Bahmann [4℄or Fraenkel [8, Part I℄, and for a brief disussion of the axiom systems of von Neu-mann, Bernays, and Gödel see Fraenkel [8, Part I, Setion 7℄.The Axiom of Foundation. As mentioned above, Zermelo introdued this axiomin his seond axiomatisation of Set Theory in 1930, but it goes bak to von Neu-mann (f. [85, p. 239℄ and [88, p. 231℄), and in fat, the idea an already be found inMirimano� [80, 81℄: For example in [80, p. 211℄ he alls a set x regular (Frenh �ordi-naire�) if every desending sequene x ∋ x1 ∋ x2 ∋ . . . is �nite. However, he did notpostulate the regularity of sets as an axiom, but if one would do so, one would getthe Axiom of Regularity saying that every set is regular. Now, as a onsequene of theAxiom of Foundation we got the fat that there are no in�nite desending sequenesof the form x1 ∋ x2 ∋ . . . ∋ xi . . ., whih just tells us that every set is regular. Thus,the Axiom of Foundation implies the Axiom of Regularity. The onverse is not true,unless we assume some non-trivial form of the Axiom of Choie (see Mendelson [79℄).As a matter of fat we would like to mention that Zermelo, when he formulatedthe Axiom of Foundation in [116℄, gave both de�nitions and just mentioned (withoutproof) that they are equivalent.Ordinal numbers. The theory of ordinals was �rst developed in an axiomati wayby von Neumann in [84℄ (see also [85, 86, 87℄). For an alternative axiomati approah



Notes 69to ordinals, independently of ordered sets and types, see Tarski [108℄ or Lindenbaumand Tarski [76℄. For some more de�nitions of ordinals see Bahmann [4, p. 24℄.The Trans�nite Reursion Theorem. The Transfinite Reursion Theo-rem was �rst formulated and proved by von Neumann [87℄, who also pointed outthat, beside the axioms of Zermelo, also the Axiom Shema of Replaement has to beused. Even though a ertain form of the Axiom Shema of Replaement was alreadygiven by Fraenkel (see above), von Neumann showed that Fraenkel's notion of fun-tion is not su�ient to prove the Transfinite Reursion Theorem. Moreover,he showed (f. [87, I.3℄) that Fraenkel's version of the Axiom Shema of Replaementgiven in [39, �1 1℄ follows from the other axioms given there (see also Fraenkel's note[40℄).The Cantor-Bernstein Theorem. This theorem, unfortunately also known asShröder-Bernstein Theorem, was �rst stated and proved by Cantor (f. [19,VIII.4℄ or [23, p. 413℄, and [21, �2, Satz B℄ or [23, p. 285℄). In order to prove thistheorem, Cantor used the Trihotomy of Cardinals, whih is � as we will see inChapter 5� equivalent to the Axiom of Choie (see also [23, p. 351, Anm.2℄). Analternative proof, avoiding any form of the Axiom of Choie, was found by Bern-stein, who was initially a student of Cantor's. Bernstein presented his proof aroundEaster 1897 in one of Cantor's seminars in Halle, and the result was published in 1898in Borel [16, p. 103�106℄ (see Related Result 12). About the same time, Shrödergave a similar proof in [103℄ (submitted May 1896), but unfortunately, Shröder'sproof was �awed by an irreparable error. While other mathematiians regarded hisproof as orret, Korselt wrote to Shröder about the error in 1902. In his reply,Shröder admitted his mistake whih he had already found some time ago but didnot have the opportunity to make publi. A few weeks later, Korselt submitted thepaper [73℄ �whih appeared almost a deade later �with a proof of the Cantor-Bernstein Theorem whih is quite di�erent from the one given by Bernstein. Aproof of the Cantor-Bernstein Theorem, similar to Korselt's proof, was foundin 1906 independently by Peano [90℄ and Zermelo (see [118, footnote p. 272 f.℄). How-ever, they ould not know that they had just redisovered the proof that had alreadybeen obtained twie by Dedekind in 1887 and 1897, sine Dedekind's proof � in ourterminology given above�was not published until 1932 (see [25, LXII&Erl. p. 448℄and [23, p. 449℄).Cantor produts. Motivated by a result due to Euler on partition numbers (f. [32,Caput XVI℄), Cantor showed in [17℄ (see also [23, pp. 43�50℄) that every real number
r > 1 an be written in a unique way as a produt of the form ∏

n∈ω

(
1+ 1

qn

), whereall qn's are positive integers and qn+1 ≥ q2n. He also showed that r = ∏
n∈ω

(
1+ 1

qn

)is rational if and only if there is an m ∈ ω suh that for all n ≥ m we have
qn+1 = q2n, and further he gave the representation of the square roots of some smallnatural numbers. For example, the qn's in the representation of √2 are q0 = 3 and
qn+1 = 2q2n−1. More about Cantor produts an be found for example in Perron [92,�35℄.Cardinal numbers. The onept of ardinal number is one of the most fundamen-tal onepts in Set Theory. Cantor desribes ardinal numbers as follows (f. [21, �1℄or [23, p. 282 f.℄): The general onept whih with the aid of our ative intelligeneresults from a set M , when we abstrat from the nature of its various elements andfrom the order of their being given, we all the �power� or �ardinal number� of M .



70 3 The Axioms of Zermelo-Fraenkel Set TheoryThis double abstration suggests his notation �M � for the ardinality ofM . As men-tioned above, one an de�ne the ardinal number of a set M as an objet M whihonsists of all those sets (inluding M itself) whih have the same ardinality as
M . This approah, whih was for example taken by Frege (f. [43, 44℄), and Russell(f. [97, p. 378℄ or [98, Setion IX, p. 256℄), has the advantage that it an be arriedout in naïve Set Theory (see also Kleene [72, p. 9℄). However, it has the disadvantagethat for every non-empty set M , the objet M is a proper lass and therefore doesnot belong to the set-theoreti universe.Hartogs' Theorem. The proof of Hartogs' Theorem is taken from Hartogs [56℄.In that paper, Hartogs' main motivation was to �nd a proof for Zermelo's Well-Ordering Priniple whih does not make use of the Axiom of Choie. However, sinethe Well-Ordering Priniple and the Axiom of Choie are equivalent, he had to assumesomething similar, whih he had done assuming expliitly Trihotomy of Cardinals.These priniples will be disussed in greater detail in Chapter 5.In 1935, Hartogs was fored to retire from his position in Munih, where he om-mitted suiide in August 1943 beause he ould not bear any longer the ontinuoushumiliations by the Nazis. Related Results12. Bernstein's proof of the Cantor-Bernstein Theorem. Below we sketh out Bern-stein's proof of the Cantor-Bernstein Theorem as it was published by Borelin [16, p. 104 �.℄: Let A and B be two arbitrary sets and let f : A →֒ B and

g : B →֒ A two injetions. Further, let A0 := A, B0 := g[B], and for n ∈ ω let
An+1 := (g◦f)[An] and Bn+1 := (g◦f)[Bn]; �nally let D :=

⋂
n∈ω An.We get the following piture:
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Referenes 71It is not hard to verify that the sets An and Bn have the following properties:(a) A0 = D ∪ (A0 \ B0) ∪ (B0 \ A1) ∪ (A1 \ B1) ∪ (B1 \ A2) ∪ . . .(b) B0 = D ∪ (B0 \A1) ∪ (A1 \B1) ∪ (B1 \A2) ∪ (A2 \B2) ∪ . . .() For all n ∈ ω, |An \Bn| = |An+1 \ Bn+1|.Sine the sets (An \Bn), (Bn \ An+1), and D, are pairwise disjoint, by () andby regrouping the representation of B0 in (b), we get |A0| = |B0|.Referenes1. Aristotle, Organon, Athens, published by Andronikos of Rhodos around40 b..2. , Topis, Athens, published by Andronikos of Rhodos around 40b..3. , Physis, Athens, published by Andronikos of Rhodos around 40b..4. Heinz Bahmann, Trans�nite Zahlen, Springer-Verlag, Berlin ·Heidelberg,1967.5. Karel Berka and Lothar Kreiser, Logik-Texte. Kommentierte Auswahlzur Geshihte der modernen Logik, Akademie-Verlag, Berlin, 1971.6. Paul Bernays, Erwiderung auf die Note von Herrn Aloys Müller: Über Zahlenals Zeihen, Mathematishe Annalen, vol. 90 (1923), 159�163.7. , Die Philosophie der Mathematik und die Hilbertshe Beweistheorie,Blätter für deutshe Philosophie, vol. 4 (1930), 326�367 (also publishedin [9℄).8. , Axiomati Set Theory. With a historial introdution by AbrahamA. Fraenkel, 2nd ed., [Studies in Logi and the Foundations of Mathematis],North-Holland, Amsterdam, 1968 [reprint: Dover Publiations, New York,1991].9. , Abhandlungen zur Philosophie der Mathematik, Wissenshaft-lihe Buhgesellshaft, Darmstadt, 1976.10. Joseph M. Bohe«ski, A History of Formal Logi, 2nd ed., [translatedand edited by Ivo Thomas], Chelsea Publishing Company, New York, 1970.11. , Formale Logik, 4th ed., Orbis Aademius: Problemgeshihten derWissenshaft in Dokumenten und Darstellungen, Verlag Karl Alber, Freiburg,1978 (see [10℄ for a translation into English).12. Bernard Bolzano, Paradoxien des Unendlihen, Hrsg. aus dem shrift-lihen Nahlasse des Verfassers von Fr. P°ihonský, C.H. Relam Sen., Leipzig,1851.13. , Paradoxes of the In�nite, [translated by D.A. Steele], Routledgeand Kegan Paul, London, 1950.14. George Boole, The alulus of logi, The Cambridge and Dublin Math-ematial Journal, vol. 3 (1848), 183�198.15. , An Investigation of the Laws of Thought, on Whih areFounded the Mathematial Theories of Logi and Probabilities, Wal-ton and Maberley, London, 1854 [reprint: Prometheus Books, New York, 2003].16. Émile Borel, Leçons sur la Théorie des Fontions, Gauthier-Villars etFils, Paris, 1898.17. Georg Cantor, Zwei Sätze über eine gewisse Zerlegung der Zahlen in un-endlihe Produkte, Zeitshrift für Mathematik und Physik, vol. 14 (1869),152�158.
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4Cardinal Relations in ZF only
To some it may appear novel that I inlude thefourth among the onsonanes, beause pratiingmusiians have until now relegated it to the disso-nanes. Hene I must emphasise that the fourth isatually not a dissonane but a onsonane.Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558In the previous hapter we introdued ardinal numbers as ertain sets,whih ontain only sets of the same ardinality. Cardinal numbers in Zermelo-Fraenkel Set Theory are traditionally denoted by Fraktur letters like m and
n. However, the ardinality of a given set A is denoted by |A|. If |A| = m,then we say that A is of ardinality m. Reall that for ardinals m = |A|,
2m := |P(A)|, in partiular 2ℵ0 = |P(ω)|.Reall that a set A is �nite if there exists a bijetion between A and anatural number n ∈ ω. Now, a ardinal number m is �nite if m ontains a�nite set� reall that |∅| = {∅}. Finite ardinal numbers are usually denotedlike elements of ω, i.e., by letters like n,m, k et etera. In other words, for
n ∈ ω we usually do not distinguish between the ordinal number n and theardinal number n. Finally, a ardinal number is in�nite if it is not �nite.Reall that an in�nite ardinal whih ontains a well-orderable set is alledan aleph and that alephs are denoted by ℵ's, e.g., ℵ0 := |ω|. A ardinal m isalled trans�nite or Dedekind-in�nite if ℵ0 ≤ m. Notie that trans�niteardinals are always in�nite. If the ardinality of a set A is trans�nite, then
A is alled trans�nite. Notie that for eah trans�nite set A there is aninjetion from ω into A. Sets or ardinals whih are not trans�nite are alled
D-�nite or Dedekind-�nite. Notie that every �nite set is D-�nite, but aswe will see later, D-�nite sets are not neessarily �nite. For other notions of�niteness see Related Result 13.



80 4 Cardinal Relations in ZF onlyBasi Cardinal RelationsBelow we show some relations between ardinals whih an be proved in ZF.We start with some simple fats.Fat 4.1. ℵ0 = |P| = |Z| = |Z2| = |Q|, where P denotes the set of primenumbers, Z denotes the set of integers, and Q denotes the set of rationalnumbers.Proof. By de�nition we have ℵ0 = |ω|. Further, |P| ≤ |ω| ≤ |Z| ≤ |Q|,and sine every redued rational number p
q
orresponds to an ordered pair

〈p, q〉 of integers we also have |Q| ≤ |Z2|. Thus, by the Cantor-BernsteinTheorem 3.17 it is enough to show that the set P is trans�nite and to �ndan injetion from Z2 into ω. That P is trans�nite follows from the fat that
P is an in�nite, well-orderable set; and to onstrut an injetion f : Z2 →֒ ωwe de�ne for example �rst g : P×Z → ω by stipulating g(p, z) := max{1, pz}and then let f(〈x, y〉) := g(2, x) · g(3,−x) · g(5, y) · g(7,−y). ⊣For an arbitrary set A let fin(A) denote the set of all �nite subsets of A. Notiethat fin(A) = P(A) if and only if A is �nite. Further, reall that seq(A)denotes the set of all �nite sequenes whih an be formed with elements of Aand that seq1-1(A) be those sequenes of seq(A) in whih no element appearstwie. Further, reall that [A]2 is the set of all 2-element subsets of A.Fat 4.2. ℵ0 = |[ω]2| = | fin(ω)| = | seq1-1(ω)| = | seq(ω)| = |A|, where Adenotes the set of algebrai numbers, whih is the set of all real numberswhih are roots of polynomials with integer oe�ients.Proof. Sine every �nite subset of ω orresponds to a stritly inreasing �-nite sequene of elements of ω we obviously have ℵ0 ≤ |[ω]2| ≤ | fin(ω)| ≤
| seq1-1(ω)| ≤ | seq(ω)|. By the Cantor-Bernstein Theorem 3.17, in orderto prove that | seq(ω)| = ℵ0 it is enough to �nd an injetion from seq(ω) into
ω. Let P = {pi : i ∈ ω} be suh that for all i, j ∈ ω, i < j → pi < pj , andde�ne f : seq(ω) → ω by stipulating

f
(
〈a0, a1, . . . , an〉

)
:= pa0+1

0 · pa1+1
1 · . . . · pan+1

n .Then, by unique fatorisation of integers, f is injetive. Now, let us onsiderthe set A: A polynomial p(x) = anx
n + an−1x

n−1 + . . . a1x+ a0 with integeroe�ients has at most n di�erent real roots say r0 < r1 < . . . rk where k < n,and sine there exists a bijetion g between Z and ω (by Fat 4.1), we ande�ne a mapping hp(x) whih assigns to eah root ri of p(x) an element of
seq(ω) by stipulating

hp(x)(ri) =
〈
g(a0), . . . , g(an), i

〉
,and de�ne H : A → ω by stipulating

H(r) = min
{
hp(x)(ri) : p(r) = 0 ∧ r = ri

}
.This shows that |A| ≤ ℵ0 and ompletes the proof. ⊣



Basi ardinal relations 81By Proposition 3.18 we know that |R| = 2ℵ0 and by Cantor's The-orem 3.25 we get that ℵ0 < 2ℵ0 , hene, the set of reals is unountable(f. Proposition 3.24). The following result gives a few examples of sets ofthe same ardinality as R.Fat 4.3. ∣∣[0, ε]∣∣ = ∣∣R
∣∣ =

∣∣ω2
∣∣ =

∣∣ωω
∣∣ =

∣∣R×R
∣∣ =

∣∣ωR
∣∣ =

∣∣C[0, 1]
∣∣ =

∣∣R\A
∣∣,where for ε > 0, [0, ε] = {r ∈ R : 0 ≤ r ≤ ε}, and C[0, 1] denotes the set ofontinuous funtions from [0, 1] to R.Proof. The funtion ε · ( arctan(x) + π

2

)
/π is a bijetion between R and theopen interval (0, ε), thus, by the Cantor-Bernstein Theorem 3.17 we get∣∣[0, ε]

∣∣ =
∣∣R

∣∣.Sine the funtion h : ω2 → P(ω) de�ned by stipulating h(f) := {
n ∈ ω :

f(n) = 1} is bijetive, and sine |R| = |P(ω)|, we get |R| = |ω2|.Reall that there is a bijetion g : ω × ω → ω, e.g., let g(〈n,m〉
)
:=

m + 1
2 (n +m)(n +m + 1). In order to show that |ωR| = |R| it is enough toshow that there is a bijetion between ωP(ω) and P(ω). Now, there is a one-to-one orrespondene between funtions h ∈ ωP(ω) and sets X ∈ P(ω×ω)by 〈a, b〉 ∈ X ⇐⇒ b ∈ h(a). Thus, the funtion

P(ω × ω) −→ P(ω)

X 7−→ g[X ]indues an bijetion between ωP(ω) and P(ω), hene, |ωR| and |R|, andsine |R| ≤ |R × R| ≤ |ωR| and |R| = |ω2| ≤ |ωω| ≤ |ωR|, we �nally get
|R| = |ω2| = |ωω| = |R×R| = |ωR|.To see that ∣∣R

∣∣ =
∣∣C[0, 1]

∣∣, notie �rst that a ontinuous funtion from
[0, 1] to R is de�ned by its values on Q∩ [0, 1]. By Fat 4.1 there is a bijetionbetween Q ∩ [0, 1] and ω, and onsequently there is a one-to-one orrespon-dene between funtions in C[0, 1] and some funtions in ωR whih shows that∣∣C[0, 1]

∣∣ ≤
∣∣ωR

∣∣. Sine |ωR| = |R| and sine we obviously have ∣∣R∣∣ ≤
∣∣C[0, 1]

∣∣,by the Cantor-Bernstein Theorem 3.17 we �nally get ∣∣C[0, 1]∣∣ = ∣∣R
∣∣.By Fat 4.2, |A| = ℵ0 and we leave it as an exerise to the reader to showthat |R \ A| = |R| for all ountable sets A ⊆ R. At this point we would liketo mention that the reals R \A are alled transendental numbers; thus, allbut ountably many reals are transendental. ⊣Let us now turn our attention to arbitrary ardinalities and let us provethat whenever we an embed ω into P(A). Then we an also embed R into

P(A).Proposition 4.4. If ℵ0 ≤ 2m, then 2ℵ0 ≤ 2m.Proof. Let A be an arbitrary set of ardinality m. Beause ℵ0 ≤ 2m there is aninjetion f0 : ω →֒ P(A). De�ne an equivalene relation on A by stipulating
x ∼ y ⇐⇒ ∀n ∈ ω

(
x ∈ f0(n) ↔ y ∈ f0(n)

)
,



82 4 Cardinal Relations in ZF onlyand let [x]̃ := {y ∈ A : y ∼ x}. For x ∈ A let gx :=
{
n ∈ ω : x ∈ f0(n)

}.Then for every x ∈ A we have gx ⊆ ω and gx = gy i� [x]̃ = [y]̃ . We anonsider the set gx as a funtion from ω to {0, 1} by gx(n) = 0 if x ∈ f0(n) and
gx(n) = 1 if x /∈ f0(n). Now we de�ne an ordering �≺ � on the set {gx : x ∈ A}by stipulating
gx ≺ gy ⇐⇒ ∃n ∈ ω

(
gx(n) < gy(n) ∧ ∀k ∈ n

(
gx(k) = gy(k)

))
.Notie that for all x, y ∈ A suh that gx 6= gy we have either gx ≺ gy or

gy ≺ gx. Let P 0
n := {gx : gx(n) = 0}. Then for eah n ∈ ω, P 0

n ⊆ ω2.Obviously, the relation �≺ � de�nes an ordering on eah P 0
n . We onsider thefollowing two ases:If for eah n ∈ ω, P 0

n is well-ordered by �≺ �, then we an easily well-orderthe in�nite set ⋃n∈ω P
0
n and onstrut a ountably in�nite set {gxi

: i ∈ ω}suh that for all distint i, j ∈ ω, gxi
6= gxj

. If we de�ne qi = {x ∈ A : gx =
gxi

}, then the set Q := {qi : i ∈ ω} is a ountable in�nite set of pairwisedisjoint subsets of A.If not every P 0
n is well-ordered by �≺ �, there exists a least m ∈ ω suhthat P 0

m is not well-ordered by �≺ � and we an de�ne
S0 =

⋃{
S ⊆ P 0

m : S has no ≺-minimal element} .By de�nition of S0 ⊆ P 0
m, S0 has no ≺-minimal element, too. For k ∈ ωwe de�ne Sk+1 as follows: If Sk ∩ P 0

m+k+1 = ∅, then Sk+1 := Sk; otherwise,
Sk+1 := Sk ∩P 0

m+k+1. By onstrution, for every k ∈ ω, Sk 6= ∅ and Sk is notwell-ordered by �≺ �. This implies that for every k ∈ ω there exists an l > ksuh that Sl is a proper subset of Sk. Now let Sk0 , Sk1 , . . . be suh that for all
i < j we have Ski \ Skj 6= ∅ and let qi := {

x ∈ A : gx ∈ (Ski \ Ski+1

}. Thenthe set Q := {qi : i ∈ ω} is again a ountable in�nite set of pairwise disjointsubsets of A.Thus, in both ases the ardinality of P(Q) is 2ℵ0 , and sine the funtion
P(Q) −→ P(A)

X 7−→ ⋃
Xis injetive we �nally have 2ℵ0 ≤ 2m. ⊣It is now time to de�ne addition and multipliation of ardinals. Let mand n be ardinals and let A and B be disjoint sets of ardinality m and nrespetively. Then we de�ne the sum and produt of m and n as follows:

m+ n = |A ∪̇B|
m · n = |A×B|



Basi ardinal relations 83Furthermore, let 2m := m+ m and m2 := m ·m. We leave it as an exerise tothe reader to show that for any ardinals m, n and p we have for example:
m+ n = n+m , m · n = n ·m

m ≤ n → p+m ≤ p+ n , m ≤ n → p ·m ≤ p · n

2m+n = 2m · 2n , 2m·n =
(
2m

)nFor example to show that 2m+n = 2m·2n, de�ne f : P(A∪̇B) → P(A)×P(B)by stipulating f(S) := 〈S ∩ A,S ∩B〉.The following fat is just an easy onsequene of the de�nition of orderedpairs.Fat 4.5. For any ardinal m, m2 ≤ 22
m .Proof. Let A be a set of ardinality m. Any 〈a, b〉 ∈ A× A an be written inthe form {

a, {a, b}
}, whih is obviously an element of P

(
P(A)

). ⊣Let m be a ardinal and let A be a set of ardinality m. Then we de�ne
fin(m) := | fin(A)| and [m]2 := |[A]2|. Notie that for all ardinals m > 2 wehave m ≤ [m]2 ≤ fin(m). We leave it as an exerise to the reader to show that
ℵ0 ≤ m2 → ℵ0 ≤ m; however, ℵ0 ≤ [m]2 → ℵ0 ≤ m is not provable in ZF (seeTheorem 7.6.(b)).As mentioned above, an in�nite set an be D-�nite and moreover, even thepower set of an in�nite set an be D-�nite. However, for every in�nite ardinal
m, 2fin(m) is trans�nite (notie that 2fin(m) ≤ 22

m).Fat 4.6. If m is an in�nite ardinal, then 2ℵ0 ≤ 2fin(m), in partiular 2fin(m)is trans�nite.Proof. Let A be an arbitrary in�nite set of ardinality m. For every n ∈ ω let
Xn := {x ⊆ A : |x| = n}. Then for any n ∈ ω, Xn ∈ P

(
fin(A)

). For any twodistint integers n,m ∈ ω we get Xn 6= Xm. This shows that ℵ0 ≤ 2fin(m),and hene, by Proposition 4.4, 2ℵ0 ≤ 2fin(m). ⊣The following result is an immediate onsequene of Fat 4.6 (see Theo-rem 4.28 for a stronger result).Fat 4.7. If m is an in�nite ardinal, then 22
2
m

+ 22
2
m

= 22
2
m .Proof. Notie that

22
2
m

+ 22
2
m

= 2 · 222
m

= 2(2
2
m

+1),and sine 22
m is trans�nite, 22m

+ 1 = 22
m .



84 4 Cardinal Relations in ZF onlyFor arbitrary sets A and B we write |A| ≤∗ |B| if either A = ∅ or thereis a surjetion from B onto A. Similarly we write m ≤∗ n if there are sets
A ∈ m and B ∈ n suh that |A| ≤∗ |B|. Notie that ardinal relation �≤� isre�exive and transitive, and that m ≤ n → m ≤∗ n. We leave it as an exeriseto the reader to show that for all ardinals m, [m]2 ≤∗ m2 (ompare this resultwith Proposition 7.18). However, in ZF, |A| ≤∗ |B| and |B| ≤∗ |A| does notimply |A| = |B| (see Chapter 7 for ounterexamples). On the other hand, wehave the followingFat 4.8. If m ≤∗ n, then 2m ≤ 2n. Moreover, if m ≤∗ ℵ, then m ≤ ℵ.Proof. Let the sets A and B be of ardinality m and n respetively. Sine
m ≤∗ n there is a surjetion g : B ։ A. Let f : P(A) → P(B) by stipulating
f(X) :=

{
y ∈ B : g(y) ∈ X

}. Then f is injetive whih shows that ∣∣P(A)
∣∣ ≤∣∣P(B)

∣∣.Now, let S be a set of ardinality ℵ and let RS ⊆ S×S be a well-orderingof S. Further, let g : S ։ A (where |A| = m) be a surjetion. Then f : A→ S,where f(a) is the RS-minimal element of {s ∈ S : g(s) = a
} is obviously aninjetion. ⊣Reall that by Hartogs' Theorem 3.27, for any ardinal m there is asmallest ℵ, denoted ℵ(m), suh that ℵ(m) � m.Fat 4.9. If m is an in�nite ardinal, then ℵ(m) ≤∗ 2m

2 .Proof. Let A be a set of ardinalitym. Any binary relationR on A orrespondsto a subset XR of A× A by stipulating 〈a0, a1〉 ∈ XR ⇐⇒ R(a0, a1). Thus,we get that the ardinality of the set of binary relations on A is less than orequal to 2m
2 . Further, let S be a well-orderable set of ardinality ℵ(m), let

R be a well-ordering of S, and let α = o.t.(R) be the order type of R. Then
|α| = |S| = α(m). De�ne f : P(A×A) → α by stipulating

f(X) =

{
∅ if X is not a well-ordering of a subset of A,
o.t.(X) otherwise.By the proof of Hartogs' Theorem 3.27, for every β ∈ α there is a well-ordering R of a subset of A suh that o.t.(R) = β, hene, f is surjetive. ⊣In the proof of Cantor's Theorem 3.25 it is in fat shown that for allardinals m, 2m �∗ m. On the other hand, we obviously have 2m ≤∗ m2 in thease when m ≤ 4; however, it is not known whether 2m ≤∗ m2 → m ≤ 4 isprovable in ZF (see Related Result 21).The situation is di�erent when we replae �≤∗ � by �≤ �. By Cantor'sTheorem 3.25 we know that m < 2m, thus, 2m � m. Moreover, 2m ≤ m2 →

m ≤ 4 (see Theorem 4.20), but we have to postpone the proof until we anompute the ardinality of produts of in�nite ordinal numbers. However, letus �rst investigate the ardinality of the ontinuum R.



On the ardinals 2ℵ0 and ℵ1 85On the Cardinals 2ℵ0 and ℵ1By Hartogs' Theorem 3.27 we know that for any ardinal m (e.g., m = ℵ0)there is a smallest ℵ, denoted ℵ(m), suh that ℵ(m) � m. Now let ℵ1 := ℵ(ℵ0).Then ℵ1 ontains an unountable well-orderable set, say A, suh that everysubset of A of ardinality stritly less than A is ountable. Let α be the ordertype of a well-ordering of A. Then, sine |α| = ℵ1, α is an unountable ordinal.Now, if α \ {β ∈ α : |β| = ℵ0} = ∅, then α is the least unountable ordinalwhih is usually denoted ω1. Otherwise, the non-empty set α \ {β ∈ α : |β| =
ℵ0}, as a set of ordinals, has an ∈-minimal element, say γ. Then γ is the leastunountable ordinal, i.e., γ = ω1. In partiular we get |ω1| = ℵ1, and for all
β ∈ ω1 we have |β| = ℵ0.If 2ℵ0 would be an aleph, then we would have ℵ1 ≤ 2ℵ0 , (notie that
ℵ0 < 2ℵ0 and that ℵ0 < ℵ1). Now, the Continuum Hypothesis, denoted CH,states that 2ℵ0 = ℵ1. In partiular, if 2ℵ0 is an aleph then CH is equivalent tosaying that every subset of R is either ountable or of ardinality 2ℵ0 .In Chapter 16 we shall see that CH is independent of ZF, thus, neither ZF ⊢CH nor ZF ⊢ ¬CH. Below we investigate the relationship between the ardinals
2ℵ0 and ℵ1. In order to onstrut a surjetion from R onto ω1 �even thoughthere might be no injetion from ω1 into R�we prove �rst the followingresult:Lemma 4.10. For every ordinal α ∈ ω1 there is a set of rationals Qα ⊆
Q∩ (0, 1) and a bijetion hα : α → Qα suh that for all β, β′ ∈ α, β ∈ β′ ⇐⇒
hα(β) < hα(β

′).Proof. Let α be an arbitrary but �xed ordinal in ω1. For α = 0 let Q0 := ∅and we are done; and if 0 6= α ∈ ω (i.e., if α is �nite), then for n ∈ α we de�ne
hα(n) := 1− 1/(n+ 2). If α is in�nite we proeed as follows. Firstly let

ω −→ α

n 7−→ βnand
ω −→ Q ∩ (0, 1)

n 7−→ qnbe two bijetions (notie that the sets α and Q ∩ (0, 1) are both ountablyin�nite). Sine {βn : n ∈ ω} = α, it is enough to de�ne hα(βn) for all n ∈ ωwhih is done by indution: hα(β0) := q0 and if hα(βk) is de�ned for all k ∈ n,then
hα(βn) = qµ(n)where

µ(n) = min
{
m ∈ ω : ∀k ∈ n (qm ≤ hα(βk) ↔ βn ∈ βk)

}
.Further, let Qα := hα[α]. Then by indution one an show that hα and Qαhave the required properties (the details are left to the reader). ⊣



86 4 Cardinal Relations in ZF onlyTheorem 4.11. ℵ1 ≤∗ 2ℵ0 .Proof. It is enough to onstrut a surjetion from the open interval (0, 1) onto
ω1. Firstly notie that every real r ∈ (0, 1) an be written uniquely as

r =
∑

n∈ω

rn · 2−(n+1)where for all n ∈ ω, rn ∈ {0, 1}, and in�nitely many rn's are equal to 0. Onthe other hand, for every funtion f ∈ ω2 suh that {n ∈ ω : f(n) = 0} isin�nite there exists a unique real r = ∑
n∈ω f(n) · 2−(n+1) in (0, 1). Seondly,for r ∈ (0, 1) let Qr = {qn : r2n = 1} where the funtion whih maps n to

qn is a bijetion between ω and Q ∩ (0, 1). If Qr is well-ordered by �< �, thenlet η(r) be the order type of (Qr, <); otherwise, let η(r) = ∅. Sine the set ofrational numbers is ountable, η is a funtion from (0, 1) to ω1. Moreover, thefuntion η is even surjetive. Indeed, by Lemma 4.10 we know that for any
α ∈ ω1 there is a set of rational numbers Qα ⊆ Q ∩ (0, 1) suh that the ordertype of (Qα, <) is equal to α. Thus, for

r =
∑

n∈N(Qα)

2−(2n+1) where N(Qα) = {k ∈ ω : qk ∈ Qα}we have r ∈ (0, 1) and η(r) = α, and sine α ∈ ω1 was arbitrary this showsthat η is surjetive. ⊣In ontrast to Theorem 4.11 the existene of an injetion from ω1 into Ris not provable in ZF, i.e., ℵ1 � 2ℵ0 is onsistent with ZF. For example thereis no suh injetion in the ase when the reals an be written as a ountableunion of ountable sets (for the onsisteny of this statement with ZF seeChapter 17).Proposition 4.12. If the set of real numbers is a ountable union of ount-able sets, then ℵ1 � 2ℵ0 .Proof. By Fat 4.3, |R| = |ωR|. Thus, if R is a ountable union of ountablesets, then we also have ωR =
⋃
n∈ω Fn where eah Fn is ountable. Theproof is by ontraposition: Under the assumption that there is an injetion

j : ω1 →֒ R we show that ωR 6= ⋃
n∈ω Fn. Consider the funtion

G : ω −→ P(R)

n 7−→
{
r ∈ R : ∃f ∈ Fn ∃k ∈ ω

(
f(k) = r

)}
.For eah n ∈ ω we have |G(n)| ≤ ℵ0 and we an de�ne h : ω → R bystipulating

h(n) := j(αn) where αn = min
{
β ∈ ω1 : j(β) /∈ G(n)

}
.



Ordinal numbers revisited 87By de�nition h ∈ ωR, but on the other hand, h does not belong to any set
Fn (for n ∈ ω); sine otherwise we would have h(n) ∈ G(n) whih ontraditsthe de�nition of h(n). Thus, h /∈ ⋃

n∈ω Fn whih shows that ωR�and on-sequently R�annot be overed by ountably many ountable sets. ⊣As a onsequene of Proposition 4.12 one an show that if R is a ount-able union of ountable sets, then R an be partitioned into stritly moreparts than real numbers exist, where a partition of R is a set R ⊆ P(R)suh that ⋃R = R and for any distint x, y ∈ R, x ∩ y = ∅.Corollary 4.13. If the set of real numbers is a ountable union of ountablesets, then there exists a partition R of R suh that |R| > |R|.Proof. By Fat 4.3 and the Cantor-Bernstein Theorem 3.17 there existsa bijetion between R \ (0, 1) and R, and by Theorem 4.11 there exists asurjetion from (0, 1) onto ω1. Thus, there is a surjetion f : R ։ R∪̇ω1and with f we an de�ne an equivalene relation �∼� on R by stipulating
x ∼ y ⇐⇒ f(x) = f(y). Let R = {[x]̃ : x ∈ R}. Then R is a partition of Rand we have |R| = ℵ1+2ℵ0 . By Proposition 4.12, ℵ1 � 2ℵ0 and onsequently
ℵ1+2ℵ0 � 2ℵ0 , and sine 2ℵ0 ≤ ℵ1+2ℵ0 we have 2ℵ0 < ℵ1+2ℵ0 , in partiular,
|R| < |R|. ⊣Ordinal Numbers revisitedIn the previous hapter we have de�ned addition, multipliation, and exponen-tiation of ordinal numbers. Using these arithmetial operations we an showthat every ordinal number an be uniquely represented in a standardised form,but �rst let us introdue some terminology: For ordinals α, β ∈ Ω we will write
β < α instead of β ∈ α and onsequently we de�ne β ≤ α ⇐⇒ β ∈ α∨β = α.Further notie that if β ≤ α, then there is a unique ordinal, denoted α − β,suh that β + (α− β) = α.Lemma 4.14. For every ordinal α > 0 there exists a unique ordinal α0 suhthat ωα0 ≤ α and ωα0+1 > α.Proof. Firstly notie that by the rules of ordinal exponentiation, for γ < γ′ wehave ωγ < ωγ ·ω ≤ ωγ ·ωγ′−γ = ωγ

′ . In partiular, for any ordinal α0 we have
ωα0 < ωα0+1. Seondly notie that for all ordinals α we have ωα ≥ α, hene,
ωα+1 > ωα ≥ α. Now, sine α+1 is well-ordered by �< � and ωα+1 > α ≥ ω0,there is a unique least ordinal β ≤ α+1 suh that ωβ > α. It remains to showthat β is a suessor ordinal, i.e., β = α0 + 1 for some α0. Indeed, if β wouldbe a limit ordinal, then ωβ =

⋃
γ∈β ω

γ , and by de�nition of β we would have
ωγ ≤ α (for all γ ∈ β). Sine ωγ+1 > ωγ and sine β is a limit ordinal, thiswould imply that ωγ ∈ α whenever γ ∈ β and onsequently ωβ ≤ α, whereas
ωβ > α, a ontradition. ⊣



88 4 Cardinal Relations in ZF onlyLemma 4.15. Let α ≥ ω be an in�nite ordinal. Then there exist a positiveinteger k0 and ordinals α′ and α0 where α′ < ωα0 suh that α = ωα0 ·k0+α′.Moreover, the ordinals k0, α0, and α′ are uniquely determined by α.Proof. Let α0 be as in Lemma 4.14. Then ωα0 ≤ α and ωα0+1 > α. By asimilar argument as in the proof of Lemma 4.14, this implies that there arepositive integers k suh that ωα0 · k > α. Let k0 be the least integer suh that
ωα0 · (k0 + 1) > α; then 1 ≤ k0 < ω (notie that ωα0 = ωα0 · 1 ≤ α). Finally,let α′ =

(
α − ωα0 · k0

). Then ωα0 · k0 + α′ = α and sine ωα0 · (k0 + 1) =
ωα0 · k0 +ωα0 > α, α′ < ωα0 . We leave it as an exerise to the reader to showthat k0, α0, and α′ are uniquely determined by α. ⊣Now we are ready to prove the following result:Theorem 4.16 (Cantor's Normal Form Theorem). Every ordinal num-ber α > 0 an be uniquely represented in the form

α = ωα0 · k0 + ωα1 · k1 + . . .+ ωαn · knwhere n+1 and k0, k1, . . . , kn are positive integers and the ordinal exponentssatisfy α ≥ α0 > α1 > α2 > . . . > αn ≥ 0.Proof. By an iterative appliation of Lemma 4.15 we get
α = ωα0 · k0 + α′

α′ = ωα1 · k1 + α′′

α′′ = ωα2 · k2 + α′′′...where α′ < ωα0 , α′′ < ωα1 , α′′′ < ωα2 , et etera, and k0, k1, k2, . . . are positiveintegers. Now, α′ < ωα0 implies that α1 < α0, and α′′ < ωα1 implies that
α2 < α1, and so on. Thus, we get a desending sequene α ≥ α0 > α1 >
α2 > . . ., and sine by the Axiom of Foundation every suh sequene is �nite,there exists an n ∈ ω suh that αn+1 = 0, and sine ω0 = 1 this implies that
α = ωα0 · k0 + . . .+ ωαn · kn. ⊣The form α = ωα0 ·k0+. . .+ωαn ·kn is alled the Cantor normal form of
α, denoted cnf(α). Notie that by Cantor's Normal Form Theorem 4.16,every ordinal number an be written in a unique way in Cantor normal form.For α = ωα0 ·k0+ . . .+ωαn ·kn let cnf0(α) := ωα0 ·k0. The next lemma willbe used to show that for every in�nite ordinal α, there is a bijetion between
α and cnf0(α).Lemma 4.17. If α0, α1, k0, k1 are ordinals, where α0 > α1 and 0 < k0, k1 < ω,then

ωα1 · k1 + ωα0 · k0 = ωα0 · k0 .



Ordinal numbers revisited 89Proof. By distributivity we get ωα1 ·k1+ωα0 ·k0 = ωα1 ·
(
k1+ω

α0−α1 ·k0
), andsine k1+ω = ω we get k1+ωα0−α1 ·k0 = ωα0−α1 ·k0. Thus, ωα1 ·k1+ωα0 ·k0 =

ωα1 ·
(
k1 + ωα0−α1 · k0

)
= ωα0 · k0. ⊣Lemma 4.18. For eah ordinal α > 0 there exists a bijetion between α and

cnf0(α).Proof. Let cnf(α) = ωα0 · k0 +ωα1 · k1 + . . .+ωαn · kn and de�ne the �reverseCantor normal form� of α, denoted ←−

cnf(α), by
←−

cnf(α) = ωαn · kn + ωαn−1 · kn−1 + . . .+ ωα0 · k0 .If α < ω, then α0 = 0, hene, α = ωα0 · k0 = k0 and therefore α = cnf0(α).If α ≥ ω, then by an iterative appliation of Lemma 4.17 we get ←−cnf(α) =
ωα0 · k0 = cnf0(α), and sine there is obviously a bijetion between α and
←−

cnf(α), there exists a bijetion between α and cnf0(α). ⊣Now we are ready to show that for eah in�nite ordinal α, the ardinality ofthe set of all �nite sequenes whih an be formed with elements of α is thesame as the ardinality of α. Moreover, we an show the following result:Theorem 4.19. For eah in�nite ordinal α we have
|α| = | fin(α)| = | seq1-1(α)| = | seq(α)| .Moreover, there exists a lass funtion F suh that for eah in�nite ordinal

α ≥ ω, {α} × seq(α) ⊆ dom(F ) and F |{α}×seq(α) indues an injetion from
seq(α) into α.Proof. Firstly notie that for every ordinal α, |α| ≤ | fin(α)| ≤ | seq1-1(α)| ≤
| seq(α)|. In fat, there is a lass funtion assigning to eah ordinal α someappropriate funtions to witness these inequalities. Thus, it is enough to provethat for every in�nite ordinal α, | seq(α)| ≤ |α| uniformly; i.e., it is enough toshow the existene of a lass funtion F suh that for every in�nite ordinal
α and any distint �nite sequenes s, t ∈ seq(α) we have F (〈α, s〉) ∈ α and
F
(
〈α, s〉

)
6= F

(
〈α, t〉

). Let α be an arbitrary but �xed in�nite ordinal. Inthe following steps we will onstrut an injetion Fα : seq(α) →֒ α suh thatthe lass funtion F de�ned by F (〈α, s〉) := Fα(s) has the desired properties(notie that this requires that the funtion Fα is fully determined by α).First we give a detailed onstrution of an injetion gα : α →֒ ωα0 , where
ωα0 ·k0 = cnf0(α). By Lemma 4.18 there is a bijetion between α and ωα0 ·k0.Further, there is a bijetion between the ordinal ωα0 · k0 and the set ωα0 × k0.Indeed, if β ∈ ωα0 · k0, then there is a β′ ∈ ωα0 and an j ∈ k0 suh that
β = ωα0 · j + β′; let the image of β be 〈β′, j〉. Similarly, there is a bijetionbetween the set k0×ωα0 and the ordinal k0 ·ωα0 , and sine there is obviouslya bijetion between ωα0 × k0 and k0 ×ωα0 , there is a bijetion between α and
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k0 · ωα0 . Further, sine 1 ≤ k0 < ω, there is an injetion from k0 · ωα0 into
ω · ωα0 = ω1+α0 , thus, there is an injetion

g : α →֒ ω1+α0 .Notie that beause α ≥ ω, α0 ≥ 1. Now we onsider the following two ases:If α0 ≥ ω, then 1 + α0 = α0, thus, g is an injetion from α into ωα0 ; inthis ase let gα := g.If α0 < ω, then 1+α0 = α0+1 and there is a bijetion between the ordinal
ωα0+1 and the set of funtions from α0+1 to ω, denoted α0+1ω. Similar to theproof of Fat 4.2 let p0 < p1 < . . . < pα0 be the least α0 + 1 prime numbersand de�ne h : α0+1ω → ω by stipulating h(s) =

∏
i≤α0

p
s(i)+1
i . Then h isinjetive and sine α0 ≥ 1 (notie that α ≥ ω), there is an injetion from αinto ωα0 ; in this ase let gα be that injetion.Similarly, for eah n ∈ ω we an onstrut an injetion fα,n : nα →֒ α. For

n = 0 let fα,0(∅) := ∅; and for n > 0 let fα,n be de�ned by the followingsequene of injetions:
fα,n : nα by gα // n

(
ωα0

)
//
(
ωα0

)n // ωα0·n // ωn·α0 //

ωn·d0 // ω // αby gαo , where
ωδo · d0 = cnf0(α0)

//
ωn·ω

δo ·d0 //
ωn·d0·ω

δo

δ0
=0

99ssssssss

δ
0>

0
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JJ

JJ
JJ

ωω // α

ωω·ω
δo //

ωω
1+δo

δ0
<
ω

;;wwwwwww

δ
0≥
ω

##G
GG

GG
GG

ωω
δo // αNow we an onstrut an injetion from seq(α) into α: Firstly notie thatthere is a natural bijetion between seq(α) and ⋃

n∈ω
nα, thus, it is enoughto onstrut an injetion Fα from ⋃

n∈ω
nα into α. If s ∈ ⋃

n∈ω
nα, then s isa �nite set of ordered pairs (i.e., |s| ∈ ω) and fα,|s| is an injetion from |s|αinto α, in partiular, fα,|s|(s) ∈ α. Finally let us de�ne Fα :

⋃
n∈ω

nα → α bystipulating
F (s) := fα,2

({
〈0, |s|〉, 〈1, fα,|s|(s)〉

})
.Then, sine α is in�nite, |s| ∈ α, and sine fα,2 is an injetion from 2α into

α, Fα is injetive. ⊣As an appliation of Theorem 4.19 let us prove that whenever we havean injetion from P(A) into A×A, then A has at most four elements.



Ordinal numbers revisited 91Theorem 4.20. 2m ≤ m2 → m ≤ 4.Proof. If m is �nite, an easy alulation shows that 2m ≤ m2 implies that
m ∈ {2, 3, 4}. Thus, let m be in�nite and assume towards a ontradition that
2m ≤ m2. Let A be a set of ardinality m and let f0 : P(A) →֒ A×A. With thefuntion f0 we an onstrut an injetive lass funtion from Ω into A, whihis obviously a ontradition to the Axiom Shema of Replaement�whihimplies that there is no injetion from a proper lass (like Ω) into a set.Firstly we onstrut an injetion Fω : ω →֒ A. Let a0, a1, a2, a3, a4 be �vedistint elements of A and de�ne F5 : 5 → A by stipulating F5(i) := ai (forall i ∈ 5); further let S5 := F5[5] (i.e., S5 = {F5(i) : i ∈ 5}). Assume that forsome n ≥ 5 we have already onstruted an injetion Fn : n →֒ A. For anydistint sets x, y ∈ P(Sn), where Sn := Fn[n], let
x ≺ y ⇐⇒ |x| < |y| ∨ ∃i ∈ n

(
F (i) ∈ (x\y)∧∀j ∈ i

(
F (j) ∈ x↔ F (j) ∈ y

))
.Sine Sn is �nite, the relation �≺ � is a well-ordering, and sine n ≥ 5,

|P(Sn)| = 2n > n2 = |Sn × Sn|. Thus, there exists a ≺-minimal set x ⊆ Snsuh that f0(x) /∈ Sn × Sn. Let f0(x) = 〈b0, b1〉 and let
an =

{
b0 if b0 /∈ Sn,
b1 otherwise.De�ne Fn+1 := Fn ∪ {〈n, an〉} and let Sn+1 := Sn ∪

{
Fn+1(n)

}. Then Fn+1is an injetion from n + 1 into A, and Sn+1 = Fn+1[n + 1]. Proeeding thisway we �nally get an injetion Fω : ω →֒ A as well as a ountably in�nite set
Sω = Fω[ω] ⊆ A.Assume now that we have already onstruted an injetion Fα : α →֒ Afor some in�nite ordinal α ≥ ω and let Sα := Fα[α]. By Theorem 4.19 thereis a anonial bijetion g : α → α × α. With g we an de�ne a bijetion
ḡ : Sα → Sα × Sα by stipulating

ḡ
(
Fα(β)

)
=

〈
Fα(β0), Fα(β1)

〉 where β = g−1
(
〈β0, β1〉

)
.Further, de�ne a mapping Γ : Sα → P(Sα) by stipulating

Γ (a) =

{
x ⊆ Sα if f0(x) = ḡ(a),
∅ otherwise.and let

M =
{
a ∈ Sα : a /∈ Γ (a)

}
.Then M ∈ P(Sα) and let f0(M) = 〈b0, b1〉 ∈ A × A. If 〈b0, b1〉 ∈ Sα × Sα,then f0(M) = ḡ(a) for some a ∈ Sα, and hene Γ (a) = M ; but a ∈ Γ (a) ↔

a ∈ M ↔ a /∈ Γ (a), whih is obviously impossible. Thus, 〈b0, b1〉 /∈ Sα × Sαand we let
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aα =

{
b0 if b0 /∈ Sα,
b1 otherwise.Further, de�ne Fα+1 := Fα∪{〈α, aα〉} and let Sα+1 := Sα∪{aα}. Then Fα+1is an injetion from α + 1 into A, and Sα+1 = Fα+1[α + 1]. Finally, if λ is alimit ordinal and Fβ is de�ned for eah β ∈ λ we de�ne Fλ :=

⋃
β∈λ Fβ .Now, by the Transfinite Reursion Theorem 3.19, ⋃
α∈Ω Fα is aninjetive lass funtion whih maps Ω into A; a ontradition to Hartogs'Theorem. ⊣The idea of the previous proof� getting a ontradition by onstrutingan injetive lass funtion from Ω into a given set � is used again in the proofsof Theorem 4.21, Proposition 4.22, and Lemma 4.23.More Cardinal Relations

fin(m) < 2m whenever m is in�niteTheorem 4.21. If m is an in�nite ardinal, then fin(m) < 2m.Proof. Let A be an arbitrary but �xed in�nite set of ardinality m. Obviously,the identity mapping is an injetion from fin(A) into P(A), hene, fin(m) ≤
2m. Now, assume towards a ontradition that ∣∣P(A)

∣∣ =
∣∣fin(A)

∣∣ and let
f0 : P(A) → fin(A)be a bijetion. The mapping will be used in order to onstrut an injetivelass funtion F : Ω →֒ fin(A). First we de�ne an injetion Fω : ω →֒ fin(A)by stipulating
Fω(n) = fn+1

0 (A)where f1
0 (A) := f0(A) and for positive integers k, fk+1

0 (A) := f0
(
fk0 (A)

).Then, sine A is in�nite, Fω is indeed an injetion.Assume that we have already onstruted an injetion Fα : α →֒ fin(A) forsome in�nite ordinal α ≥ ω and for ι ∈ α let sι := F (ι). Notie that sι 6= sι′whenever ι 6= ι′. De�ne an equivalene relation on A by
x ∼ y ⇐⇒ ∀ι ∈ α(x ∈ sι ↔ y ∈ sι) .For x ∈ A and µ ∈ α de�ne

Dx,µ =
⋂{

sι : ι ∈ µ ∧ x ∈ sι
}where we de�ne for the moment ⋂ ∅ := A, and let

gx =
{
µ ∈ α : x ∈ sµ ∧ (sµ ∩Dx,µ 6= Dx,µ)

}
.



More ardinal relations: fin(m) < 2m 93We leave it as an exerise to the reader to show that for any x, y ∈ A, gx = gyi� x ∼ y. Hene, there is a bijetion between {
[x]̃ : x ∈ A

} and {
gx : x ∈ A

}.Further, for eah x ∈ A, gx ∈ fin(α). To see this, let µ0 < µ1 < µ2 < . . . bethe ordinals in gx in inreasing order. By de�nition we have:(1) x /∈ sι whenever ι ∈ µ0(2) x ∈ sµ0 and sµ0 = Dx,µ0+1(3) Dx,µ0+1 ! Dx,µ1+1 ! Dx,µ2+1 ! . . .By (2), Dx,µ0+1 is �nite, and therefore the dereasing sequene (3) must be�nite too, whih implies that also gx is �nite.Sine {gx : x ∈ A} ⊆ fin(α) we an apply Theorem 4.19 to obtain aninjetion h : {gx : x ∈ A} →֒ α. The set h[{gx : x ∈ A}
], as a subset of α, iswell-ordered by �∈�. Let γ be the order type of h[{gx : x ∈ A}

]. Then γ ≤ αand for eah gx assign an ordinal number η(gx) ∈ γ suh that the mapping
η : {gx : x ∈ A} → γ is bijetive. For eah ι ∈ α, sι is the union of at most�nitely many equivalene lasses. Thus, we an onstrut an injetion from αinto fin(γ) by stipulating

ι 7−→
{
ξ ∈ γ : ∃x ∈ sι

(
η(gx) = ξ

}
.Beause by Theorem 4.19 we an onstrut a bijetion between fin(γ) and

γ, we an also onstrut an injetion from α into γ, and beause γ ≤ α, bythe Cantor-Bernstein Theorem 3.17 we �nally get a bijetion H : γ → αbetween γ and α. De�ne the funtion Γ : A→ P(A) by stipulating
Γ (x) = f0

−1
(
sH(η(gx))

)and onsider the set
M =

{
x ∈ A : x /∈ Γ (x)

}
.We laim that the set M does not belong to {

f0
−1(sι) : ι ∈ α

}. Indeed, ifthere would be a β ∈ α suh that f0−1(sβ) =M , then there would also be anequivalene lass [x]̃ , whih orresponds to gx, suh that
β = H

(
η(gx)

)
.For eah y ∈ [x]̃ we have Γ (y) = M , and y ∈ Γ (y) ↔ y ∈ M ↔ y /∈ Γ (y),whih is obviously impossible.Now, let sα := f0

−1(M) and de�ne Fα+1 := Fα ∪ {sα}. Then Fα+1 isan injetion from α + 1 into fin(A). Finally, if λ is a limit ordinal and Fβ isde�ned for eah β ∈ λ, then de�ne Fλ :=
⋃
β∈λ Fβ . Thus, by the TransfiniteReursion Theorem 3.19,⋃α∈Ω Fα is an injetive lass funtion whih maps

Ω into fin(A); a ontradition to Hartogs' Theorem. ⊣Even though fin(m) < 2m (for all in�nite ardinals m), it might be possiblethat for some natural number n, n · fin(m) = 2m. The next result shows thatin that ase, n must be a power of 2.



94 4 Cardinal Relations in ZF onlyProposition 4.22. If 2m = n·fin(m) for some natural number n, then n = 2kfor some k ∈ ω.Proof. If the ardinal m is �nite, then 2m = fin(m) = 1 · fin(m) = 20 · fin(m).So, let m be an in�nite ardinal and let A be an arbitrary but �xed set ofardinality m. Further, let n be a natural number whih is not a power of 2.Assume towards a ontradition that ∣∣P(A)
∣∣ =

∣∣n× fin(A)
∣∣. Let

f0 : n× fin(A) → P(A)be a bijetion whih will be used to onstrut an injetive lass funtionfrom Ω into fin(A). Let 〈m0, x0〉 := f0
−1(A). Assume that for some ℓ ∈ ω,

x0, x1, . . . , xℓ are pairwise distint �nite subsets of A. For eah i ∈ n and j ≤ ℓlet
Xi,j = f0

(
〈i, xj〉

)
.On A de�ne an equivalene relation by stipulating

a ∼ b ⇐⇒ ∀i ∈ n ∀j ≤ ℓ (a ∈ Xi,j ↔ b ∈ Xi,j) .Further, let Eq :=
{
[a]̃ : a ∈ A

} be the set of all equivalene lasses and let
k0 := |Eq |. Now de�ne an ordering �≺ � on the set {Xi,j : i ∈ n ∧ j ≤ ℓ}, forexample de�ne

Xi,j ≺ Xi′,j′ ⇐⇒ j < j′ ∨ (j = j′ ∧ i < i′) .The ordering �≺ � indues in a natural way an ordering on the set Eq, andonsequently of the set E =
{⋃

Y : Y ⊆ Eq
}. Sine the equivalene lassesin Eq are pairwise disjoint, |E| = 2k0 . Notie that 2k0 ≥ n · (ℓ+ 1), and sine

n is not a power of 2, there is a least set ⋃
Y0 ∈ E (least with respet tothe ordering on E indued by �≺ �) suh that f0−1

(⋃
Y0

)
= 〈mℓ+1, xℓ+1〉 and

xℓ+1 /∈ {xj : j ≤ ℓ}. For i ∈ n de�ne Xi,ℓ+1 := f0
(
〈i, xℓ+1〉

) and proeed asbefore. Finally we get an in�nite sequene x0, x1, . . . of pairwise distint �nitesubsets of A whih shows that fin(A) is trans�nite, i.e., there exists a injetion
Fω : ω →֒ fin(A).Assume that we have already onstruted an injetion Fα : α →֒ fin(A) forsome in�nite ordinal α ≥ ω. Using the fat that there is a bijetion between
n · α and α, by the same arguments as in the proof of Theorem 4.21 we anonstrut an injetion Fα+1 : α + 1 →֒ fin(A) and �nally obtain an injetivelass funtion from Ω into fin(A); a ontradition to Hartogs' Theorem.

⊣Even though Proposition 4.22 looks a little bland, one annot do betterin ZF, i.e., for all k ∈ ω, the statement �∃m(
2m = 2k · fin(m)

)� is onsistentwith ZF (f. Proposition 7.5).
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seq1-1(m) 6= 2m 6= seq(m) whenever m ≥ 2First we prove that the inequality seq1-1(m) 6= 2m 6= seq(m) whenever m istrans�nite.Lemma 4.23. Let m be a trans�nite ardinal number. Then 2m � seq(m) andonsequently also 2m � seq1-1(m).Proof. Let A be a set of ardinality m and assume towards a ontraditionthat there exists an injetion f0 : P(A) →֒ seq(A). Sine A is trans�nite thereis an injetion Fω : ω →֒ A and let Sω := Fω [ω]. Assume that we have alreadyonstruted an injetion Fα : α →֒ A for some in�nite ordinal α ≥ ω and let
Sα := Fα[α]. By Theorem 4.19 there is a bijetion between α and seq(α),and onsequently we an de�ne a bijetion ḡ : Sα → seq(Sα). Further, de�ne
Γ : Sα → P(Sα) by stipulating

Γ (a) =

{
x ⊆ Sα if f0(x) = ḡ(a),
∅ otherwise,and let

M =
{
a ∈ Sα : a /∈ Γ (a)

}
.Then M ∈ P(Sα) and f0(M) = 〈b0, b1, . . . , bn〉 ∈ seq(A) \ seq(Sα). Now,let aα := bi, where i ≤ n is the least number suh that bi /∈ Sα and de�ne

Fα+1 := Fα ∪ {〈α, aα〉} and Sα+1 := Sα ∪
{
Fα+1(α)

}. Then Fα+1 is aninjetion from α + 1 into A, and Sα+1 = Fα+1[α + 1]. Finally, if λ is a limitordinal and Fβ is de�ned for eah β ∈ λ we de�ne Fλ :=
⋃
β∈λ Fβ and �nallyget that ⋃α∈Ω Fα is an injetive lass funtion; a ontradition to Hartogs'Theorem. ⊣To prove that seq(m) 6= 2m whenever m ≥ 1 one ould for example showthat seq(m) = 2m implies that m is trans�nite by using similar ideas as above,but we get a slightly more elegant proof by showing that seq(m) = 2m impliesthat seq(m + ℵ0) = 2m+ℵ0 .Theorem 4.24. For all ardinals m ≥ 1, seq(m) 6= 2m.Proof. We will show that whenever m ≥ 1 is a ardinal suh that 2m = seq(m),then 2m+ℵ0 = seq(m + ℵ0) whih is a ontradition to Lemma 4.23. Let theset A be suh |A| = m and A ∩ ω = ∅. Further, let f0 : P(A) → seq(A) be abijetion. For a �xed element a0 ∈ A and n ∈ ω let

sn = 〈 a0, . . . , a0︸ ︷︷ ︸
n-times 〉 .With the sequenes sn we an de�ne an injetion g : ω →֒ P(A) by stipulating

g(n) := f0
−1(sn), whih shows that P(A) is trans�nite, i.e., ℵ0 ≤ 2m. Thus,



96 4 Cardinal Relations in ZF onlyby Proposition 4.4 we have 2ℵ0 ≤ 2m whih implies that there exists aninjetion h : P(ω) →֒ P(A). Finally let
F : P(A)× P(ω) −→ seq(A ∪ ω)

〈x, y〉 7−→ f0(x)
⌢
0
⌢
f0
(
h(y)

)where s⌢t denotes the onatenation of the sequenes s and t. Then F isinjetive and we onsequently get 2m+ℵ0 = 2m · 2ℵ0 = seq(m+ ℵ0). ⊣In order to prove that seq1-1(m) 6= 2m whenever m ≥ 2 we show that
seq1-1(m) = 2m would imply that m is trans�nite, whih is a ontradition toLemma 4.23. However, before we have to introdue some notation onerning�nite sequenes of natural numbers.For n ∈ ω let n⋆ := | seq1-1(n)| be the number of non-repetitive sequenes(i.e., sequenes without repetitions) we an build with n distint objets (e.g.,with {0, . . . , n− 1} = n). It is not hard to verify that

n⋆ =
n∑

k=0

(
n

k

)
k! =

n∑

j=0

n!

j!
,and that for all positive integers n we have n⋆ = ⌊en!⌋, where ⌊x⌋ denotes theinteger part of a real number x and eis the Euler number. Obviously, 0⋆ = 1and n⋆ = n · (n− 1)

⋆
+ 1, whih implies that

n⋆ = e

∫ ∞

1

tne−tdt .The number n⋆ is also the number of paths (without loops) in the ompletegraph on n+ 2 verties starting in one vertex and ending in another.The �rst few numbers of the integer sequene n⋆ are 0⋆ = 1, 1⋆ = 2, 2⋆ = 5,
3⋆ = 16, 4⋆ = 65, 5⋆ = 326, and further we get e.g., 100⋆ ≈ 2.53687 · 10158and 256⋆ ≈ 2.33179 · 10507.For eah positive integer q, an easy alulation modulo q shows that for all
n ∈ ω we have n⋆ ≡ (n+ q)⋆ mod q. In partiular, if q | n⋆, then q | (n+ q)⋆.Now we an ask whether there is a positive integer t < q suh that q | (n+ t)

⋆and q | n⋆. The following lemma shows that this is not the ase whenever q isa power of 2.Lemma 4.25. If 2k | n⋆ and 2k | (n+ t)
⋆ for some t ∈ ω, then 2k | t.Proof. For k ≤ 3, an easy alulation modulo 2k shows that for eah n, if

2k|n⋆, then 2k ∤ (n+ t)
⋆ whenever 0 < t < 2k.Assume towards a ontradition that there is a smallest k ≥ 3 suh that

2k+1 | n⋆ and 2k+1 | (n+ t)
⋆ for some integer t with 0 < t < 2k+1. Notie thatsine k ≥ 3, n ≥ 3. Then, beause 2k | 2k+1, we have 2k | n⋆ and 2k | (n+ t)

⋆,



More ardinal relations: seq1-1(m) 6= 2m 6= seq(m) 97and by the hoie of k we get t = 2k. Let us now ompute (n+ 2k
)⋆ by writingdown ∑n+2k

i=0
(n+2k)!

i! expliitly:
(
n+ 2k

)⋆
= 1 · 2 · 3· . . . ·2k · (2k + 1)· . . . ·(2k + n) + [1℄

2 · 3· . . . ·2k · (2k + 1)· . . . ·(2k + n) + [2℄
3· . . . ·2k · (2k + 1)· . . . ·(2k + n) + [3℄. . . ... ...

2k · (2k + 1)· . . . ·(2k + n) + [2k℄
(2k + 1)· . . . ·(2k + n) + [2k + 1℄. . . ... ...

(2k + n) + [2k + n℄
1 [2k + n+ 1℄Sine k ≥ 4 and n ≥ 3, 2k+1 divides rows [1] − [2k]. In order to alulate theproduts in rows [2k+1]− [2k +n+1] (modulo 2k+1), we only have to onsiderproduts whih are not obviously divisible by 2k+1. So, sine 2k+1 | (n+ 2k)

⋆,for a suitable natural number r we have
(n+ 2k)

⋆
= 2k ·

( n−1∑

j=0

n∑

i>j

n!

i · j!
)
+ n⋆ + 2k+1 · r .We know that 2k+1|n⋆ where n ≥ 3 and k ≥ 4, and beause n⋆ is even, n hasto be odd. If j is equal to n− 1, n− 2, or n− 3, then ∑n

i>j
n!
i·j! is odd, and if

0 ≤ j ≤ (n− 4), then ∑n
i>j

n!
i·j! is even. So,

n−1∑

j=0

n∑

i>j

n!

i · j!is odd, and sine 2k+1 | n⋆, 2k+1 ∤ (n+ 2k)
⋆. ⊣Now we are ready to prove the following result:Theorem 4.26. For all ardinals m ≥ 2, seq1-1(m) 6= 2m.Proof. By Lemma 4.23 it is enough to prove that for m ≥ 2, seq1-1(m) = 2m →

ℵ0 ≤ m. Let A be an arbitrary set of ardinality m and assume that
f0 : P(A) −→ seq1-1(A)is a bijetion between P(A) and seq1-1(A). We shall use this bijetion to showthat A is trans�nite. In fat it is enough to show that every �nite sequene



98 4 Cardinal Relations in ZF only
sn = 〈a0, . . . , an−1〉 ∈ seq1-1(A) of length n an be extended anonially to asequene sn+1 = sn

⌢〈an〉 ∈ seq1-1(A) of length n+ 1.Let a0 and a1 be two distint elements of A and assume that for some
n ≥ 2 we already have onstruted a sequene sn = 〈a0, a1, . . . , an−1〉 ofdistint elements of A and let Sn = {ai : i ∈ n}. The sequene sn induesin a natural way an ordering on the set seq1-1(Sn), e.g., order seq1-1(Sn) bylength and lexiographially. Let us de�ne an equivalene relation on A bystipulating

a ∼ b ⇐⇒ ∀s ∈ seq1-1(Sn)(a ∈ f0
−1(s) ↔ b ∈ f0

−1(s)
)
.Let Eq(n) := {

[a]̃ : a ∈ A
} be the set of all equivalene lasses. The orderingon seq1-1(Sn) indues an ordering on Eq(n). Let

k0 = |Eq(n)| .Then 2k0 is equal to the ardinality of P
(
Eq(n)

). Identify {⋃
Y : Y ⊆

Eq(n)
} with the set of all funtions ḡ ∈ Eq(n)2. Now, the ordering on Eq(n)indues in a natural way an ordering on the set of funtions Eq(n)2. By on-strution we have n⋆ = | seq1-1(Sn)| ≤ 2k0 , i.e., we have either n⋆ < 2k0 or

n⋆ = 2k0 :Case 1 : If n⋆ < 2k0 , then there exists a least funtion ḡ0 ∈ Eq(n)2 (leastwith respet to the ordering on Eq(n)2) suh that ḡ0 /∈ {
xs : s ∈ seq1-1(Sn)},where xs is the harateristi funtion of the set of equivalene lasses in-luded in f0

−1(s). In partiular we get f0(ḡ0) /∈ seq1-1(Sn). Let an ∈ A bethe �rst element in the sequene f0(ḡ0) whih does not belong to Sn. Now,
sn
⌢〈an〉 ∈ seq1-1(A) is a sequene of length n+ 1 and we are done.Case 2 : Suppose that n⋆ = 2k0 . For arbitrary elements a ∈ A\Sn let us resumethe onstrution with the sequene sn⌢〈a〉. By a parity argument one easilyveri�es that (n+ 1)

⋆ is not an integer power of 2, and thus, we are in Case 1.We proeed as long as we are in Case 1. If there is an element a ∈ A\Sn suhthat we are always in Case 1, then we an onstrut an in�nite non-repetitivesequene of elements of A and we are done.Assume now that no matter with whih element a ∈ A \ Sn we resumeour onstrution, we always get bak to Case 2. We then have the followingsituation: Starting with any element a ∈ A \ Sn we get a non-repetitive se-quene of elements of A of length n+ ℓ+1 (for some positive integer ℓ) where
(n+ ℓ+ 1)

⋆ is an integer power of 2. Let san+ℓ = 〈a0, a1, . . . , an+ℓ〉 be that se-quene and let S̄an = {a0, a1, . . . , an+ℓ}. By onstrution we have a ∈ S̄an, i.e.,
a belongs to the orresponding sequene san+ℓ. However, S̄an is not neessarilythe union of elements of Eq(n), whih leads to the following de�nition:A subset of A is alled good if it is not the union of elements of Eq(n).



More ardinal relations: seq1-1(m) 6= 2m 6= seq(m) 99For every set X ⊆ A whih is good we have f0(X) /∈ seq1-1(Sn), whih impliesthat there is a �rst element in the sequene f0(X) whih does not belongto the set Sn. Thus, it is enough to determine a good subset of A. For this,onsider the set
Tmin :=

{
a ∈ A \ Sn : S̄an is good and of least ardinality} .Notie that for every a ∈ A \Sn, S̄an is �nite and ontains a, and sine A \Snis in�nite, there is an S̄an (for some a ∈ A \Sn) whih is good, thus, Tmin 6= ∅.If Tmin is good, use f0(Tmin) to onstrut a non-repetitive sequene in A oflength (n+1), and we are done. Otherwise, let mT :=

∣∣S̄an
∣∣ for some a in Tmin(notie that by our assumptions, mT is a positive integer). For eah a ∈ Tminlet us onstrut a non-repetitive sequene SEQa of elements of S̄an of length

mT in suh a way that for all a, b ∈ Tmin:
S̄an = S̄bn =⇒ SEQa = SEQbIn order to do so, let a ∈ Tmin be arbitrary. Beause S̄an ∈ Tmin, S̄an is good,thus

f0(S̄
a
n) /∈ seq1-1(Sn) ,hene, there is a �rst element an in the sequene f0(S̄an) whih does not belongto Sn. Repeat the onstrution starting with the sequene sn+1 = sn

⌢〈an〉and onsider the set S̄ann . If S̄ann = S̄an, then the orresponding sequene san ∈
seq1-1(S̄ann ) is of length mT and we de�ne SEQa := san . On the other hand, if
S̄ann  S̄an, then S̄ann is not good (sine S̄an is a good set of least ardinality),i.e., S̄ann is the union of elements of Eq(n). Let S′ = S̄an \ S̄ann and let s′ ∈
seq1-1(S′) be the orresponding sequene. Then S′ is good, whih implies that
f0(S

′) /∈ seq1-1(S̄an), and let a′ be the �rst element in the sequene f0(S′)whih does not belong to S̄an . Now proeed building the sequene SEQa bystarting with the sequene s′⌢〈a′〉. Notie that by onstrution the sequene
SEQa depends only on the set S̄an, thus, for all a, b ∈ Tmin, SEQa = SEQbwhenever S̄an = S̄bn.So far, for eah a ∈ Tmin with ∣∣S̄an

∣∣ = mT we an onstrut a non-repetitivesequene SEQa ∈ seq1-1(S̄an) of length mT > n. On the other hand, we stillhave to determine in a onstrutive way a good subset of A whih ontains
Sn�even though S̄an is good for eah a ∈ Tmin, it is not lear whih set S̄anwe should hoose. Now, for i < mT de�ne

Qi := {b ∈ A : b is the ith element in SEQa for some a ∈ Tmin} .Claim. There is a smallest j0 < mT suh that Qj0 is good.Proof of Claim. For any a ∈ Tmin let
a= := {a′ ∈ A : S̄a

′

= S̄a} ,



100 4 Cardinal Relations in ZF onlywhih are the elements of the �nite set S̄a whih are to some extent indistin-guishable, and further let t0 denote the least ardinality of the sets a=, where
a ∈ Tmin. Note that if for some i 6= j0, a ∈ Qi ∩Qj , then S̄an annot be good(otherwise, SEQa would not be unique). Consequently, for eah a ∈ Tmin thereis exatly one ia suh that a ∈ Qia and for all b, b′ ∈ a= with b 6= b′ we have
ib 6= ib′ . Hene, if there are no good Qi's, then t0 annot exeed k0 = |Eq(n)|.Let us now show that indeed, t0 must exeed k0: Reall that n⋆ = 2k0 and that
(n+ ℓ+ 1)

⋆ is an integer power of 2, where ℓ+1 = mT −n. As a onsequeneof Lemma 4.25, for any positive integer t we get:If n⋆ = 2k and (n+ t)
⋆
= 2k

′ then t ≥ 2k, in partiular t > k . (⋆)For every a ∈ Tmin with |a=| = t0, and for any b ∈ S̄a \ Sn, where S̄b is notneessarily good, we have the following situation:
• |S̄b| = n+ t where (n+ t)

⋆
= 2k for some k > k0, and

• either b ∈ a= or S̄b is not good.Hene, for some integer t′ ≥ 0 we have
mT = n+ ℓ+ 1 = n+ t′ + t0 = |S̄a| ,where (n+ t′)⋆ and (n+ t′ + t0)

⋆ are both integer powers of 2. Say (n+ t′)⋆ =
2k and (n+ t′ + t0)

⋆
= 2k

′ where k′ > k ≥ k0. Then, by (⋆), t0 > k ≥ k0whih ompletes the proof of the laim. ⊣ClaimSine f0(Qj0) /∈ seq1-1(Sn) there exists a �rst element an in the sequene
f0(Qj0) whih does not belong to Sn. Let sn+1 = sn

⌢〈an〉. Then sn+1 is anon-repetitive sequene in A of length n + 1, whih is what we were aimingfor. ⊣To some extent, Theorem 4.24 and Theorem;4.26 are optimal, i.e., thereare no other relations between seq1-1(m), seq(m), and 2m whih are provablein ZF (see Chapter 7 |Related Result 49). It might be tempting to provethat for all ardinals m, seq(m) ≮ fin(m), however, suh a proof annot bearried out in ZF (f. Proposition 7.17).
22

m

+ 22
m

= 22
m whenever m is in�niteThe fat that 22
m

+ 22
m

= 22
m whenever m is in�nite will turn out as aonsequene of the following result:Lemma 4.27 (Läuhli's Lemma). If m is an in�nite ardinal, then

(
2fin(m)

)ℵ0
= 2fin(m) .Proof. Let A be an arbitrary but �xed set of ardinality m. Reall that for

n ∈ ω, [A]n denotes the set of all n-element subsets of A. For natural numbers
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n, k ∈ ω, where k ≥ n, we de�ne two mappings gn,k and dn,k from P
(
[A]n

)into itself as follows: For X ⊆ [A]n de�ne
gn,k(X) =

{
y ∈ [A]n : ∀z ∈ [A]k

(
y ⊆ z → ∃x ∈ X (x ⊆ z)

)}and let dn,k(X) := gn,k(X) \X . To get familiar with the funtions gn,k and
dn,k respetively, onsider the following example: Let n = 2, k = 4, take
{a0, a1} ∈ [A]2, and let X0 =

{
x ∈ [A]2 : x ∩ {a0, a1} = ∅

}. Then g2,4(X0) =

[A]2 and Y := d2,4(X0) =
{
y ∈ [A]2 : y ∩ {a0, a1} 6= ∅

}. Further, g2,4(Y ) = Yand d2,4(Y ) = d2,4
(
d2,4(X0)

)
= ∅. We leave it as an exerise to the reader toshow that the mapping gn,k has the following properties:(1) For all X ⊆ [A]n, X ⊆ gn,k(X).(2) gn,k ◦ gn,k = gn,k, i.e., for all X ⊆ [A]n, gn,k(gn,k(X)

)
= gn,k(X).(3) For all X ⊆ [A]n, gn,k(X) ⊆ gn,k′(X) whenever k′ ≥ k.By indution on j we de�ne dj+1

n,k := dn,k ◦ d
j
n,k, where d0

n,k denotes the iden-tity. Then, we have dj+1
n,k =

(
gn,k ◦ d

j
n,k

)
\ djn,k, and therefore by (1) we get(4) djn,k =

(
gn,k ◦ d

j
n,k

)
\ dj+1

n,k .In order to show that dnn,k = gn,k ◦ d
n
n,k we �rst prove a ombinatorial resultby applying the Finite Ramsey Theorem 2.3.For any �xed integers n, k ∈ ω where k ≥ n, for U ⊆ A with |U | ≤ n, and forany X ⊆ [A]n, let ψ(U,X,W ) and ϕ(U,X) be the following statements:

ψ(U,X,W ) ≡W ⊆ A \ U ∧ ∀V ∈ [W ]n−|U| (U ∪ V ∈ X)and
ϕ(U,X) ≡ ∀m ∈ ω ∃W ⊆ A

(
|W | ≥ m ∧ ψ(U,X,W )

)
.Notie that if U ∈ X ⊆ [A]n, then we have ψ(U,X,W ) for every W ⊆

A \ U , and onsequently we have ϕ(U,X) for all U ∈ X . To get familiarwith the statements ψ and ϕ respetively onsider again the example givenabove: Let b ∈ A \ {a0, a1} and let U = {a0, b}. Then we have ϕ(U, d2,4(X0)
),sine for any m ∈ ω we have ψ(U, d2,4(X0), [A \ {a0, a1, b}]m

). Further, for
U ′ = {b} ⊆ U we have ϕ(U ′, X0), sine for any positive m ∈ ω we have
ψ
(
U ′, X0, [A \ {a0, a1, b}]m

).Claim 1. If we have ϕ(U, dn,k(X)
), then there is a set U ′ with |U ′| < |U |suh that we have ϕ(U ′, X). In partiular we get that ϕ(∅, dn,k(X)

) fails � afat whih an be easily veri�ed diretly.Proof of Claim 1. Let us assume that ϕ(U, dn,k(X)
) holds for U ⊆ A with

|U | ≤ n and some set X ⊆ [A]n. It is enough to show that for any integer
m ≥ k there is a proper subset U ′ of U and aW ∈ [A]m suh that ψ(U ′, X,W )holds. Indeed, sine there are just �nitely many proper subsets of U , there



102 4 Cardinal Relations in ZF onlymust be a proper subset U ′ of U suh that for arbitrarily large integers mthere is a set Wm ∈ [A]m suh that ψ(U ′, X,Wm) holds, we get that ϕ(U ′, X)holds.Reall that by the Finite Ramsey Theorem 2.3, for all m, i, j ∈ ω, where
j ≥ 1 and i ≤ m, there exists a smallest integer Nm,i,j ≥ m suh that for eah
j-olouring of [N ]i there is an m-element subset of N , all whose i-elementsubsets have the same olour. Let m ≥ k, let m′ := max{Nm,i,2 : 0 ≤ i ≤ n},and let m′′ = Nm′,k−r,2r where r = |U |. By ϕ(U, dn,k(X)

) there is a set Swith |S| = m′′ suh that ψ(U, dn,k(X), S
). To eah subset U ′ of U we assignthe set X(U ′) by stipulating

X(U ′) =
{
Y ∈ [S]k−r : ∃V ′ ⊆ Y (U ′ ∪ V ′ ∈ X)

}
.Now we show that ⋃U ′⊆U X(U ′) = [S]k−r: Let V ∈ [S]k−r. By de�nition of

ψ
(
U, dn,k(X), S

), S ⊆ A \ U , and sine |U | = r we have |U ∪ V | = k. Sine
k − r ≥ n − r there is a set Q ∈ [V ]n−r, and sine ψ(U, dn,k(X), S

) we get
U ∪ Q ∈ dn,k(X). Hene, by de�nition of dn,k and gn,k respetively, there isa set x ∈ X suh that x ⊆ U ∪ V . If we let U ′ = U ∩ x and V ′ = V ∩ x, then
U ′ ∪ V ′ ∈ X and onsequently V ∈ X(U ′).Beause |S| = m′′ = Nm′,k−r,2r , there is a set T ∈ [S]m

′ and a set U ′ ⊆ Usuh that [T ]k−r ⊆ X(U ′). Let s = |U ′|, let
Z =

{
V ′ ∈ [T ]n−s : U ′ ∪ V ′ ∈ X

}
,and let Z ′ = [T ]n−s \ Z. Sine |T | = m′ ≥ Nm,n−s,2, there exists a set

W ∈ [T ]m suh that either [W ]n−s ⊆ Z or [W ]n−s ⊆ Z ′. The latter ase anbe exluded. Indeed, sine m ≥ k ≥ k − r, [W ]k−r 6= ∅. Now, eah element wof [W ]k−r is a subset of T and onsequently an element of X(U ′). Thus, thereis a V ′ ⊆ w suh that U ′ ∪ V ′ ∈ X whih implies that V ′ ∈ Z, in partiular,
[W ]n−s ∩ Z 6= ∅. Hene, [W ]n−s ⊆ Z and we �nally have ψ(U ′, X,W ) where
|W | = m.It remains to show that U ′ 6= U : Sine we have ψ(U, dn,k(X), S

) and W ⊆ S,we also have ψ(U, dn,k(X),W
). Now, if U ′ = U , then we would also have

ψ(U,X,W ), but sine dn,k(X) = gn,k(X) \X , dn,k(X)∩X = ∅ whih impliesthat the set [W ]n−r is empty whih is only the ase when |W | < n−r; however,
|W | = m ≥ k ≥ n ≥ n− r. ⊣Claim 1Now we turn bak to the sets djn,k(X) and show that dn+1

n,k (X) = ∅. In fat weshow a slightly stronger result:Claim 2. If dln,k(X) 6= ∅ for some set X ⊆ [A]n, then l ≤ n.Proof of Claim 2. Take any U ∈ dln,k(X). Sine |U | = n, for eah setW ⊆ A\Uwe have ψ(U, dln,k(X),W
), and sine A is not �nite we have ϕ(U, dln,k(X)

).By applying Claim 1 l times we get a sequene U = Ul, Ul−1, . . . , U0 suhthat |Uj+1| > |Uj | for all j ∈ l, whih implies that |Uj| ≥ j (for all j's). Inpartiular |U | = |Ul| ≥ l, and sine |U | = n this implies that l ≤ n. ⊣Claim 2
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+ 22
m

= 22
m 103As a onsequene of Claim 2 we get(5) dnn,k = gn,k ◦ d

n
n,k.De�ne now a mapping fn,k from P

(
[A]n

) to P
(
[A]k

) by stipulating
fn,k(X) =

{
z ∈ [A]k : ∃x ∈ X (x ⊆ z)

}
.Further, let

In,k(X) =
{
X ⊆ [A]n : gn,k(X) = X

}
.Then, by (1) and (3) we get(6) In,k′ ⊆ In,k whenever k′ ≥ k.Consider now f̄n,k := fn,k|In,k

. By de�nition of gn,k and dn,k respetivelywe have that f̄n,k is injetive. Indeed, if X,X ′ ∈ In,k (i.e., gn,k(X) = Xand gn,k(X ′) = X ′) and f̄n,k(X) = f̄n,k(X
′), then X ⊆ gn,k(X

′) = X ′ and
X ′ ⊆ gn,k(X) = X , and therefore X = X ′. So, for sets in dom(f̄n,k) we ande�ne the inverse of f̄n,k by stipulating

f̄−1
n,k

(
f̄n,k(X)

)
= X .Now we are ready to onstrut a one-to-one mapping F from P

(
fin(A)

)ωinto P
(
fin(A)

): Let X ∈ P
(
fin(A)

)ω, i.e., X = {Xs : s ∈ ω} where for eah
s ∈ ω, Xs ∈ P

(
fin(A)

). De�ne the funtion F by stipulating
F (X) =

⋃

s∈ω

⋃

n∈ω

( ⋃

0≤j≤n

f
n,k(s,n,j)

◦ g
n,k(s,n,n)

◦ dj
n,k(s,n,n)

(
Xs ∩ [A]n

))where k(s, n, j) := 2s · 3n · 5j . By de�nition we get that F is a funtion from
P

(
fin(A)

)ω to P
(
fin(A)

). So, it remains to show that F is injetive. To keepthe notation short let
Xs,n = Xs ∩ [A]n ,

Xs,n,j = g
n,k(s,n,n)

◦ dj
n,k(s,n,n)(Xs,n) ,

Ys,n,j = f
n,k(s,n,j)(Xs,n,j) .Then

F (X) =
⋃

s∈ω

⋃

n∈ω

( ⋃

0≤j≤n

Ys,n,j

)
.Sine Ys,n,j ∈ P

(
[A]k(s,n,j)

) and sine the mapping 〈s, n, j〉 7→ k(s, n, j) isinjetive we get
Ys,n,j = F (X) ∩ [A]k(s,n,j) .By (2) we have Xs,n,j ∈ In,k(s,n,n). Moreover, sine j ≤ n we have k(s, n, j) ≤

k(s, n, n) and by (6) we getXs,n,j ∈ In,k(s,n,j). Thus, Ys,n,j = f̄n,k(s,n,j)(Xs,n,j)and therefore
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Xs,n,j = f̄−1

n,k(s,n,j)(Ys,n,j) .By (4) and (5) we get
Xs,n = Xs,n,0 \

(
Xs,n,1 \

(
· · · (Xs,n,n−1 \Xs,n,n) · · ·

))
,and sine

Xs =
⋃

n∈ω

Xs,nwe get that F is injetive. This shows that (
2fin(m)

)ℵ0 ≤ 2fin(m), and sinewe obviously have 2fin(m) ≤
(
2fin(m)

)ℵ0 , by the Cantor-Bernstein Theo-rem 3.17 we �nally get (2fin(m)
)ℵ0

= 2fin(m). ⊣As a onsequene of Läuhli's Lemma 4.27 we get the following equality:Theorem 4.28. If m is an in�nite ardinal, then 2ℵ0 ·22m

= 22
m , in partiularwe get 22m

+ 22
m

= 22
m .Proof. Let A be a set of ardinality m. Further, let inf(A) := P(A) \ fin(A)and let inf(m) := | inf(A)|. Then 2m = fin(m) + inf(m) and onsequently

22
m

= 2fin(m)+inf(m) = 2fin(m) · 2inf(m).Sine by Läuhli's Lemma 4.27, 2fin(m) =
(
2fin(m)

)2, and by Fat 4.6,
2fin(m) ≥ 2ℵ0 , we have

2fin(m) · 2inf(m) =
(
2fin(m)

)2 · 2inf(m) = 2fin(m) · 22m ≥ 2ℵ0 · 22m

,and sine 22
m ≤ 2ℵ0 · 22m , by the Cantor-Bernstein Theorem 3.17 we�nally get 2ℵ0 · 22m

= 22
m . ⊣NotesD-�nite and trans�nite sets. In [8, �5℄, Dedekind de�ned in�nite and �nite setsas follows: A set S is alled in�nite when it is similar to a proper subset of itself;otherwise, S is said to be �nite. It is not hard to verify that Dedekind's de�nitionof �nite and in�nite sets orrespond to our de�nition of D-�nite and trans�nitesets respetively. In the footnote to his de�nition Dedekind writes: In this formI ommuniated the de�nition of the in�nite, whih forms the ore of my wholeinvestigation, in September, 1882, to G. Cantor, and several years earlier to Shwarzand Weber. More historial bakground an be found in Fraenkel [12, Ch. I., �2, 5.℄.

ℵ0 ≤ 2m → 2ℵ0 ≤ 2m. The proof of Proposition 4.4 �whih is Theorem 68 ofLindenbaum and Tarski [24℄ � is taken from Halbeisen [14, VIII℄ (see also Halbeisenand Shelah [17, Fat 8.1℄); and for another proof see for example Sierpi«ski [34,VIII �2, Ex. 9℄.
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ℵ1 ≤∗ 2ℵ0 . The relation symbol �≤∗ � was introdued by Tarski (f. Lindenbaumand Tarski [24, p. 301℄). The proof of Theorem 4.11 is essentially taken from Sier-pi«ski [34, XV�2℄, and an alternative proof is given by Sierpi«ski [29℄. Lemma 4.10is due to Lebesgue [22, p. 213 f.℄, and Churh [7, Corollary 2, p. 183℄ showed that theset of all non-repetitive well-ordered sequenes of natural numbers is of ardinality
2ℵ0 .If the reals are a ountable union of ountable sets. Proposition 4.12 istaken from Speker [36, III. �3℄, where one an �nd also some other impliations like
ℵ1 < ℵℵ0

1 , or that every subset of R is either �nite or trans�nite. Corollary 4.13(i.e., the paradoxial deomposition of R) an also be found in Halbeisen and She-lah [18, Fat 8.6℄.Cantor's Normal Form Theorem. The proof of Cantor's Normal FormTheorem 4.16 is taken from Cantor [4, �19, Satz B℄ (see also Cantor [6, p. 333 �.℄),but an also be found for example in Fraenkel [12, Ch. III, �11,Thm. 11℄. For a slightlymore general result see Bahmann [1, III. �12℄. The proof of Theorem 4.19 is takenfrom Halbeisen [14, VII℄ (f. Speker [35℄).Other ardinal relations. Theorem 4.20 � as well as the idea of getting a on-tradition by onstruting an injetive lass funtion from Ω into a given set� isdue to Speker [35, p. 334 �.℄ (f. Related Result 21). Theorem 4.21 and Propo-sition 4.22 are due to Halbeisen [14, IX℄ (see also Halbeisen and Shelah [17,�2, Theorem 3 and p. 36℄). Lemma 4.23 and Theorem 4.24 are due to Halbeisen [14,IX℄ (see also Halbeisen and Shelah [17, �3, Theorem 5℄). The proof of Theorem 4.26is due to Shelah (see Halbeisen and Shelah [17, �3 Theorem 4℄). Lemma 4.25 is dueto Halbeisen, who proved that number-theoreti result when Theorem 4.26 wasstill a onjeture. For a generalisation of Theorem 4.26 see Related Result 20.Läuhli's Lemma 4.27 as well as Theorem 4.28 is taken from Läuhli [21℄.Related Results13. Other de�nitions of �niteness. Among the many de�nitions of �niteness wewould like to mention just one by von Neumann who de�ned in [25, p. 736℄�nite sets as follows: A set E is �nite, if there is no non-empty set K ⊆ P(E)suh that for eah x ∈ K there is a y ∈ K with |x| < |y|. With respet to thisde�nition of �niteness, a set I is in�nite i� for eah natural number n thereexists an n-element subset of I , or equivalently, a set E is �nite i� there exists abijetion between E and a natural number n. However, notie that von Neumanndoes not use the notion of natural numbers in his de�nition. In [25, VIII. 2.℄,von Neumann investigated that notion of �niteness and showed for example thatpower sets of �nite sets are �nite. For some other de�nitions of �niteness andtheir dependenies we refer the reader to Kurepa [20℄, Lévy [23℄, Shröder [27℄,Spi²iak and Vojtá² [37℄, Tarski [38℄, and Truss [41℄.14. The ountability of the rationals. We have seen that the set of rational numbersis ountable, but sine we used the Cantor-Bernstein Theorem 3.17 to on-strut a bijetion between Q and ω, it is quite di�ult to determine the imageof a given rational number. However, there exists also a �omputable� bijetion
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f : Q → ω due to Faber [10℄: The image of a rational number q, written in theform

q =
a1
2!

+
a2
3!

+ · · ·+ an
(n+ 1)!

,where the ai's are omputed by trigonometri series and for all 1 ≤ i ≤ n wehave 0 ≤ ai < (i+ 1)!, is de�ned by
f(q) = a1 · 1! + a2 · 2! + a3 · 3! + . . .+ an · n! .15. Goodstein sequenes. For positive integers m and n, where n > 1, de�ne thehereditary base n representation of m as follows. First write m as the sumof powers of n, e.g., if m = 265 and n = 2 write 265 = 28 + 23 + 1. Thenwrite eah exponent as the sum of powers of n and repeat with exponents ofexponents and so on until the representation stabilises, e.g., 265 stabilises atthe representation 22

2+1

+ 22+1 + 1. Now de�ne the number Gn(m) as follows.If m = 0 let Gn(0) := 0; otherwise, let Gn(m) be the number produed byreplaing every ourrene of n in the hereditarily base n representation of mby the number n + 1 and then subtrating 1, e.g., G2(265) = 33
3+1

+ 33+1.The Goodstein sequene m0,m1, . . . for m starting at 2 is de�ned as follows:
m0 = m, m1 = G2(m0), m2 = G3(m1), m3 = G4(m2), and so on; for examplewe get:

2650 = 265

= 22
2+1

+ 22+1 + 1

2651 = 33
3+1

+ 33+1

2652 = 44
4+1

+ 44+1 − 1

= 44
4+1

+ 44 · 3 + 43 · 3 + 42 · 3 + 4 · 3 + 3

2653 = 55
5+1

+ 55 · 3 + 53 · 3 + 52 · 3 + 5 · 3 + 2

2654 = 66
6+1

+ 66 · 3 + 63 · 3 + 62 · 3 + 6 · 3 + 1

2655 = 77
7+1

+ 77 · 3 + 73 · 3 + 72 · 3 + 7 · 3

2656 = 88
8+1

+ 88 · 3 + 83 · 3 + 82 · 3 + 8 · 3− 1

= 88
8+1

+ 88 · 3 + 83 · 3 + 82 · 3 + 8 · 2 + 7

2657 = . . .Computing a few of the numbers 265k , one noties that the sequene 2650,
2651, 2652, . . . grows extremely fast and one would probably guess that it tendsto in�nity. Amazingly, Goodstein [13℄ showed that for every integer m thereis a k ∈ ω suh that mk = 0. Indeed, if we replae in the hereditarily base nrepresentation of mn−2 eah n by ω, we get an ordinal number, say αn−2(m);in fat we get cnf (αn−2(m)

), e.g., α3(265) = ωω
ω+1

+ ωω · 3 + ω3 · 3 + ω2 · 3 +
ω · 3 + 2. We leave it as an exerise to the reader to show that the sequene ofordinal numbers α0(m), α1(m), α2(m), . . . is stritly dereasing. In other words,
α0(m) ∋ α1(m) ∋ α2(m) ∋ . . ., thus, by the Axiom of Foundation, the sequeneof ordinals must be �nite whih implies that the Goodstein sequene m0, m1, . . .is eventually zero. However, Kirby and Paris [19℄ showed that Goodstein's resultis not provable in Peano Arithmeti (f. also Paris [26℄).



Related Results 10716. Ordinal arithmeti. As we have seen, one an de�ne various arithmetialoperations on ordinals like addition, multipliation and exponentiation, andeven subtration. Moreover, one an also de�ne division (f. Fraenkel [12,Ch. III., �11, 4.℄, Bahmann [1, III. �17℄, or Sierpi«ski [31℄): For any given or-dinals α and δ (δ 6= 0) there is a single pair of ordinals β, ρ suh that
α = δ · β + ρ where ρ < δ .For the theory of ordinal arithmeti we refer the reader to Bahmann [1, III.℄(f. also Sierpi«ski [32, 33℄).17. Canellation laws. Bernstein showed in his dissertation [2℄ (see [3, �2, Satz 3℄)that for any �nite ardinal a ≥ 1 and arbitrary ardinals m and n we have

a · m = a · n → m = n .In fat, Bernstein gave a quite involved proof for the ase a = 2 ([3, �2, Satz 2℄)and just outlined the proof for the general ase. Later, Sierpi«ski [28℄ found asimpler proof for the ase a = 2 and generalised the result in [30℄ to (2 · m ≤
2 ·n) → (m ≤ n). Slightly later, Tarski showed in [39℄ that for any �nite ardinal
a ≥ 1 and arbitrary ardinals m and n we have

a · m ≤ a · n → m ≤ n .18. On the ardinality of power sets of power sets∗. As a onsequene of Theo-rem 4.28 we get
2
22

m

× 2
22

m

= 2
22

m

.However, it is open if also 22
m × 22

m

= 22
m is provable in ZF.19. The hierarhy of ℵ's. By indution on Ω we de�ne

ℵ0 = |ω| ,

ℵα+1 = ℵ(ℵα) ,

ℵλ =
⋃

α∈λ

ℵα for in�nite limit ordinals λ.For an ordinal α, let A be a set of ardinality ℵα and let γ0 be the order type ofa well-ordering of A. Then, sine |γ0| = ℵα, γ0 is an ordinal of ardinality ℵα,and we de�ne
ωα =

⋂{
γ ∈ γ0 + 1 : |γ| = ℵα

}
.20. On the ardinality of the set of non-repetitive sequenes∗. Let m be an in�niteardinal an let S be a set of ardinality m. We de�ned 2m = |P(S)|, however, 2man also be onsidered as the ardinality of the set of funtions from S to {0, 1}.Similarly, for natural numbers a ≥ 2 let am denote the ardinality of the set offuntions from S to {0, 1, . . . a− 1}. By Theorem 4.26 we have 2m 6= seq1-1(m)and it is natural to ask whether the following statement is provable in ZF:For all �nite ardinals a and all in�nite ardinals m, am 6= seq1-1(m) . (❀)Obviously, if we would have a suitable generalisation of Lemma 4.25 at hand,then the proof of Theorem 4.26 would work for all natural numbers a ≥ 2.



108 4 Cardinal Relations in ZF onlyHalbeisen and Hungerbühler investigated in [16℄ the funtion n⋆ and generalisedLemma 4.25 to numbers di�erent from 2, and this generalisation was later usedby Halbeisen [15℄ who showed that (❀) holds for a large lass of �nite ardinals,e.g., for a ∈ {2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, . . .}; it is onjetured that (❀) holdsfor all �nite ardinals a ≥ 2.21. On the ardinality of the set of ordered pairs∗. By Cantor's Theorem 3.25 wealways have 2m �∗ m. Furthermore, one an show that if there is a �nite-to-onemap from 2m onto m, then m is �nite (see Forster [11℄). Now, having Theo-rem 4.20 in mind, one ould ask whether 2m ≤∗ m2 → m ≤ 4. This question isstill open and is asked in Truss [40℄, where a dualisation of Theorem 4.20 isinvestigated. Referenes1. Heinz Bahmann, Trans�nite Zahlen, Springer-Verlag, Berlin ·Heidelberg,1967.2. Felix Bernstein, Untersuhungen aus der Mengelehre, Dissertation (1901),University of Göttingen (Germany).3. , Untersuhungen aus der Mengelehre, Mathematishe Annalen,vol. 61 (1905), 117�155.4. Georg Cantor, Beiträge zur Begründung der trans�niten Mengenlehre. I./II., Mathematishe Annalen, vol. 46/49 (1895/1897), 481�512/207�246 (see[5℄ for a translation into English).5. , Contributions to the Founding of the Theory of Trans�niteNumbers, (translation into English of [4℄), [translated, and provided withan introdution and notes, by Philip E. B. Jourdain], Open Court PublishingCompany, Chiago and London, 1915 [reprint: Dover Publiations, New York,1952].6. , Gesammelte Abhandlungen mathematishen und philosophis-hen Inhalts,Mit Erläuternden Anmerkungen sowie mit Ergänzungen aus demBriefwehsel Cantor-Dedekind, edited by E. Zermelo, Julius Springer, Berlin,1932.7. Alonzo Churh, Alternatives to Zermelo's assumption, Transations of theAmerian Mathematial Soiety, vol. 29 (1927), 178�208.8. Rihard Dedekind, Was sind und was sollen die Zahlen, FriedrihVieweg&Sohn, Braunshweig, 1888 (see also [9, pp. 335�390℄).9. , Gesammelte mathematishe Werke III, edited by R. Frike,E. Noether, and Ö. Ore, Friedrih Vieweg&Sohn, Braunshweig, 1932.10. Georg Faber, Über die Abzählbarkeit der rationalen Zahlen,MathematisheAnnalen, vol. 60 (1905), 196�203.11. Thomas E. Forster, Finite-to-one maps, The Journal of Symboli Logi,vol. 68 (2003), 1251�1253.12. Abraham A. Fraenkel, Abstrat Set Theory, [Studies in Logi and theFoundations of Mathematis], North-Holland, Amsterdam, 1961.13. Reuben L. Goodstein, On the restrited ordinal theorem, The Journal ofSymboli Logi, vol. 9 (1944), 33�41.14. Lorenz Halbeisen, Vergleihe zwishen unendlihen Kardinalzahlen in einerMengenlehre ohne Auswahlaxiom, Diplomarbeit (1990), University of Zürih(Switzerland).
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5The Axiom of Choie
Two terms oasionally used by musiians are�full � onsonane and �pleasing� onsonane.An interval is said to be �fuller� than another whenit has greater power to satisfy the ear.Consonanes are the more �pleasing� as they de-part from simpliity, whih does not delight oursenses muh. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558Zermelo's Axiom of Choie and its Consisteny with ZFIn 1904, Zermelo published his �rst proof that every set an be well-ordered.The proof is based on the so-alled Axiom of Choie, denoted AC, whih, inZermelo's words, states that the produt of an in�nite totality of sets, eahontaining at least one element, itself di�ers from zero (i.e., the empty set).The full theory ZF+ AC, denoted ZFC, is alled Set Theory.In order to state the Axiom of Choie we �rst de�ne the notion of a hoiefuntion: If F is a family of non-empty sets (i.e., ∅ /∈ F ), then a hoiefuntion for F is a funtion f : F → ⋃

F suh that for eah x ∈ F ,
f(x) ∈ x.The Axiom of Choie�whih ompletes the axiom system of Set Theoryand whih is in our ounting the ninth axiom of ZFC� states as follows:9. The Axiom of Choie

∀F

(
∅ /∈ F → ∃f

(
f ∈ F⋃

F ∧ ∀x ∈ F
(
f(x) ∈ x

)))Informally, every family of non-empty sets has a hoie funtion, or equiva-lently, every Cartesian produt of non-empty sets is non-empty.



112 5 The Axiom of ChoieBefore we give some reformulations of the Axiom of Choie and show some ofits onsequenes, we should address the question whether AC is onsistent rel-ative to the other axioms of Set Theory (i.e., relative to ZF), whih is indeedthe ase.Assume that ZF is onsistent, then, by Proposition 3.5, ZF has a model,say V. To obtain the relative onsisteny of AC with ZF, we have to showthat also ZF+AC has a model. In 1935, Gödel informed von Neumann at theInstitute for Advaned Study in Prineton that he had found suh a model.In fat he showed that there exists a smallest transitive sublass of V whihontains all ordinals (i.e., ontains Ω as a sublass) in whih AC as well asZF holds. This unique submodel of V is alled the onstrutible universeand is denoted by L, where �L� stands for the following �law� by whih theonstrutible universe is built. Roughly speaking, the model L onsists ofall �mathematially onstrutible� sets, or in other words, all sets whih are�onstrutible� or �desribable�, but nothing else. To be more preise, let usgive the following de�nitions:Let M be a set and ϕ(x0, . . . , xn) be a �rst-order formula in the language
{∈}. Then ϕM denotes the formula we obtain by replaing all ourrenes of�∃x� and �∀x� by �∃x ∈M � and �∀x ∈M � respetively. A subset y ⊆M is de-�nable over M if there is a �rst-order formula ϕ(x0, . . . , xn) in the language
{∈}, and parameters a1, . . . , an in M , suh that {z : ϕM (z, a1, . . . , an)

}
= y.Finally, for any set M :

def(M) =
{
y ⊆M : y is de�nable over M}Notie that for any set M , def(M) is a set being itself a subset of P(M).Now, by indution on α ∈ Ω, de�ne the following sets (ompare with theumulative hierarhy de�ned in Chapter 3):

L0 = ∅

Lα =
⋃
β∈αLβ if α is a limit ordinal

Lα+1 = def(Lα)and let
L =

⋃

α∈Ω

Lα .Like for the umulative hierarhy one an show that for eah α ∈ Ω, Lα is atransitive set, α ⊆ Lα and α ∈ Lα+1, and that α ∈ β implies Lα  Lβ .Moreover, Gödel showed that L � ZF + AC, and that L is the smallesttransitive lass ontainingΩ as a sublass suh that L � ZFC. Thus, by startingwith any model V of ZF we �nd a sublass L of V suh that L � ZFC. Inother words we get that if ZF is onsistent then so is ZFC (roughly speaking,if ZFC is inonsistent, then AC annot be blamed for it).



Equivalent forms of the Axiom of Choie 113Equivalent Forms of the Axiom of ChoieThere are dozens of hypotheses whih are equivalent to the Axiom of Choie,but among the best known and most popular ones are surely theWell-OrderingPriniple, the Kuratowski-Zorn Lemma, Kurepa's Priniple, and Teihmüller'sPriniple� sometimes alled Tukey's Lemma. Sine the �rst three deal withorderings, we have to introdue �rst the orresponding de�nitions before wean state these� and some other� so-alled hoie priniples.A binary relation �≤� on a set P is a partial ordering of P if it istransitive (i.e., p ≤ q and q ≤ r implies p ≤ r), re�exive (i.e., p ≤ p for every
p ∈ P ), and anti-symmetri (i.e., p ≤ q and q ≤ p implies p = q). If �≤� is apartial ordering on P , then (P,≤) is alled a partially ordered set.If (P,≤) is a partially ordered set, then we de�ne

p < q ⇐⇒ p ≤ q ∧ p 6= q ,and all (P,<) a partially ordered in the strit sense, (replaing re�exivityby p ≮ p for every p ∈ P ).Two distint elements p, q ∈ P , where (P,<) is a partially ordered set, aresaid to be omparable if either p < q or q < p; otherwise, they are alledinomparable. Notie that for p, q ∈ P we ould have p � q as well as p � q.However, if for any elements p and q of a partially ordered set (P,<) we have
p < q or p = q or p > q (where these three ases are mutually exlusive),then P is said to be linearly ordered by the linear ordering �<�. Twoelements p1 and p2 of P are alled ompatible if there exists a q ∈ P suhthat p1 ≤ q ≥ p2; otherwise they are alled inompatible, denoted p1 ⊥ p2.We would like to mention that in the ontext of foring, elements of par-tially ordered sets are alled onditions. Furthermore, it is worth mentioningthat the de�nition of �ompatible� given above inorporates a onvention,namely the so-alled Jerusalem onvention for foring �with respet to theAmerian onvention of foring, p1 and p2 are ompatible if there exists a qsuh that p1 ≥ q ≤ p2.Let (P,<) be a partially ordered set. Then p ∈ P is alled maximal (ormore preisely<-maximal) in P if there is no x ∈ P suh that p < x. Similarly,
q ∈ P is alled minimal (or more preisely <-minimal) in P if there is no
x ∈ P suh that x < q. Furthermore, for a non-empty subset C ⊆ P , anelement p′ ∈ P is said to be an upper bound of C if for all x ∈ C, x ≤ p′.A non-empty set C ⊆ P , where (P,<) is a partially ordered set, is a hainin P if C is linearly ordered by �<� (i.e., for any distint members p, q ∈ C wehave either p < q or p > q). Conversely, if A ⊆ P is suh that any two distintelements of A are inomparable (i.e., neither p < q nor p > q), then in OrderTheory, A is alled an anti-hain. However, in the ontext of foring we saythat a subset A ⊆ P is an anti-hain in P if any two distint elements of Aare inompatible. Furthermore, A ⊆ P is a maximal anti-hain in P if A isan anti-hain in P and A is maximal with this property. Notie that if A ⊆ P



114 5 The Axiom of Choieis a maximal anti-hain, then for every p ∈ P \A there is a q ∈ A suh p and
q are ompatible.Reall that a binary relation R on a set P is a well-ordering on P , if there isan ordinal α ∈ Ω and a bijetion f : P → α suh that R(x, y) i� f(x) ∈ f(y).This leads to the following equivalent de�nition of a well-ordering, where theequivalene follows from the proof of Theorem 5.1 (the details are left to thereader): Let (P,<) be a linearly ordered set. Then �<� is a well-ordering on
P if every non-empty subset of P has a <-minimal element. Furthermore, aset P is said to be well-orderable (or equivalently, P an be well-ordered)if there exists a well-ordering on P .In general, it is not possible to de�ne a well-ordering by a �rst-order formula ona given set (e.g., on R). However, the existene of well-ordering is guaranteedby the following priniple:Well-Ordering Priniple: Every set an be well-ordered.To some extent, the Well-Ordering Priniple (like the Axiom of Choie) postu-lates the existene of ertain sets whose existene in general (i.e., without anyfurther assumptions like V = L), annot be proved within ZF.In partiular, the Well-Ordering Priniple postulates the existene of well-orderings of Q and of R. Obviously, both sets are linearly ordered by �< �.However, sine for any elements x and y with x < y there exists a z suh that
x < z < y, the ordering `< � is far away from being a well-ordering� onsiderfor example the set of all positive elements. Even though (Q, <) and (R, <)have similar properties (at least from an order-theoretial point of view), whenwe try to well-order these sets they behave very di�erently. Firstly, by Fat 4.1we know that Q is ountable and the bijetion f : Q → ω allows us to de�nea well-ordering �≺ � on Q by stipulating q ≺ p ⇐⇒ f(q) < f(p). Now, let usonsider the set R. For example we ould �rst well-order the rational numbers,or even the algebrai numbers, and then try to extend this well-ordering toall real numbers. However, this attempt � as well as all other attempts � toonstrut expliitly a well-ordering of the reals will end in failure (the readeris invited to verify this laim by writing down expliitly some orderings of R).As mentioned above, Zermelo proved in 1904 that the Axiom of Choieimplies the Well-Ordering Priniple. In the proof of this result presented herewe shall use the ideas of Zermelo's original proof.Theorem 5.1. The Well-Ordering Priniple is equivalent to the Axiom ofChoie.Proof. (⇐) Let M be a set. If M = ∅, then M is already well-ordered. So,assume thatM 6= ∅ and let P∗(M) := P(M)\{∅}. Further, let f : P∗(M) →
M be an arbitrary but �xed hoie funtion for P∗(M) (whih exists by AC).A one-to-one funtion wα : α →֒ M , where α ∈ Ω, is an f -set if for all
γ ∈ α:
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wα(γ) = f

(
M \

{
wα(δ) : δ ∈ γ

})For example w1(0) = f(M) is an f -set, in fat, w1 is the unique f -set withdomain {0}. Further, by Hartogs' Theorem 3.27, the olletion of all f -setsis a set, say S. De�ne the ordering �≺� on S as follows: For two distint f -sets
wα and wβ let wα ≺ wβ if α 6= β and wβ |α = wα. Notie that wα ≺ wβimplies α ∈ β.Claim. The set S of all f -sets is well-ordered by �≺�.Proof of Claim. Let wα and wβ be any two f -sets and let

Γ =
{
γ ∈ (α ∩ β) : wα(γ) 6= wβ(γ)

}
.If Γ 6= ∅, then, for γ0 =

⋂
Γ , we have wα(γ0) 6= wβ(γ0). On the other hand,for all δ ∈ γ0 we have wα(δ) = wβ(δ), thus, by the de�nition of f -sets, we get

wα(γ0) = wβ(γ0). Hene, Γ = ∅, and onsequently we are in exatly one ofthe following three ases:
• wα ≺ wβ i� α ∈ β.
• wα = wβ i� α = β.
• wβ ≺ wα i� β ∈ α.Thus, the ordering �≺� on S orresponds to the ordering of the ordinals by�∈�, and sine the latter relation is a well-ordering on Ω, the ordering �≺� isa well-ordering, too. ⊣ClaimNow, let w :=

⋃
S and let M ′ :=

{
x ∈ M : ∃γ ∈ dom(w)

(
w(γ) = x

)}.Then w ∈ S and M ′ = M ; otherwise, w an be extended to the f -set w ∪{
〈dom(w), f(M \M ′)〉

}.Thus, the one-to-one funtion w : dom(w) →M is onto, or in other words,
M is well-orderable.(⇒) Let F be any family of non-empty sets and let �<� be any well-orderingon ⋃

F . De�ne f : F → ⋃
F by stipulating f(x) being the <-minimalelement of x. ⊣It turns out that in many ases, the Well-Ordering Priniple�mostly in om-bination with trans�nite indution� is easier to apply than the Axiom ofChoie. For example in order to prove that every vetor spae has an alge-brai basis, we would �rst well-order the set of vetors and then build a basisby trans�nite indution (i.e., for every vetor vα we hek whether it is in thelinear span of the vetors {vβ : β ∈ α}, and if it is not, we mark it as a vetorof the basis). However, similarly to the well-ordering of R, in many ases it isnot possible to write down expliitly an algebrai basis of a vetor spae. Forexample onsider the real vetor spae of all ountably in�nite sequenes ofreal numbers, or any in�nite dimensional Banah spae.The following three priniples, whih will be shown to be equivalent to theAxiom of Choie, are quite popular in Algebra and Topology. Even thoughthese priniples look rather di�erent, all state that ertain sets have maximal



116 5 The Axiom of Choieelements or subsets (with respet to some partial ordering), and so they areusually alled maximality priniples. Let us �rst state the Kuratowski-ZornLemma and Kurepa's Priniple.Kuratowski-Zorn Lemma: If (P,≤) is a non-empty partially ordered setsuh that every hain in P has an upper bound, then P has a maximalelement.Kurepa's Priniple: Eah partially ordered set has a maximal subset ofpairwise inomparable elements.In order to state Teihmüller's Priniple we have to introdue one more notion:A family F of sets is said to have �nite harater if for eah set x, x ∈ Fi� fin(x) ⊆ F (i.e., every �nite subset of x belongs to F ).Teihmüller's Priniple: Let F be a non-empty family of sets. If F has�nite harater, then F has a maximal element (maximal with respetto inlusion �⊆�).Below we shall see that the three maximality priniples are all equivalent to theAxiom of Choie. However, in order to prove diretly that the Axiom of Choieimplies the Kuratowski-Zorn Lemma (i.e., without using theWell-Ordering Prin-iple), we have to show �rst the following interesting lemma�whih is themain reason why we do not want to derive the Kuratowski-Zorn Lemma fromthe Well-Ordering Priniple, even though this would be muh easier.Lemma 5.2. Let (P,≤) be a non-empty partially ordered set. If there is afuntion b : P(P ) → P whih assigns to every hain C an upper bound b(C),and if f : P → P is a funtion suh that for all x ∈ P we have x ≤ f(x),then there is a p0 ∈ P suh that p0 = f(p0).Proof. Notie that beause every well-ordered set is a hain, it is enough torequire the existene of an upper bound b(W ) just for every set W ⊆ P whihis well-ordered by �<�. If W ⊆ P is a well-ordered subset of P and x ∈ W ,then Wx := {y ∈ W : y < x}. A well-ordered set W ⊆ P is alled an f -hain, if for all x ∈ W we have x = f
(
b(Wx)

)
. Notie that sine ∅ ⊆ P iswell-ordered by �<�, the set {f(b(∅))} is an f -hain.We leave it as an exerise to the reader to verify that the set of f -hainsis well-ordered by proper inlusion �(�. Hene, the set

U =
⋃{

W ⊆ P :W is an f -hain}is itself an f -hain. Consider p0 := f
(
b(U)

) and notie that U ∪ {p0} is an
f -hain. By the de�nition of U we get that p0 ∈ U , and onsequently wehave f(b(Up0)) = p0. Now, sine f(b(Up0)) ≥ b(Up0) ≥ p0, we must have
b(Up0) = p0, and therefore f(p0) = p0. ⊣



Equivalent forms of the Axiom of Choie 117Notie that the proof of Lemma 5.2 does not rely on any hoie priniples.Now we are ready to prove that the Kuratowski-Zorn Lemma and Teihmüller'sPriniple are both equivalent to the Axiom of Choie.Theorem 5.3. The following statements are equivalent:(a) Axiom of Choie.(b) Kuratowski-Zorn Lemma.() Teihmüller's Priniple.Proof. (a)⇒(b) Let (P,≤) be a non-empty partially ordered set suh thatevery hain in P , (in partiular every well-ordered hain), has an upper bound.Then, for every non-empty well-ordered subset W ⊆ P , the set of upperbounds BW :=
{
p ∈ P : ∀x ∈ W (x ≤ p)

} is non-empty. Thus, the family
F =

{
BW :W is a well-ordered, non-empty subset of P}is a family of non-empty sets and therefore, by the Axiom of Choie, for eah

W ∈ F we an pik an element b(W ) ∈ BW . Now, for every x ∈ P let
Mx =

{
{x} if x is maximal in P ,
{y ∈ P : y > x} otherwise.Then {Mx : x ∈ P} is a family of non-empty sets and again by the Axiom ofChoie, there is a funtion f : P → P suh that

f(x) =

{
x if x is maximal in P ,
y where y > x.Sine f(x) ≥ x (for all x ∈ P ) and every non-empty well-ordered subset

W ⊆ P has an upper bound b(W ), we an apply Lemma 5.2 and get an ele-ment p0 ∈ P suh that f(p0) = p0, hene, P has a maximal element.(b)⇒() Let F be a non-empty family of sets and assume that F has �niteharater. Obviously, F is partially ordered by inlusion �⊆�. For every hain
C in F let UC =

⋃
C . Then every �nite subset of UC belongs to F , thus,

UC belongs to F . On the other hand, UC is obviously an upper bound of C .Hene, every hain has an upper bound and we may apply the Kuratowski-Zorn Lemma and get a maximal element of the family F .()⇒(a) Given a family F of non-empty sets. We have to �nd a hoie fun-tion for F . Consider the family
E =

{
f : f is a hoie funtion for some subfamily F

′ ⊆ F
}
.Notie that f is a hoie funtion if and only if every �nite subfuntion of

f is a hoie funtion. Hene, E has �nite harater. Thus, by Teihmüller'sPriniple, the family E has a maximal element, say f0. Sine f0 is maximal,
dom(f0) = F , and therefore f0 is a hoie funtion for F . ⊣



118 5 The Axiom of ChoieIn order to prove that also Kurepa's Priniple is equivalent to the Axiom ofChoie, we have to hange the setting a little bit: In the proof of Theorem 5.3,as well as in Zermelo's proof of Theorem 5.1, the Axiom of Foundation wasnot involved (in fat, the proofs an be arried out in Cantor's Set Theory).However, without the aid of the Axiom of Foundation it is not possible to provethat Kurepa's Priniple implies the Axiom of Choie, whereas the onverse im-pliation is evident (ompare the following theorem with Chapter 7 |RelatedResult 46).Theorem 5.4. The following statements are equivalent in ZF:(a) Axiom of Choie.(b) Every vetor spae has an algebrai basis.() Multiple Choie: For every family F of non-empty sets, there exists afuntion f : F → P
(⋃

F
) suh that for eah X ∈ F , f(X) is a non-empty�nite subset of X .(d) Kurepa's Priniple.Proof. (a)⇒(b) Let V be a vetor spae and let F be the family of all setsof linearly independent vetors of V . Obviously, F has �nite harater. So, byTeihmüller's Priniple, whih is, as we have seen in Theorem 5.3 equivalentto the Axiom of Choie, F has a maximal element. In other words, there is amaximal set of linearly independent vetors, whih must be of ourse a basisof V .(b)⇒() Let F = {Xι : ι ∈ I} be a family of non-empty sets. We have toonstrut a funtion f : F → P

(⋃
F

) suh that for eah Xι ∈ F , f(Xι)is a non-empty �nite subset of Xι. Without loss of generality we may assumethat the members of F are pairwise disjoint (if neessary, onsider the family{
Xι × {Xι} : ι ∈ I

} instead of F ). Adjoin all the elements of X :=
⋃

F asindeterminates to some arbitrary but �xed �eld F (e.g., F = Q) and onsiderthe �eld F(X) onsisting of all rational funtions of the �variables� in X withoe�ients in F. For eah ι ∈ I, we de�ne the ι-degree of a monomial� i.e.,a term of the form axk11 · · ·xkll where a ∈ F and x1, . . . , xl ∈ X� to bethe sum of the exponents of members of Xι in that monomial. A rationalfuntion q ∈ F(X) is alled ι-homogeneous of degree d if it is the quotient oftwo polynomials suh that all monomials in the denominator have the same
ι-degree n, while all those in the numerator have ι-degree n+ d. The rationalfuntions that are ι-homogeneous of degree 0 for all ι ∈ I form a sub�eld F0of F(X). Thus, F(X) is a vetor spae over F0, and we let V be the subspaespanned by the set X .By assumption, the F0-vetor spae V has an algebrai basis, say B. Belowwe use this basisB to expliitly de�ne the desired funtion f : F → P

(⋃
F

).For eah ι ∈ I and eah x ∈ Xι we an express x as a �nite linear ombinationof elements of B. Thus, every x ∈ Xι an be written in the form
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x =

∑

b∈B(x)

axb · b ,where B(x) ∈ �n(B) and for all b ∈ B(x), axb ∈ F0 \ {0}. If y is anotherelement of the same Xι as x, then we have on the one hand
y =

∑

b′∈B(y)

ayb′ · b′ ,and on the other hand, after multiplying the above representation of x by theelement y
x
∈ F0, we get

y =
∑

b∈B(x)

(
y
x
· axb

)
· b .Comparing these two expressions for y and using the fat that B is a basis,i.e., that the representation of y is unique, we must have

B(x) = B(y) and ayb =
y

x
· axb for all b ∈ B(x).Hene, the �nite subset B(x) of B as well as the elements axb

x
of F(X) dependonly on ι, not on the partiular x ∈ Xι, and we therefore all them Bι and

aιb respetively. Notie that, sine axb ∈ F0, aιb is ι-homogeneous of degree −1(and ι′-homogeneous of degree 0 for ι′ 6= ι). So, when aιb is written as aquotient of polynomials in redued form, some variables from Xι must ourin the denominator. De�ne f(Xι) to be the set of all those members of Xιthat our in the denominator of aιb (in redued form) for some b ∈ Bι. Then
f(Xι) is a non-empty �nite subset of Xι, as required.()⇒(d) Let (P,<) be a partially ordered set. By Multiple Choie, there isa funtion f suh that for eah non-empty set X ⊆ P , f(X) is a non-empty�nite subset of X . Let g : P(P ) → �n(P ) be suh that g(∅) := ∅ and for eahnon-empty X ⊆ P , g(X) :=

{
y ∈ f(X) : y is <-minimal in f(X)

}. Obvi-ously, for every non-empty X ⊆ P , g(X) is a non-empty �nite set of pairwiseinomparable elements. Using the funtion g we onstrut by trans�nite in-dution a maximal subset of pairwise inomparable elements: Let A0 := g(P ),and for α ∈ Ω let Aα := g(Xα), where
Xα :=

{
x ∈ P : x is inomparable with eah a ∈ ⋃{Aβ : β ∈ α}

}
.By onstrution, the Aα's are pairwise disjoint and any union of Aα's is a setof pairwise inomparable elements. Again by onstrution there must be an

α0 ∈ Ω suh that Xα0 = ∅. Thus, ⋃{Aβ : β ∈ α0} ⊆ P is a maximal set ofpairwise inomparable elements.(d)⇒(a) By the Axiom of Foundation, for every set x there exists an ordinal
α ∈ Ω suh that x ⊆ Vα. Thus, sine the Axiom of Choie is equivalent to theWell-Ordering Priniple (see Theorem 5.1), it is enough to show that Kurepa'sPriniple implies that for every α ∈ Ω, Vα an be well-ordered. The ruial



120 5 The Axiom of Choiepoint in that proof is to show that power sets of well-orderable sets are well-orderable.The �rst step is quite straightforward: Let Q be a well-orderable set andlet �<Q� be a well-ordering on Q. We de�ne a linear ordering �≺ � on P(Q)by stipulating x ≺ y i� the <Q-minimal element of the symmetri di�erene
x△y belongs to x. To see that �≺ � is a linear ordering, notie that �≺ � is justthe lexiographi ordering on P(Q) indued by �<Q�. The following laim iswhere Kurepa's Priniple omes in.Claim. Kurepa's Priniple implies that every linearly orderable set is well-orderable.Proof of Claim. Let (P,≺) be a linearly ordered set. Consider the set W ofall pairs (X, x) where X ⊆ P and x ∈ X . On W we de�ne a partial ordering�<� by stipulating

(X, x) < (Y, y) ⇐⇒ X = Y ∧ x ≺ y .By Kurepa's Priniple, (W,<) has a maximal set of pairwise inomparableelements, say A ⊆W . For every non-empty set X ⊆ P let f(X) be the uniqueelement of X suh that (
X, f(X)

)
∈ A . It is not hard to verify that f is ahoie funtion for P(P )\{∅}, and onsequently, P an be well-ordered.⊣ClaimNow we are ready to show that Kurepa's Priniple implies that every set Vα(α ∈ Ω) an be well-ordered. We onsider the following two ases:

α suessor ordinal : Let α = β0 + 1 and assume that Vβ0 is well-orderable.Then Vα = P(Vβ0), and as the power set of a well-orderable set, Vα is well-orderable.
α limit ordinal : Assume that for eah β ∈ α, Vβ is well-orderable, i.e., for eah
β ∈ α there exists a well-ordering �<β� on Vβ . Let ξ be the least ordinal suhthat there is no injetion from ξ into Vα. The ordinal ξ exists by Hartogs'Theorem 3.27 and sine every Vβ an be well-ordered. Sine ξ is well-orderedby ∈, P(ξ) an be well-ordered; let us �x a well-ordering≺ξ ⊆ (

P(ξ)×P(ξ)
).For every β ∈ α we hoose a well-ordering �<β � on Vβ as follows:

• If β = 0, then <0= ∅.
• If β =

⋃
δ∈β δ is a limit ordinal, then, for x, y ∈ Vβ , let
x <β y ⇐⇒ ρ(x) ∈ ρ(y) ∨

(
ρ(x) = ρ(y) ∧ x <ρ(x) y

)
,where for any z, ρ(z) := ⋂{γ ∈ Ω : x ∈ Vγ}.

• If β = δ + 1 is a suessor ordinal, then, by the hoie of ξ, there is aninjetion f : Vδ →֒ ξ. Let x = ran(f); then x ⊆ ξ. Further, there exists abijetion between P(Vδ) = Vβ and P(x), and sine P(x) ⊆ P(ξ) and
P(ξ) is well-ordered by �≺ξ �, the restrition of �≺ξ � to P(x) indues awell-ordering on Vβ .Thus, for every β ∈ α we have a well-ordering �<β � on Vβ . Now, for x, y ∈ Vαde�ne
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x <α y ⇐⇒ ρ(x) ∈ ρ(y) ∨

(
ρ(x) = ρ(y) ∧ x <ρ(x) y

)
.Then, by onstrution, �<α � is a well-ordering on Vα. ⊣We onlude this setion on equivalent forms of AC by giving three ardinalrelations whih are equivalent to the Well-Ordering Priniple.Theorem 5.5. Eah of the following statements is equivalent to the Well-Ordering Priniple, and onsequently to the Axiom of Choie:(a) Every ardinal m is an aleph, i.e., ontains a well-orderable set.(b) Trihotomy of Cardinals: If n and m are any ardinals, then n < m or

n = m or n > m, where these three ases are mutually exlusive.() If n and m are any ardinals, then n ≤∗ m or m ≤∗ n.(d) If m is any in�nite ardinal, then m2 = m.Proof. (a) If every set is well-orderable, then obviously every ardinal on-tains an well-orderable set and is therefore an aleph. On the other hand, for anarbitrary set x let m = |x| and let y0 ∈ m be well-orderable. By de�nition of
m there exists a bijetion between y0 and x, and therefore, x is well-orderableas well.(b) Firstly notie that any two alephs are omparable. Thus, by (a) we getthat the Well-Ordering Priniple implies the Trihotomy of Cardinals and onse-quently so does AC. On the other hand, byHartogs' Theorem 3.27 we knowthat for every ardinal m there is a smallest aleph, denoted ℵ(m), suh that
ℵ(m) � m. Now, if any two ardinals are omparable we must have m < ℵ(m),whih implies that m is an aleph.() Notie that if every set an be well-ordered, then for any ardinals n and
m we have n ≤∗ m i� n ≤ m. For the other diretion we �rst prove that forany ardinal m there exists an aleph ℵ′(m) suh that ℵ′(m) �∗ m: Notie thatif there exists a surjetion from a set A onto a set B, then there exist aninjetion from B into P(A). So, by de�nition of ℵ(2m) we have ℵ(2m) �∗ m.Let now m be an arbitrary ardinal and let n = ℵ(2m). If n ≤∗ m or n ≥∗ m,then we must have n ≥∗ m (sine n �∗ m), whih implies that m is an alephand ompletes the proof.(d) Assume that for any in�nite ardinal n we have n2 = n. Hene, we get
m+ℵ(m) = (m+ℵ(m))2 = m2+(m+m) ·ℵ(m)+ℵ(m)2 = m+ℵ(m)+m ·ℵ(m),and sine m+ ℵ(m) ≤ m · ℵ(m) we have

m+ ℵ(m) = m · ℵ(m) .Now, let x ∈ m and let y0 ∈ ℵ(m) be a set whih is well-ordered by �<y0�.Without loss of generality we may assume that x and y0 are disjoint. Sine
|x ∪ y0| = |x × y0|, there exists a bijetion f : x ∪ y0 → x × y0. Using thebijetion f we de�ne x̃ :=

{
a ∈ x : ∃b ∈ y0 (〈a, b〉 ∈ f [y0])

}
⊆ x. Firstlynotie that x̃ = x. Indeed, if there would be an a0 ∈ x \ x̃, then for all b ∈ y0



122 5 The Axiom of Choiewe have f−1
(
〈a0, b〉

)
/∈ y0, i.e., f−1

(
〈a0, b〉

)
∈ x. Thus, sine f is bijetive,

f−1
[
{a0} × y0

]
⊆ x is a set of ardinality ℵ(m), ontraditing the fat that

ℵ(m) � m. So, for every a ∈ x, the set
ua := {b ∈ y0 : ∃b′ ∈ y0 (f(b) = 〈a, b′〉)}is a non-empty subset of y0, and� sine y0 is well-ordered by �<y0� � has a

<y0-minimal element, say µa. Finally, de�ne an ordering �<� on x by stipu-lating a < a′ i� µa <y0 µa′ . It is easily heked that �<� is a well-ordering on
x, and therefore, m is an aleph.The onverse impliation� namely that theWell-Ordering Priniple impliesthat m2 = m for every in�nite ardinal m� is postponed to the next setion(see Theorem 5.7). ⊣Cardinal Arithmeti in the Presene of ACIn the presene of AC we are able to de�ne ardinal numbers as ordinals: Forany set A we de�ne

|A| =
⋂{

α ∈ Ω : there is a bijetion between α and A} .Reall that AC implies that every set A is well-orderable and that every well-ordering of A orresponds to exatly one ordinal (whih is the order type ofthe well-ordering).For example we have |n| = n for every n ∈ ω, and |ω| = ω. However, for
α ∈ Ω we have in general |α| 6= α, e.g., |ω + 1| = ω.Ordinal numbers κ ∈ Ω suh that |κ| = κ are alled ardinal numbers,or just ardinals, and are usually denoted by Greek letters like κ, λ, µ, etetera.A ardinal κ is in�nite if κ /∈ ω, otherwise, it is �nite. In other words, aardinal is �nite if and only if it is a natural number.Sine ardinal numbers are just a speial kind of ordinals, they are well-ordered by �∈�. However, for ardinal numbers κ and λ we usually write κ < λinstead of κ ∈ λ, thus,

κ < λ ⇐⇒ κ ∈ λ .Let κ be a ardinal. The smallest ardinal number whih is greater than
κ is denoted by κ+, thus,

κ+ =
⋂{

α ∈ Ω : κ < |α|
}
.Notie that by Cantor's Theorem 3.25, for every ardinal κ there is aardinal λ > κ, in partiular, for every ardinal κ, ⋂{

α ∈ Ω : κ < |α|
} isnon-empty and therefore κ+ exists.



Cardinal arithmeti in the presene of AC 123A ardinal µ is alled a suessor ardinal if there exists a ardinal κsuh that µ = κ+; otherwise, it is alled a limit ardinal. In partiular, everypositive number n ∈ ω is a suessor ardinal and ω is the smallest non-zerolimit ardinal. By indution on α ∈ Ω we de�ne ωα+1 := ω+
α , where ω0 := ω,and ωα :=

⋃
δ∈α ωδ for limit ordinals α; notie that ⋃

δ∈α ωδ is a ardinal.In partiular, ωω is the smallest unountable limit ardinal and ω1 = ω+
0 isthe smallest unountable ardinal. Further, the olletion {ωα : α ∈ Ω} isthe lass of all in�nite ardinals, i.e., for every in�nite ardinal κ there is an

α ∈ Ω suh that κ = ωα. Notie that the olletion of ardinals is� like theolletion of ordinals� a proper lass and not a set.Cardinal addition, multipliation, and exponentiation is de�ned as follows:Cardinal addition: For ardinals κ and µ let κ+µ :=
∣∣(κ×{0}) ∪̇ (µ×{1})

∣∣.Cardinal multipliation: For ardinals κ and µ let κ · µ := |κ× µ|.Cardinal exponentiation: For ardinals κ and µ let κµ :=
∣∣µκ

∣∣.Sine for any set A, ∣∣A2∣∣ =
∣∣P(A)

∣∣, the ardinality of the power set of aardinal κ is usually denoted by 2κ. However, beause 2ω is the ardinality ofthe so-alled ontinuumR, it is usually denoted by c. Notie that byCantor'sTheorem 3.25 for all ardinals κ we have κ < 2κ.As a onsequene of the de�nition we get the followingFat 5.6. Addition and multipliation of ardinals is assoiative and ommu-tative and we have the distributive law for multipliation over addition, andfor all ardinals κ, λ, µ, we have
κλ+µ = κλ · κµ, κµ·λ =

(
κλ

)µ
, (κ · λ)µ = κµ · λµ.Proof. It is obvious that addition and multipliation is assoiative and om-mutative and that we have the distributive law for multipliation over addi-tion. Now, let κ, λ, µ, be any ardinal numbers. Firstly, for every funtion

f :
(
λ × {0}

)
∪
(
µ × {1}

)
→ κ let the funtions fλ :

(
λ × {0}

)
→ κ and

fµ :
(
µ× {1}

)
→ κ be suh that for eah x ∈

(
λ× {0}

)
∪
(
µ× {1}

),
f(x) =

{
fλ(x) if x ∈ λ× {0},
fµ(x) if x ∈ µ× {1}.It is easy to see that eah funtion f :

(
λ×{0}

)
∪
(
µ×{1}

)
→ κ orrespondsto a unique pair 〈fλ, fµ〉, and vie versa, eah pair 〈fλ, fµ〉 de�nes uniquely afuntion f :

(
λ × {0}

)
∪
(
µ × {1}

)
→ κ. Thus, we have a bijetion between

κλ+µ and κλ · κµ.Seondly, for every funtion f : µ→ λκ let f̃ : µ× λ→ κ be suh that for all
α ∈ µ and all β ∈ λ we have

f̃
(
〈α, β〉

)
= f(α)(β) .



124 5 The Axiom of ChoieWe leave it as an exerise to the reader to verify that the mapping
µ(λκ

)
−→ µ×λκ

f 7−→ f̃is bijetive, and therefore we have κµ·λ =
(
κλ

)µ.Thirdly, for every funtion f : µ → κ × λ let the funtions fκ : µ → κ and
fλ : µ → λ be suh that for eah α ∈ µ, f(α) = 〈

fκ(α), fλ(α)
〉. We leave itagain as an exerise to the reader to show that the mapping

µ(κ× λ) −→ µκ× µλ

f 7−→ 〈fκ, fλ〉is a bijetion. ⊣The next result ompletes the proof of Theorem 5.5.(d):Theorem 5.7. For any ordinal numbers α, β ∈ Ω we have:
ωα + ωβ = ωα · ωβ = ωα∪β = max{ωα, ωβ}In partiular, for every in�nite ardinal κ we have κ2 = κ.Proof. It is enough to show that for all α ∈ Ω we have ωα · ωα = ωα. For

α = 0 we already know that |ω × ω| = ω, thus, ω0 · ω0 = ω0. Assume towardsa ontradition that there exists a β0 ∈ Ω suh that ωβ0 · ωβ0 > ωβ0 . Let
α0 =

⋂{
α ∈ β0 + 1 : ωα · ωα > ωα

}
.On ωα0 × ωα0 we de�ne an ordering �<� by stipulating

〈γ1, δ1〉 < 〈γ2, δ2〉 ⇐⇒






γ1 ∪ δ1 ∈ γ2 ∪ δ2 , or
γ1 ∪ δ1 = γ2 ∪ δ2 ∧ γ1 ∈ γ2 , or
γ1 ∪ δ1 = γ2 ∪ δ2 ∧ γ1 = γ2 ∧ δ1 ∈ δ2 .This linear ordering an be visualised as follows:

ν × ν

ωα0
× ωα0

γ

δ

ν

ν



Cardinal arithmeti in the presene of AC 125It is easily veri�ed that �<� is a well-ordering on ωα0 ×ωα0 . Now, let ρ be theorder type of the well-ordering �<� and let Γ : ωα0 × ωα0 → ρ be the uniqueorder preserving bijetion between ωα0 × ωα0 and ρ, i.e., 〈γ1, δ1〉 < 〈γ2, δ2〉i� Γ
(
〈γ1, δ1〉

)
∈ Γ

(
〈γ2, δ2〉

). Beause ωα0 · ωα0 > ωα0 we have |ρ| > ωα0 .Now, by the de�nition of the well-ordering �<�, there are γ0, δ0 ∈ ωα0 suhthat Γ (〈γ0, δ0〉) = ωα0 and for ν = γ0 ∪ δ0 we have |ν × ν| ≥ ωα0 . Thus, for
ωβ = |ν| we have ωβ < ωα0 (sine ν ∈ ωα0) and ωβ · ωβ ≥ ωα0 . In partiular,
ωβ · ωβ > ωβ, whih is a ontradition to the hoie of α0. ⊣As a onsequene of Theorem 5.7 we get the followingCorollary 5.8. If κ is an in�nite ardinal, then seq(κ) = κ and κκ = 2κ.Proof. Firstly we have seq(κ) = ∣∣⋃

n∈ω κ
n
∣∣ = 1+ κ+ κ2+ . . . = 1+ κ ·ω = κ.Seondly, by de�nition we have κκ = |κκ|. By identifying eah funtion f ∈ κκby its graph, whih is a subset of κ× κ, we get |κκ| ≤ |P(κ × κ)|, and sine

|κ× κ| = κ we �nally have κκ ≤ |P(κ)| = 2κ. ⊣Let λ be an in�nite limit ordinal. A subset C of λ is alled o�nal in λ if⋃ C = λ. The o�nality of λ, denoted cf(λ), is the ardinality of a smallesto�nal set C ⊆ λ. In other words,
cf(λ) = min

{
|C| : C is o�nal in λ} .Notie that by de�nition, cf(λ) is always a ardinal number.Let again λ be an in�nite limit ordinal and let C =

{
βξ : ξ ∈ cf(λ)

}
⊆ λ beo�nal in λ. Now, for every ν ∈ cf(λ) let αν :=

⋃{βξ : ξ ∈ ν} (notie that allthe αν 's belong to λ). Then 〈
αν : ν ∈ cf(λ)

〉 is an inreasing sequene (notneessarily in the strit sense) of length cf(λ) with ⋃{
αν : ν ∈ cf(λ)

}
= λ.Thus, instead of o�nal subsets of λ we ould equally well work with o�nalsequenes.Sine every in�nite ardinal is an in�nite limit ordinal, cf(κ) is also de�nedfor ardinals κ. An in�nite ardinal κ is alled regular if cf(κ) = κ; otherwise,

κ is alled singular. For example ω is regular and ωω is singular (sine {ωn :
n ∈ ω} is o�nal in ωω). In general, for non-zero limit ordinals λ we have
cf(ωλ) = cf(λ). For example cf(ωω) = cf(ωω+ω) = cf(ωωωω

) = ω.Fat 5.9. For all in�nite limit ordinals λ, the ardinal cf(λ) is regular.Proof. Let κ = cf(λ) and let 〈αξ : ξ ∈ κ
〉 be an inreasing, o�nal sequeneof λ. Further, let C ⊆ κ be o�nal in κ with |C| = cf(κ). Now, 〈αν : ν ∈ C〉 isstill a o�nal sequene of λ, whih implies that cf(λ) ≤ cf(κ). On the otherhand we have cf(κ) ≤ κ = cf(λ). Hene, cf(κ) = κ = cf(λ), whih shows that

cf(λ) is regular. ⊣The following result� whih impliitly uses AC� shows that all in�nitesuessor ardinals are regular.



126 5 The Axiom of ChoieProposition 5.10. If κ is an in�nite ardinal, then κ+ is regular.Proof. Assume towards a ontradition that there exists a subset C ⊆ κ+ suhthat C is o�nal in κ+ and |C| < κ+, i.e., |C| ≤ κ. Sine C ⊆ κ+, for every
α ∈ C we have |α| ≤ κ. Now, by AC, for eah α ∈ C we an hoose a one-to-onemapping fα : α →֒ κ and further let g be a one-to-one mapping from C into
κ. Then, {

〈g(α), fα(ν)〉 : α ∈ C ∧ ν ∈ α
}is a subset of κ × κ and onsequently ∣∣⋃ C

∣∣ ≤ |κ × κ| = κ. Thus, ⋃ C 6= κ+whih implies that C is not o�nal in κ+. ⊣For example, ω1, ω17, and ωω+5 are regular, sine ω1 = ω+
0 , ω17 = ω+

16, and
ωω+5 = ω+

ω+4.We now onsider arbitrary sums and produts of ardinal numbers. Forthis, let I be a non-empty set and let {κι : ι ∈ I} be a family of ardinals. Wede�ne ∑

ι∈I

κι =
∣∣∣
⋃

ι∈I

Aι

∣∣∣where {Aι : ι ∈ I} is a family of pairwise disjoint sets suh that |Aι| = κι foreah ι ∈ I, e.g., Aι = κι × {ι} will do.Similarly we de�ne ∏

ι∈I

κι =
∣∣∣
∏

ι∈I

Aι

∣∣∣where {Aι : ι ∈ I} is a family of sets suh that |Aι| = κι for eah ι ∈ I, e.g.,
Aι = κι will do.Theorem 5.11 (Inequality of König-Jourdain-Zermelo). Let I be anon-empty set and let {κι : ι ∈ I} and {λι : ι ∈ I} be families of ardinalnumbers suh that κι < λι for every ι ∈ I. Then

∑

ι∈I

κι <
∏

ι∈I

λι .Proof. Let {Aι : ι ∈ I} be a family of pairwise disjoint sets suh that |Aι| = κιfor eah ι ∈ I. Firstly, for eah ι ∈ I hoose a injetion fι : Aι →֒ λι and anelement yι ∈ λι \ fι[Aι] (notie that sine |Aι| < λι, the set λι \ fι[Aι] isnon-empty).As a �rst step we show that ∑
ι∈I κι ≤ ∏

ι∈I λι: For this, de�ne f̄ :⋃
ι∈I Aι →

∏
ι∈I λι by stipulating f̄(x) := 〈f̄ι(x) : ι ∈ I〉 where

f̄ι(x) =

{
fι(x) if x ∈ Aι,
yι otherwise.Then f̄ is obviously a one-to-one funtion from ⋃

ι∈I Aι into ∏
ι∈I λι, whihshows that ∑ι∈I κι ≤

∏
ι∈I λι.



The Prime Ideal Theorem and related statements 127To see that ∑ι∈I κι <
∏
ι∈I λι, take any funtion g :

⋃
ι∈I Aι →

∏
ι∈I λι.For every ι ∈ I, let Pι(g[Aι]) be the projetion of g[Aι] on κι. Then, for eah

ι ∈ I we an hoose an element zι ∈ λι \ Pι
(
g[Aι]

). Evidently, the sequene
〈zι : ι ∈ I〉 does not belong to g[⋃ι∈I Aι

] whih shows that g is not surjetive,and onsequently, g is not bijetive. ⊣As an immediate onsequene we get the followingCorollary 5.12. For every in�nite ardinal κ we have
κ < κcf(κ) and cf(2κ) > κ .In partiular we get that cf(c) > ω.Proof. Let 〈αν : ν ∈ cf(κ)

〉 be a o�nal sequene of κ. On the one hand wehave
κ =

∣∣∣
⋃

ν∈cf(κ)

αν

∣∣∣ ≤
∑

ν∈cf(κ)

|αν | ≤ cf(κ) · κ = κ ,and hene, κ =
∑
ν∈cf(κ) |αν |. On the other hand, for eah ν ∈ cf(κ) we have

|αν | < κ, and therefore, by Theorem 5.11, we have
∑

ν∈cf(κ)

|αν | <
∏

ν∈cf(κ)

κ = κcf(κ) .Thus, we have κ < κcf(κ).In order to see that cf(2κ) > κ, notie that cf(2κ) ≤ κ would imply that
(2κ)cf(2

κ) ≤ (2κ)κ = 2κ·κ = 2κ, whih ontradits the fat that 2κ < (2κ)cf(2
κ).
⊣Some Weaker Forms of the Axiom of ChoieThe Prime Ideal Theorem and Related StatementsThe following maximality priniple � whih is frequently used in areas likeAlgebra and Topology� is just slightly weaker than the Axiom of Choie.However, in order to formulate this hoie priniple we have to introdue thenotion of Boolean algebra and ideal:A Boolean algebra is an algebrai struture, say

(
B,+, · ,−,0,1

)where B is a non-empty set, �+� and � · � are two binary operations (alledBoolean sum and produt), �−� is an unary operation (alled omplement),



128 5 The Axiom of Choieand 0,1 are two onstants. For all u, v, w ∈ B, the Boolean operations satisfythe following axioms:
u+ v = v + u

u+ (v +w) = (u+ v) + w

u · (v + w) = (u · v) + (u · w)
u · (u+ v) = u

u+ (−u) = 1

u · v = v · u (ommutativity)
u · (v · w) = (u · v) · w (assoiativity)
u+ (v · w) = (u+ v) · (u+w) (distributivity)
u+ (u · v) = u (absorption)
u · (−u) = 0 (omplementation)An algebra of sets is a olletion S of subsets of a given set S suh that

S ∈ S and whenever X,Y ∈ S , then S \ (X ∩ Y ) ∈ S (i.e., S is losedunder unions, intersetions and omplements). An algebra of sets S ⊆ P(S)is a Boolean algebra, with Boolean sum and produt being ∪ and ∩ respe-tively, the omplement −X of a set X ∈ S being S \ X , and with ∅ and
S being the onstants 0 and 1 respetively. In partiular, for any set S,(
P(S),∪,∩,−, ∅, S

) is a Boolean algebra. The ase when S = ω plays animportant role throughout this book and some ombinatorial properties ofthe Boolean algebra (
P(ω),∪,∩,−, ∅, ω

) will be investigated in Chapters 8�10. From the axioms above one an derive additional Boolean algebrai rulesthat orrespond to rules for the set operations ∪, ∩ and −. Among others wehave
u+u = u ·u = −(−u) = u , u+0 = u , u ·0 = 0 , u+1 = 1 , u ·1 = u ,as well as the two De Morgan laws

−(u+ v) = −u · −v and − (u · v) = −u+−v .The De Morgan laws might be better reognised for example in set-theoretinotation as
S \ (X ∪ Y ) = (S \X) ∩ (S \ Y )where X,Y ∈ P(S); or in Propositional Logi as

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψwhere ϕ and ψ are any sentenes formulated in a ertain language.This last formulation in the language of Propositional Logi shows therelation between Boolean algebra and Logi and provides other examples ofBoolean algebras:Let L be a �rst-order language and let S be the set of all L -sentenes.We de�ne an equivalene relation �∼� on S by stipulating
ϕ ∼ ψ ⇐⇒ ⊢ ϕ↔ ψ .The set B := S/∼ of all equivalene lasses [ϕ] is a Boolean algebra underthe operations [ϕ] + [ψ] := [ϕ ∨ ψ], [ϕ] · [ψ] := [ϕ ∧ ψ], −[ϕ] := [¬ϕ], where
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0 := [ϕ ∧ ¬ϕ] and 1 := [ϕ ∨ ¬ϕ]. This algebra is alled the Lindenbaumalgebra.Let us de�ne

u− v = u · (−v)and
u ≤ v ⇐⇒ u− v = 0 .We leave it as an exerise to the reader to verify that �≤� is a partial orderingon B and that

u ≤ v ⇐⇒ u+ v = v ⇐⇒ u · v = u .Notie also that [ϕ] ≤ [ψ] is equivalent to ⊢ ϕ→ ψ.With respet to that ordering, 1 is the greatest element of B and 0 isthe least element. Also, for any u, v ∈ B, u + v is the least upper bound of
{u, v}, and u · v is the greatest lower bound of {u, v}. Moreover, sine −u isthe unique element v of B suh that u + v = 1 and u · v = 0 we get that allBoolean-algebrai operations an be de�ned in terms of the partial ordering�≤� (e.g., −u is the least element v of B with the property that u+ v = 1).Now, let us de�ne an additional operation �⊕� on B by stipulating

u⊕ v = (u − v) + (v − u) .Notie that for every u ∈ B we have u ⊕ u = 0, thus, with respet to theoperation �⊕�, every element of B is its own (and unique) inverse. We leaveit as an exerise to the reader to show that B with the two binary operations
⊕ and · is a ring with zero 0 and unit 1.Before we give the de�nition of ideals in Boolean algebras, let us brie�yreall the algebrai notion of ideals in ommutative rings: Let R = (R,+, · ,0)be an arbitrary ommutative ring. An non-empty subset I ⊆ R is an ideal in
R if and only if for all x, y ∈ I and all r ∈ R we have x− y ∈ I and r · x ∈ I.The ideal {0} is alled the trivial ideal. An ideal I ⊆ R of a ring is alledmaximal if I 6= R and the only ideals J in R for whih I ⊆ J are J = I and
J = R. If R is a ommutative ring and I 6= R is an ideal in R, then I is alleda prime ideal if given any r, s ∈ R with r ·s ∈ I we always have r ∈ I or s ∈ I.It is not hard to verify that in a ommutative ring with 1, every maximalideal is prime. Finally, if an ideal J ⊆ R is generated by a single element of
R, then J is so-alled prinipal ideal.With respet to the ring (B,⊕, · ,0,1), this leads to the following de�nitionof ideals in Boolean algebras.Let (B,+, · ,−,0,1) be a Boolean algebra. An ideal I in B is a non-emptyproper subset of B with the following properties:
• 0 ∈ I but 1 /∈ I.
• If u ∈ I and v ∈ I, then u+ v ∈ I.
• For all w ∈ B and all u ∈ I, w ·u ∈ I (or equivalently, if w ∈ B, u ∈ I and

w ≤ u, then w ∈ I).



130 5 The Axiom of ChoieConsidering the Boolean algebra (
P(ω),∪,∩,−, ∅, ω

), one easily veri�es thatthe set of all �nite subsets of ω is an ideal over ω, i.e., an ideal on P(ω). Thisideal is alled the Fréhet ideal.The dual notion of an ideal is a so-alled �lter. Thus, a �lter F in B is anon-empty proper subset of B with the following properties:
• 0 /∈ F but 1 ∈ F .
• If u ∈ F and v ∈ F , then u · v ∈ F .
• For all w ∈ B and all u ∈ F , w + u ∈ I (or equivalently, if w ∈ B, u ∈ Fand w ≥ u, then w ∈ F ).Moreover, if I is an ideal in B, then I∗ := {−u : u ∈ I} is a �lter, alled dual�lter. Similarly, if F is a �lter in B, then F ∗ := {−u : u ∈ F} is an ideal,alled dual ideal. The dual �lter I∗0 = {x ⊆ ω : ω \ x is �nite} of the Fréhetideal I0 on P(ω) is alled the Fréhet �lter.Let I be an ideal in B, and let F be a �lter in B.

I is alled
• trivial if I = {0};
• prinipal if there is an u ∈

B suh that I = {v : v ≤ u};
• prime if for all u ∈ B, either

u ∈ I or −u ∈ I;
F is alled
• trivial if F = {1};
• prinipal if there is an u ∈

B suh that F = {v : v ≥ u};
• an ultra�lter if for all u ∈

B, either u ∈ F or −u ∈ F .Let us onsider a few ideals and �lters over ω, i.e., ideals and �lters in theBoolean algebra (
P(ω),∪,∩,−, ∅, ω

): The trivial ideal is {∅}, and the trivial�lter is {ω}. For any non-empty subset x ⊆ ω, Fx :=
{
y ∈ P(ω) : y ⊇ x

}is a prinipal �lter, and the dual ideal Iω\x := (Fx)
∗ = {z ∈ P(ω) : ω \ z ∈

Fx} =
{
z ∈ P(ω) : z ∩ x = ∅

} is also prinipal. In partiular, if x = {a} forsome a ∈ ω, then Fx is a prinipal ultra�lter and Iω\x is a prinipal primeideal. We leave it as an exerise to the reader to show that every prinipalultra�lter over ω is of the form F{a} for some a ∈ ω, and that every prinipalprime ideal is of the form Iω\{a}. Considering the Fréhet �lter F on P(ω),one easily veri�es that F is a non-prinipal �lter, but not an ultra�lter (notiethat neither x = {2n : n ∈ ω} nor ω \ x belongs to F ). Similarly, the Fréhetideal is not prime but non-prinipal.Let us now summarise a few basi properties of ultra�lters over sets (theproofs are left to the reader):Fat 5.13. Let U be an ultra�lter over a set S.(a) If {x0, . . . , xn−1} ⊆ P(S) (for some n ∈ ω) suh that x0∪ . . .∪xn−1 ∈ Uand for any distint i, j ∈ n we have xi ∩xj /∈ U , then there is a unique k ∈ nsuh that xk ∈ U .(b) If x ∈ U and |x| ≥ 2, then there is a proper subset y  x suh that y ∈ U .() If U ontains a �nite set, then U is prinipal.



The Prime Ideal Theorem and related statements 131On the one hand, prime ideals and ultra�lters in Boolean algebras arealways maximal. On the other hand, one annot prove in ZF that for examplethe Fréhet �lter over ω an be extended to an ultra�lter. In partiular, thereare models of ZF in whih every ultra�lter over ω is prinipal (f. RelatedResult 38 and Chapter 17).However, there is a hoie priniple whih guarantees that every ideal ina Boolean algebra an be extended to a prime ideal, and onsequently, thatevery �lter an be extended to an ultra�lter.Prime Ideal Theorem: If I is an ideal in a Boolean algebra, then I anbe extended to a prime ideal.In fat, the Prime Ideal Theorem, denoted PIT, is a hoie priniple whih isjust slightly weaker than the full Axiom of Choie. Below we shall present someequivalent formulations of the Prime Ideal Theorem, but �rst let us show thatthe Prime Ideal Theorem follows from the Axiom of Choie (for the fat thatthe onverse impliation does not hold see Theorem 7.16).Proposition 5.14. AC ⇒ PIT.Proof. By Theorem 5.3 it is enough to show that the Prime Ideal Theoremfollows from Teihmüller's Priniple. Let (B,+, · ,−,0,1) be a Boolean algebraand let I0  B be an ideal. Further, let F be the family of all sets X ⊆ B \ I0suh that for every �nite subset {u0, . . . , un} ⊆ X ∪ I0 we have
u0 + . . .+ un 6= 1 .Obviously, F has �nite harater, and therefore, by Teihmüller's Priniple,

F has a maximal element. In other words, there is a maximal subset I1of B whih has the property that whenever we pik �nitely many elements
{u0, . . . , un} from I := I0 ∪ I1 we have u0 + . . .+ un 6= 1. Sine I1 is maximalwe get that I is an ideal in B whih extends I0. Moreover, the ideal I has theproperty that for any element v ∈ B \ I there is a u ∈ I suh that u+ v = 1,i.e., for any v ∈ B, v /∈ I implies −v ∈ I. Thus, I is a prime ideal in B whihextends I0.A seemingly weaker version of PIT is the following statement.Ultra�lter Theorem: If F is a �lter over a set S, then F an be extendedto an ultra�lter.Notie that the Ultra�lter Theorem is the dual version of the Prime Ideal The-orem in the ase when the Boolean algebra is an algebra of sets.For the next version of the Prime Ideal Theorem we have to introdue �rstsome terminology: Let S be a set and let B be a set of binary funtions (i.e.,with values 0 or 1) de�ned on �nite subsets of S. We say that B is a binarymess on S if B satis�es the following properties:



132 5 The Axiom of Choie
• For eah �nite set P ⊆ S, there is a funtion g ∈ B suh that dom(g) = P ,i.e., g is de�ned on P .
• For eah g ∈ B and eah �nite set P ⊆ S, the restrition g|P belongs to B.Let f be a binary funtion on S and let B be a binary mess on S. Then f isonsistent with B if for every �nite set P ⊆ S, f |P ∈ B.Consisteny Priniple: For every binary mess B on a set S, there existsa binary funtion f on S whih is onsistent with B.In order to state the last version of the Prime Ideal Theorem we have tointrodue �rst some terminology from Propositional Logi: The alpha-bet of Propositional Logi onsists of an arbitrarily large but �xed set
P := {pλ : λ ∈ Λ} of so-alled propositional variables, as well as of thelogial operators �¬�, �∧�, and �∨�. The formulae of Propositional Logi arede�ned reursively as follows:
• A single propositional variable p ∈ P by itself is a formula.
• If ϕ and ψ are formulae, then so are ¬(ϕ), (ϕ ∧ ψ), and (ϕ ∨ ψ); in Polishnotation, the three omposite formulae are ¬ϕ, ∧ϕψ, and ∨ϕψ, respe-tively.A realisation of Propositional Logi is a map of P , the set of propositionalvariables, to the two element Boolean algebra (

{0,1},+, · ,−,0,1
). Givena realisation f of Propositional Logi. By indution on the omplexity offormulae we extend f to all formulae of Propositional Logi (ompare withthe de�nition of Lindenbaum's algebra): For any formulae ϕ and ψ, if f(ϕ)and f(ψ) have already been de�ned, then

f(∧ϕψ) = f(ϕ) · f(ψ) , f(∨ϕψ) = f(ϕ) + f(ψ) ,and
f(¬ϕ) = −f(ϕ) .Let ϕ be any formula of Propositional Logi. If the realisation f , extended inthe way just desribed, maps the formula ϕ to 1, then we say that f satis�es

ϕ. Finally, a set Σ of formulae of Propositional Logi is satis�able if there isa realisation whih simultaneously satis�es all the formulae in Σ.Compatness Theorem for Propositional Logi: Let Σ be a set of formulaeof Propositional Logi. If every �nite subset of Σ is satis�able, then also
Σ is satis�able.Notie that the reverse impliation of the Compatness Theorem for Proposi-tional Logi is trivially satis�ed.Now we show that the above priniples are all equivalent to the Prime IdealTheorem.



The Prime Ideal Theorem and related statements 133Theorem 5.15. The following statements are equivalent:(a) Prime Ideal Theorem.(b) Ultra�lter Theorem.() Consisteny Priniple.(d) Compatness Theorem for Propositional Logi.(e) Every Boolean algebra has a prime ideal.Proof. (a)⇒(b) The Ultra�lter Theorem is an immediate onsequene of thedual form of the Prime Ideal Theorem.(b)⇒() Let B be a binary mess on a non-empty set S. Assuming the Ultra�l-ter Theorem we show that there is a binary funtion f on S whih is onsistentwith B. Let fin(S) be the set of all �nite subsets of S. For eah P ∈ fin(S), let
AP =

{
g ∈ S2 : g|P ∈ B

}
.Sine B is a binary mess, the intersetion of �nitely many sets AP is non-empty. Thus, the family F onsisting of all supersets of intersetions of �nitelymany sets AP is a �lter over S2. By the Ultra�lter Theorem, F an be extendedto an ultra�lter U ⊆ P

(
S2

). Sine U is an ultra�lter, for eah s ∈ S, either{
g ∈ S2 : g(s) = 0

} or {g ∈ S2 : g(s) = 1
} belongs to U , and we de�ne thefuntion f ∈ S2 by stipulating that for eah s ∈ S, the set As =

{
g ∈ S2 :

g(s) = f(s)
} belongs to U . Now, for any �nite set P = {s0, . . . , sn} ⊆ S,⋂

i≤n Asi ∈ U , whih shows that f |P ∈ B, i.e., f is onsistent with B.()⇒(d) Let Σ be a set of formulae of Propositional Logi and let S ⊆ P bethe set of propositional variables whih appear in formulae of Σ. Assume thatevery �nite subset of Σ is satis�able, i.e., for every �nite subset Σ0 ⊆ Σ thereis a realisation gΣ0 : SΣ0 → {0,1} whih satis�es Σ0, where SΣ0 denotes theset of propositional variables whih appear in formulae of Σ0. Let
BΣ :=

{
gΣ0 |P : Σ0 ∈ fin(Σ) ∧ P ⊆ SΣ0

}
.Then BΣ is obviously a binary mess and by Consisteny Priniple there existsa binary funtion f on S whih is onsistent with BΣ. Now, f is a realisationof Σ and therefore Σ is satis�able.(d)⇒(e) Let (B,+, · ,−,0,1) be a Boolean algebra and let P := {pu : u ∈

B} be a set of propositional variables. Further, let ΣB be the following set offormulae of Propositional Logi:
• p0, ¬p1;
• pu ∨ ¬p−u (for eah u ∈ B);
• ¬(pu1 ∧ . . . ∧ pun

) ∨ pu1+...+un
(for eah �nite set {u1, . . . , un} ⊆ B).

• ¬(pu1 ∨ . . . ∨ pun
) ∨ pu1·...·un

(for eah �nite set {u1, . . . , un} ⊆ B).Notie that every �nite subset of B generates a �nite subalgebra of B andthat every �nite Boolean algebra has a prime ideal. Now, sine every �nite



134 5 The Axiom of Choieprime ideal in a �nite subalgebra of B orresponds to a realisation of a �nitesubset of ΣB, and vie versa, every �nite subset of ΣB is satis�able. Thus, bythe Compatness Theorem for Propositional Logi, ΣB is satis�able. Let f be arealisation of ΣB and let I =
{
u ∈ B : f(pu) = 1

}. By de�nition of ΣB and Irespetively we get:
• f(p0) = 1 and f(p1) = 0; thus, 0 ∈ I but 1 /∈ I.
• f(pu) = 1− f(¬pu); thus, for all u ∈ B, either u ∈ I or −u ∈ I.
• If f(pu1) = f(pu2) = 1, then f(pu1 ∧ pu2) = 1; thus, for all u1, u2 ∈ I wehave u1 + u2 ∈ I.
• if f(pu1) = 1, then f(pu1 ∨ pu2) = 1; thus, for all u1 ∈ I and all u2 ∈ B wehave u1 · u2 ∈ I.Thus, the set I =

{
u ∈ B : f(pu) = 1

} is a prime ideal in B.(e)⇒(a) Let (
B,+, · ,−,0,1

) be a Boolean algebra and I ⊆ B an ideal in
B. De�ne the following equivalene relation on B:

u ∼ v ⇐⇒ (u− v) + (v − u) ∈ ILet C be the set of all equivalene lasses [u]̃ and de�ne the operations �+�,� · �, and �−� on C as follows:
[u]̃ + [v]̃ = [u+ v]̃ , [u]̃ · [v]̃ = [u · v]̃ , −[u]̃ = [−u]̃ .Now, (

C,+, · ,−, [0]̃ , [1]̃
)is a Boolean algebra, the so-alled quotient of B modulo I. By the Prime IdealTheorem, C has a prime ideal J . We leave it as an exerise to the reader toverify that the set {

u ∈ B : [u]̃ ∈ J
}is a prime ideal in B whih extends I. ⊣König's Lemma and other Choie PriniplesLet us begin by de�ning some hoie priniples:

• C(ℵ0,∞): Every ountable family of non-empty sets has a hoie funtion(this hoie priniple is usually alled Countable Axiom of Choie).
• C(ℵ0,ℵ0): Every ountable family of non-empty ountable sets has a hoiefuntion.
• C(ℵ0, < ℵ0): Every ountable family of non-empty �nite sets has a hoiefuntion.
• C(ℵ0, n): Every ountable family of n-element sets, where n ∈ ω, has ahoie funtion.
• C(∞, < ℵ0): Every family of non-empty �nite sets has a hoie funtion(this hoie priniple is usually alled Axiom of Choie for Finite Sets).



König's Lemma and other hoie priniples 135
• C(∞, n): Every family of n-element sets, where n ∈ ω, has a hoie fun-tion. This hoie priniple is usually denoted Cn.Another � seemingly unrelated� hoie priniple is the Ramseyan PartitionPriniple, denoted RPP.
• RPP: If X is an in�nite set and [X ]2 is 2-oloured, then there is an in�nitesubset Y of X suh that [Y ]2 is monohromati.Below we show how these hoie priniples are related to eah other, but�rst let us show that C(ℵ0, < ℵ0) and König's Lemma, denoted by KL, areequivalent.Proposition 5.16. C(ℵ0, < ℵ0) ⇐⇒ KL.Proof. (⇒) Let T = (V,E) be an in�nite, �nitely branhing tree with vertexset V , edge set E, and root say v0. The edge set E an be onsidered asa subset of V × V , i.e., as a set of ordered pairs of verties indiating thediretion from the root to the top of the tree. Let S0 := {v0}, and for n ∈ ωlet

Sn+1 :=
{
v ∈ V : ∃u ∈ Sn(〈u, v〉 ∈ E)

}and let S :=
⋃
n∈ω Sn. Sine T is in�nite and �nitely branhing, S is in�niteand for every n ∈ ω, Sn is a non-empty �nite set. Further, for every v ∈ Slet S(v) be the set of all verties u ∈ S suh that there exists a non-empty�nite sequene s ∈ seq(S) of length k + 1 (for some k ∈ ω) with s(0) = v and

s(k) = u, and for all i ≤ k we have 〈s(i), s(i+1)
〉
∈ E. In other words, S(v) isthe set of all verties whih an be reahed from v. Notie that (S(v), E|S(v)

)is a subtree of T . Sine S is in�nite and for all n ∈ ω, ⋃i∈n Si is �nite, foreah n ∈ ω there exists a vertex v ∈ Sn suh that S(v) is in�nite.We now proeed as follows: By C(ℵ0, < ℵ0), for eah n ∈ ω we an hoosea well-ordering �<n � on Sn and then onstrut a branh v0, v1, . . . , vn, . . .through T , where for all n ∈ ω, vn+1 is the <n+1-minimal element of thenon-empty set {v ∈ Sn+1 : 〈vn, v〉 ∈ E ∧ “S(v) is in�nite�}.(⇐) Let F = {Fn : n ∈ ω} be a ountable family of non-empty �nite sets.Further, let V =
⋃
k∈ω

(∏
n∈k Fn

) and let E ⊆ V ×V be the set of all orderedpairs 〈s, t〉 of the form s = 〈x0, . . . , xn〉 and t = 〈x0, . . . , xn, xn+1〉 respetively,where for eah i ∈ n+2, xi ∈ Fi (i.e., the sequene t is obtained by adding anelement of Fn+1 to s). Obviously, T = (V,E) is an in�nite, �nitely branhingtree and therefore, by KL, has an in�nite branh, say 〈an : n ∈ ω〉. Sine, forall n ∈ ω, an belongs to Fn, the funtion
f : F −→ ⋃

F

Fn 7−→ anis a hoie funtion for F , and sine the ountable family of �nite sets F wasarbitrary, we get C(ℵ0, < ℵ0). ⊣



136 5 The Axiom of ChoieObviously, C(ℵ0, < ℵ0) ⇒ C(ℵ0, n) for all positive integers n ∈ ω. However,as a matter of fat we would like to mention that for eah n ≥ 2, C(ℵ0, n)is a proper axiom, i.e., not provable within ZF (for n = 2 see for exampleProposition 7.7).The following result shows the strength of the hoie priniples RPP andKL ompared to C(ℵ0,∞) and C(ℵ0, n) respetively:Theorem 5.17. C(ℵ0,∞) =⇒ RPP =⇒ KL =⇒ C(ℵ0, n).Proof. C(ℵ0,∞) ⇒ RPP: Firstly we show that C(ℵ0,∞) implies that everyin�nite set X is trans�nite, i.e., there is an in�nite sequene of elements of
X in whih no element appears twie: Let X be an in�nite set and for every
n ∈ ω let Fn+1 be the set of all injetions from n + 1 into X . Consider thefamily F =

{
Fn+1 : n ∈ ω

}. Sine X is in�nite, F is a ountable family ofnon-empty sets. Thus, by C(ℵ0,∞), there is a hoie funtion, say f , on F .For every n ∈ ω let gn := f(Fn+1). With the ountably many injetions gn wean easily onstrut an injetion from ω into X . In partiular, we get an in�-nite sequene 〈ai : i ∈ ω〉 of elements of X in whih no element appears twie.For S := {ai : i ∈ ω} ⊆ X , every 2-olouring of [X ]2 indues a 2-olouring of
[S]2. Now, by Ramsey's Theorem 2.1, there exists an in�nite subset Y of Ssuh that [Y ]2 is monohromati (notie that no hoie is needed to establishRamsey's Theorem for ountable sets).RPP ⇒ KL: Let T = (V,E) be an in�nite, �nitely branhing tree and let thesets Sn (for n ∈ ω) be as in the �rst part of the proof of Proposition 5.16.De�ne the olouring π : [V ]2 → {0, 1} by stipulating π

(
{u, v}

)
= 0 ⇐⇒

{u, v} ⊆ Sn for some n ∈ ω. By RPP there exists an in�nite subset X ⊆ Vsuh that [X ]2 is monohromati. Now, sine T is �nitely branhing, we getthat if X ⊆ V is in�nite and [X ]2 is monohromati, then [X ]2 is of olour 1,i.e., no two distint elements of X are in the same set Sn. In order to onstrutan in�nite branh through T , just proeed as in the �rst part of the proof ofProposition 5.16.KL ⇒ C(ℵ0, n): Beause C(ℵ0, < ℵ0) ⇒ C(ℵ0, n), this is an immediate on-sequene of Proposition 5.16. ⊣The last result of this hapter deals with the relationship of the hoie prin-iples Cn (i.e., C(∞, n)) for di�erent natural numbers n. Before we an statethe theorem we have to introdue the following number-theoretial ondition:Let m,n be two positive integers. Then we say that m,n satisfy ondition (S)if the following ondition holds:There is no deomposition of n into a sum of primes, n = p1+. . .+ps,suh that pi > m for all 1 ≤ i ≤ s.Theorem 5.18. If the positive integers m,n satisfy ondition (S) and if Ckholds for every k ≤ m, then also Cn holds.



Notes 137Proof. Firstly notie that C1 is obviously true. Seondly notie that for n ≤ m,the impliation of the theorem is trivially true. So, without loss of generalitywe may assume that n > m.The proof is now by indution on n: Let m < n be a �xed positive integersuh that m,n satisfy ondition (S) and assume that the impliation of thetheorem is true for every l < n. Sine n,m satisfy (S), n is not a prime andonsequently n is divisible by some prime p < n. Neessarily, p ≤ m, sineotherwise we ould write n = p+. . .+p, ontrary to (S). Let F = {Aλ : λ ∈ Λ}be a family of n-element sets. We have to desribe a way to hoose an elementfrom eah set Aλ (λ ∈ Λ). Take an arbitraryA ∈ F and onsider [A]p (i.e., theset of all p-element subsets of A). Sine p ≤ m, by the premise of the theoremthere is a hoie funtion g for [A]p. In other words, for every X ∈ [A]p,
g(X) ∈ X , in partiular, g(X) ∈ A. For every a ∈ A let

q(a) =
∣∣{X ∈ [A]p : g(X) = a

}∣∣and let q := min
{
q(a) : a ∈ A

}. Further, let B :=
{
a ∈ A : q(a) = q

}.Obviously, the set B is non-empty and the set [A]p has (n
p

) elements. In orderto prove that A \ B is non-empty, we have to show that (
n
p

) is not divisibleby n. Indeed, beause p divides n, there is a positive integer k whih is notdivisible by p suh that n = k · pa+1 (for some a ∈ ω). We have
(
n

p

)
=
k · pa+1

p
· (n− 1) · · · · · (n− p+ 1)

(p− 1) · · · · · 1
=
k · pa+1

p
·
(
n− 1

p− 1

)
,and sine p does obviously not divide (

n−1
p−1

), we get that (
n
p

) is divisible by
pa, but not by pa+1; in partiular, (n

p

) is not divisible by n = k · pa+1. Thus,the sets B and A \B are both non-empty, and for l1 := |B| and l2 := |A \B|we get that l1 and l2 are positive integers with l1 + l2 = n. Moreover, m, l1 or
m, l2 satisfy ondition (S), sine otherwise we ould write l1 = p1 + . . . + prand l2 = pr+1 + . . . + ps, where p1, . . . , ps are primes bigger than m, whihwould imply that n = p1 + . . . + ps, ontrary to the assumption that m,nsatisfy (S). Thus, by the indution hypothesis, either Cl1 holds and we hoosean element in B, or, if Cl1 fails, Cl2 holds and we hoose an element in A \B.Finally, sine A ∈ F was arbitrary, this ompletes the proof. ⊣NotesThe Axiom of Choie. Fraenkel writes in [26, p. 56 f.℄ that the Axiom of Choie isprobably the most interesting and, in spite of its late appearane, the most disussedaxiom of Mathematis, seond only to Eulid's axiom of parallels whih was intro-dued more than two thousand years ago. We would also like to mention a di�erentview to hoie funtions, namely the view of Peano. In 1890, Peano published a proofin whih he was onstrained to hoose a single element from eah set in a ertain in�-nite sequene A1, A2, . . . of in�nite subsets of R. In that proof, he remarked arefully



138 5 The Axiom of Choie(f. [73, p. 210℄): But as one annot apply in�nitely many times an arbitrary rule bywhih one assigns to a lass A an individual of this lass, a determinate rule is statedhere, by whih, under suitable hypotheses, one assigns to eah lass A an individ-ual of this lass. To obtain his rule, he employed least upper bounds. Aording toMoore [66, p 76℄, Peano was the �rst mathematiian who�while aepting in�niteolletions � ategorially rejeted the use of in�nitely many arbitrary hoies.The di�ulty is well illustrated by a Russellian anedote (f. Sierpi«ski [82,p. 125℄): A millionaire possesses an in�nite number of pairs of shoes, and an in-�nite number of pairs of soks. One day, in a �t of eentriity, he summons hisvalet and asks him to selet one shoe from eah pair. When the valet, austomedto reeiving preise instrutions, asks for details as to how to perform the seletion,the millionaire suggests that the left shoe be hosen from eah pair. Next day themillionaire proposes to the valet that he selet one sok from eah pair. When askedas to how this operation is to be arried out, the millionaire is at a loss for a reply,sine, unlike shoes, there is no intrinsi way of distinguishing one sok of a pair fromthe other. In other words, the seletion of the soks annot be arried out withoutthe aid of some hoie funtion.As long as the impliit and unonsious use of the Axiom of Choie by Can-tor and others involved only generalised arithmetial onepts and properties well-known from �nite numbers, nobody took o�ene. However, the situation hangeddrastially after Zermelo [107℄ published his �rst proof that every set an be well-ordered�whih was one of the earliest assertions of Cantor. It is worth mentioningthat, aording to Zermelo [107, p. 514℄ & [108, footnote p. 118℄, it was in fat theidea of Erhard Shmidt to use the Axiom of Choie in order to build the f-sets.Zermelo onsidered the Axiom of Choie as a logial priniple, that annot be reduedto a still simpler one, but is used everywhere in mathematial dedutions withouthesitation (see [107, p. 516℄). Even though in Zermelo's view the Axiom of Choiewas �self-evident�, whih is not the same as �obvious� (see Shapiro [81, �5℄ for a de-tailed disussion of the meaning of �self-evidene�), not all mathematiians at thattime shared Zermelo's opinion. Moreover, after the �rst proof of the Well-OrderingPriniple was published in 1904, the mathematial journals (espeially volume 60 ofMathematishe Annalen) were �ooded with ritial notes rejeting the proof (see forexample Moore [66, Chapter 2℄), mostly arguing that the Axiom of Choie was eitherillegitimate or meaningless (f. Fraenkel, Bar-Hillel, and Lévy [26, p. 82℄). The reasonfor this was not only due to the non-onstrutive harater of the Axiom of Choie,but also beause it was not yet lear what a �set� should be. So, Zermelo deided topublish a more detailed proof, and at the same time taking the opportunity to replyto his ritis. This resulted in [108℄, his seond proof of the Well-Ordering Priniplewhih was published in 1908, the same year as he presented his �rst axiomatisationof Set Theory in [108℄. It seems that this was not a oinidene. Moore [66, p. 159℄writes that Zermelo's axiomatisation was primarily motivated by a desire to seurehis demonstration of the Well-Ordering Priniple and, in partiular, to save his Axiomof Choie. Moreover, Hallett [32, p. xvi℄ goes even further by trying to show that theseletion of the axioms themselves was guided by the demands of Zermelo's reon-struted [seond℄ proof. Hallett's statement is motivated by a remark on page 124in Zermelo [108℄, where he emphasises that the proof is just based on ertain �xedpriniples to build initial sets and to derive new sets from given ones �exatly whatwe would require for priniples to form an axiomati system of Set Theory.



Notes 139We would like to mention that beause of its di�erent harater (f. Bernays [3℄)and sine he onsidered the Axiom of Choie as a general logial priniple, he didnot inlude the Axiom of Choie to his seond axiomati system of Set Theory.For a omprehensive survey of Zermelo's Axiom of Choie, its origins, develop-ment, and in�uene, we refer the reader to Moore [66℄ (see also Kanamori [46℄,Jeh [41℄, and Fraenkel, Bar-Hillel, and Lévy [26, Chapter II, �4℄); and for a biogra-phy of Zermelo (inluding the history of AC and axiomati Set Theory) we refer thereader to Ebbinghaus [17℄.Gödel's onstrutible universe. Aording to Kanamori [45, p. 28 �.℄, in Oto-ber of 1935 Gödel informed von Neumann at the Institute for Advaned Study inPrineton that he had established the relative onsisteny of the Axiom of Choie.This he did by devising his onstrutible (not onstrutive!) hierarhy L (for �law�)and verifying the Axiom of Choie and the rest of the ZF axioms there. Gödel on-jetured that the Continuum Hypothesis would also hold in L, but he soon fell illand only gave a proof of this and the Generalised Continuum Hypothesis (i.e., for all
α ∈ Ω, 2ωα = ωα+1) two years later. The ruial idea apparently ame to him duringthe night of June 14/15, 1937 (see also [31, pp. 1�8℄).Gödel's artile [28℄ was the �rst announement of these results, in whih hedesribes the model L as the lass of all �mathematially onstrutible� sets, wherethe term �onstrutible� is to be understood in the semi-intuitionisti sense whihexludes imprediative proedures. This means �onstrutible� sets are de�ned to bethose sets whih an be obtained by Russell's rami�ed hierarhy of types, if extendedto inlude trans�nite orders. In the sueeding artile [29℄, Gödel provided moredetails in the ontext of ZF, and in his monograph [30℄ � based on letures givenat the Institute for Advaned Study during the winter of 1938/39 �Gödel gaveanother presentation of L. This time he generated L set by set with a trans�nitereursion in terms of eight elementary set generators, a sort of Gödel numberinginto the trans�nite (f. Kanamori [45, p. 30℄, and for Gödel's work in Set Theory seeKanamori [47℄).Equivalent Forms of the Axiom of Choie. The literature gives numerousexamples of theorems whih are equivalent to the Axiom of Choie and a huge ol-letion of suh equivalent forms of the Axiom of Choie was aumulated by Rubinand Rubin [79, 80℄.The most popular variants of the Axiom of Choie�and the most often used inmathematial proofs � are probably the Well-Ordering Priniple (disussed above),the Kuratowski-Zorn Lemma, and Teihmüller's Priniple.The Kuratowski-Zorn Lemma was proved independently by Kuratowski [53℄ andmore than a deade later by Zorn [106℄ (see Moore [66, p. 223℄ and also Camp-bell [13℄). Usually, the Kuratowski-Zorn Lemma is dedued quite easily from theWell-Ordering Priniple. The diret dedution from the Axiom of Choie presentedabove (Theorem 5.3) is due to Kneser [51℄, who also proved Lemma 5.2 whih wasstated without proof by Bourbaki [12, p. 37 (lemme fondamental)℄.Teihmüller's Priniple was formulated independently by Tukey [103℄ and slightlyearlier by Teihmüller in [97℄, where he provides also some equivalent forms of thisvery useful priniple. Teihmüller himself was a member of the Nazi party andjoined the army in 1939. Fighting �rst in Norway and then at the Eastern Front, heeventually died in 1943.



140 5 The Axiom of ChoieKurepa's Priniple was introdued by Kurepa in [54℄, where he showed thatKurepa's Priniple together with the Linear-Ordering Priniple�whih states that ev-ery set an be linearly ordered� implies the Axiom of Choie. The proof that� inthe presene of the Axiom of Foundation� Kurepa's Priniple implies the Axiom ofChoie is due to Felgner [18℄ (see also Felgner and Jeh [20℄ or Jeh [40, Theo-rem 9.1.(a)℄).The proof that �every vetor spae has an algebrai basis� impliesMultiple Choieis taken from Blass [9℄, and the proof that Multiple Choie implies Kurepa's Prinipleis taken from Jeh [40, Theorem 9.1.(a)℄ (ompare with Chapter 7 |Related Re-sult 44).Among the dozens of ardinal relations whih are equivalent to the Axiom of Choie(see for example Lindenbaum and Tarski [60℄, Bahmann [1, �31℄, or Moore [66,p. 330 f.℄), we just mentioned three.In 1895, Cantor [14, �2℄ asserted the Trihotomy of Cardinals without proof,and in a letter of 28 July 1899 (f. [16, pp. 443�447℄) he wrote to Dedekind thatthe Trihotomy of Cardinals follows from the Well-Ordering Priniple. However, theirequivalene remained unproven until Hartogs [34℄ established it in 1915 (f. alsoMoore [66, p. 10℄). As a matter of fat we would like to mention that� aording toSierpi«ski [82, p. 99 f.℄ � Le±niewski showed that Trihotomy of Cardinals is equiva-lent to the statement that for any two ardinals n and m, where at least one of theseardinals is in�nite, we always have n+ m = n or n+m = m.Theorem 5.5.() �whih is to some extent a dualisation of the Trihotomy ofCardinals�was stated without proof by Lindenbaum [60, p. 312 (A6)℄ and the proofgiven above is taken from Sierpi«ski [83, p. 426℄.The fat that the ardinal equation m2 = m implies the Axiom of Choie is dueto Tarski [87℄ (see also Bahmann [1, V, p. 140 �.℄).Cardinal arithmeti in the presene of AC. The de�nition of ardinals givenabove an also be found for example in von Neumann [72, VII.2. p.731℄.The �rst proof of Theorem 5.7 appeared in Hessenberg [38, p. 593℄ (see alsoJourdain [44℄).Regularity of ardinals was investigated by Hausdor�, who also raised the ques-tion of existene of regular limit ardinals (f. [35, p. 131℄).The Inequality of König-Jourdain-Zermelo 5.11 � also known asKönig'sTheorem�was proven by König [52℄ (but only for ountable sums and prod-uts), and independently by Jourdain [43℄ and by Zermelo [110℄ (for historial fatssee Moore [66, p. 154℄ and Fraenkel [25, p. 98℄). Obviously, the Inequality ofKönig-Jourdain-Zermelo implies the Axiom of Choie (sine it guarantees thatevery Cartesian produt of non-empty sets is non-empty), and onsequently we getthat the Inequality of König-Jourdain-Zermelo is equivalent to the Axiom ofChoie.Algebras. Boolean algebra is named after George Boole who� aording to Rus-sell � disovered Pure Mathematis. Even though this might be an exaggeration, itis true that Boole was one of the �rst to view Mathematis as the study of abstratstrutures rather than as the siene of magnitude, and he was the �rst who ap-plied suessfully mathematial tehniques to Logi (f. Boole [11, 10℄) and his workevolved into the modern theory of Boolean algebras and algebrai Logi. In 1849,Boole was appointed at the newly founded Queen's College in Cork, where he died



Notes 141in 1864 as a result of pneumonia aused by walking to a leture in a Deemberdownpour and leturing all day in wet lothes (see also MaHale [61℄).Lindenbaum's algebra is named in memory of the Polish mathematiian AdolfLindenbaum, who was killed by the Gestapo at Nowa Wilejka in the summer of 1941.Lindenbaum and Tarski (see for example Tarski [90, 89, 91℄) developed the idea ofviewing the set of formulae as an algebra (with operations indued by the logialonnetives) independently around 1935; however, Lindenbaum's results were notpublished (see Rasiowa and Sikorski [78, footnote to page 245℄).For the history of abstrat algebrai Logi and Boolean algebras we refer thereader to Font, Jansana, and Pigozzi [22℄.Prime Ideals. Ideals and prime ideals on algebras of sets where investigated forexample by Tarski in [93℄.The notion of Lindenbaum's algebra and the Compatness Theorem for Propo-sitional Logi is taken from Bell and Slomson [2, Chapter 2℄. The equivalent formsof the Prime Ideal Theorem are taken from Jeh [40, Chapter 2, �3℄, and the orre-sponding referenes an be found in [40, Chapter 2, �7℄. We would like to mentionthat the Ultra�lter Theorem, whih is just the dual form of the Prime Ideal Theorem,is due to Tarski [88℄.Ramsey's Theorem as a hoie priniple. Ramsey's Original Theorem(f. Chapter 2) implies that every in�nite set X has the following property: For every
2-olouring of [X]2 there is an in�nite subset Y of X suh that [Y ]2 is monohro-mati. As mentioned in Chapter 2, Ramsey [76℄ expliitly indiated that his proof ofthis theorem used the Axiom of Choie. Later, Kleinberg [50℄ showed that every proofof Ramsey's Original Theorem must use the Axiom of Choie, although ratherweak forms of the Axiom of Choie like C(ℵ0,∞) su�e (see Theorem 5.17). Forthe position of Ramsey's Original Theorem in the hierarhy of hoie prinipleswe refer the reader to Blass [8℄ (see also Related Result 31).For the fat that none of the impliations in Theorem 5.17 is reversible we referthe reader to Howard and Rubin [39℄.From ountable hoie to hoie for �nite sets. The Countable Axiom ofChoie asserts that every ountable family of non-empty sets has a hoie funtion,whereas the Axiom of Choie for Finite Sets asserts that every family of non-empty�nite sets has a hoie funtion. Replaing the �nite sets in the latter hoie prinipleby n-element sets (for natural numbers n ≥ 2), we obtained the hoie priniples Cnwhih assert that every family of n-element sets has a hoie funtion. Combiningthese two hoie priniples we get in fat versions of König's Lemma, namely hoiepriniples like C(ℵ0, < ℵ0) and C(ℵ0, n) (for positive integers n ≥ 2).The proof of Theorem 5.18 is taken from Jeh [40, p. 111℄ and is optimal in thefollowing sense: If the positive integers m,n do not satisfy ondition (S), then thereis a model of Set Theory in whih Ck holds for every k ≤ m but Cn fails (see theproof of Theorem 7.16 in Jeh [40℄).



142 5 The Axiom of ChoieRelated Results22. Hausdor�'s Priniple. Among the numerous maximality priniples whih areequivalent to the Axiom of Choie, we like to mention the one known as Haus-dor�'s Priniple (f. Hausdor� [35, VI, �1, p. 140℄):Hausdor�'s Priniple: Every partially ordered set has a maximal hain(maximal with respet to inlusion �⊆�).For the history of Hausdor�'s Priniple see Moore [66, Setion 3.4, p. 167 �.℄ anda proof of the equivalene with the Axiom of Choie an be found for examplein Bernays [5, p. 142 �.℄.23. Bases in vetor spaes and the Axiom of Choie. Relations between the exis-tene or non-existene of bases in vetor spaes and some weaker forms of theAxiom of Choie are investigated for example in Keremedis [48, 49℄, Läuhli [55℄,and Halpern [33℄.24. Cardinal relations whih are equivalent to AC. Below we list a few of the dozensof ardinal relations whih are equivalent to the Axiom of Choie (mainly takenfrom Tarski [87℄):(a) m · n = m+ n for all in�nite ardinals m and n.(b) If m2 = n2, then m = n.() If m < n and p < q, then m+ p < n+ q.(d) If m < n and p < q, then m · p < n · q.(e) If m+ p < n+ p, then m < n.(f) If m · p < n · p, then m < n.(g) If 2m < m+ n, then m < n.For the proofs we refer the reader to Tarski [87℄ and Sierpi«ski [83, p. 421℄(ompare (g) with Chapter 4 |Related Result 17). More suh ardinal rela-tions an be found for example in Howard and Rubin [39, p. 82 �.℄, Rubin andRubin [80, p. 137 �.℄, Moore [66, p. 330 f.℄, and Bahmann [1, �31℄).25. Suessors of Cardinals. In [96℄ Tarski investigated the following three types ofsuessor of a ardinal number:S1. For every ardinal m there is a ardinal n suh that m < n and theformula m < p < n does not hold for any ardinal p.S2. For every ardinal m there is a ardinal n suh that m < n and forevery ardinal p the formula m < p implies n ≤ p.S3. For every ardinal m there is a ardinal n suh that m < n and forevery ardinal p the formula p < n implies p ≤ m.Tarski [96℄ showed that S1 an be proved without the help of the Axiom ofChoie, whereas S2 is equivalent to this axiom. The relation of S3 with theAxiom of Choie was further investigated by Soboi«ski [84℄ and Truss [100℄ (seealso Bahmann [1, �31, p. 141℄).26. A formulation by Sudan. Sudan [85℄ showed that the following statement isequivalent to the Axiom of Choie: Let m, n, and p be arbitrary in�nite ardinals.If m and n are either equal or n is a S1-suessor (i.e., a suessor in the in thesense of S1) of m, then also p·m and p·n are either equal or p·n is an S1-suessorof p ·m. For the in�uene of Tarski [87℄ on Sudan see Moore [66, p. 218℄.



Related Results 14327. A formulation by Tarski. There are also some equivalents of the Axiom of Choiewhih seemingly are far away of being hoie priniples. The following formula-tion by Tarski [92℄ is surely of this type: For every set N there is a set M suhthat X ∈M if and only if X ⊆ M and for all Y ⊆ X we have |Y | 6= |N |. Similarstatements an be found in Tarski [94, 95℄ (see also Bahmann [1, �31.3℄).28. Singular Cardinal Hypothesis. The Singular Cardinal Hypothesis statesthat for every singular ardinal κ, 2cf(κ) < κ implies κcf(κ) = κ+. Obviously, theSingular Cardinal Hypothesis follows from the Generalised Continuum Hy-pothesis. On the other hand, the Singular Cardinal Hypothesis is not prov-able within ZFC and in fat, the failure of the Singular Cardinal Hypothe-sis is equionsistent with the existene of a ertain large ardinal (f. Jeh [42,p. 58 f. &Chapter 24℄).29. Model Theory and the Prime Ideal Theorem. Using Lindenbaum's algebra, Ra-siowa and Sikorski [77℄ gave an alternative proof of Gödel's CompletenessTheorem 3.4, and Henkin [36℄ proved that the Prime Ideal Theorem is equiv-alent to the Compatness Theorem 3.7. Notie that by Theorem 5.15 wejust get that the Prime Ideal Theorem is equivalent to the Compatness The-orem for Propositional Logi, whih is a seemingly weaker statement than theCompatness Theorem 3.7.30. Colouring in�nite graphs and the Prime Ideal Theorem∗. For n a positive integeronsider the following statement:Pn. If G is a graph suh that every �nite subgraph of G is n-olourable,then G itself is n-olourable.The following impliations are provable in Set Theory without the Axiom ofChoie (see Myielski [69, 70℄):PIT ⇒ Pn+1 ⇒ Pn ⇒ C(∞, n) , C(∞, 2) ⇒ P2On the other hand, Lévy [59℄ showed that for any n, ZF 0 C(∞, n) ⇒ P3.Surprisingly, Läuhli showed in [57℄ that P3 implies PIT, and onsequently, forall n ≥ 3, the equivalene Pn ⇒ PIT is provable in Set Theory without the Axiomof Choie. However, the question whether there is a �diret� proof of P3 ⇒ P4without involving PIT is still open.31. Ramsey's Theorem, König's Lemma, and ountable hoie. Truss investigatedin [102℄ versions of König's Lemma, where restritions are plaed on the degree ofbranhing of the �nitely branhing tree. In partiular, he investigated C(ℵ0, n)for di�erent n ∈ ω. Later in [24℄, Forster and Truss onsidered the relation be-tween versions of Ramsey's Original Theorem and these versions of König'sLemma.The hoie priniple C(ℵ0, n) was also investigated by Wi±niewski [105℄, whereit is ompared with C(∞, n) and other weak forms of the Axiom of Choie.32. Ramsey Choie∗. Related to Cn are the following two hoie priniples: C−
n statesthat every in�nite family X of n-element sets has an in�nite subfamily Y ⊆ Xwith a hoie funtion; and RCn states that for every in�nite set X there isan in�nite subset Y ⊆ X suh that [Y ]n has a hoie funtion. These twohoie priniples are both stritly weaker than Cn (f. Truss [99℄). Montenegro



144 5 The Axiom of Choieinvestigated in [65℄ the relation between RCn and C−
n for some small values of n:It is not hard to see that RC2 ⇒ C−

2 and RC3 ⇒ C−
3 (f. [65, Lemma℄). Howeverit is quite triky to prove that RC4 ⇒ C−

4 (f. [65, Theorem℄) and it is still openwhether RC5 implies C−
5 .33. Well-ordered and well-orderable subsets of a set. For a set x, s(x) is the set of allsubsets of x whih an be well-ordered, and w(x) is the set of all well-orderingsof subsets of x. Notie that s(x) ⊆ P(x), whereas w(x) ⊆ P(x×x). Tarski [94℄showed�without the help of the Axiom of Choie�that |x| < |s(x)|, for anyset x, and his proof also yields |x| < |w(x)|. Later, Truss showed in [101℄ that forany in�nite set x and for any n ∈ ω we have |s(x)| � |xn| as well as |xn| < |w(x)|.Furthermore, he showed that if there is a hoie funtion for the set of �nitesubsets of x, then |xn| < |s(x)|. Aording to Howard and Rubin [39, p. 371℄ itis not known whether |xn| < |s(x)| (Form 283 of [39℄) is provable in ZF. Theardinality of the set w(x) was further investigated by Forster and Truss in [23℄.34. Axiom of Choie for families of n-element sets. For di�erent n ∈ ω, Cnhas been extensively studied by Mostowski in [67℄, and most of the followingresults �whih are all provable without the help of the Axiom of Choie�anbe found in that paper (see also Truss [99℄, Gauntt [27℄, or Jeh [40, Chap-ter 7, �4℄):(a) If m,n satisfy ondition (S), then n < 8m2.(b) C2 ⇒ Cn is provable if and only if n ∈ {1, 2, 4}.() For a �nite set Z = {m1, . . . ,mk} of positive integers let CZ denote thestatement Cm1 ∧ · · · ∧ Cmk

. We say that Z, n satisfy ondition (S) if forevery deomposition of n into a sum of primes, n = p1 + . . . + ps, at leastone prime pi belongs to Z. Now, the following ondition holds: If Z, n satisfyondition (S), then CZ implies Cn.(d) Let Sn be the group of all permutation of {1, . . . , n}. A subgroup G of Snis said to be �xed point free if for every i ∈ {1, . . . , n} there is a π ∈ Snsuh that π(i) 6= i. Let Z be again a �nite set of positive integers. We saythat Z, n satisfy ondition (T) if for every �xed point free subgroup G of
Sn there is a subgroup H of G and a �nite sequene H1, . . . ,Hk of propersubgroups of H suh that the sum of indies [H : H1] + . . .+ [H : Hk] is in
Z. Now, the following ondition holds: If Z, n satisfy ondition (T), thenCZ implies Cn. Moreover we have: If Z, n do not satisfy ondition (T), thenthere is a model of ZF in whih CZ holds and Cn fails.We would also like to mention that the Axiom of Choie for Finite Sets C(∞, < ℵ0)is unprovable in ZF, even if we assume that Cn is true for eah n ∈ ω (f. Jeh [40,Chapter 7, �4℄, or Lévy [58℄ and Pinus [75℄).35. Ordering priniples. Among the numerous hoie priniples whih deal withordering we mention just two:Ordering Priniple: Every set an be linearly ordered.If �<� and �≺� are partial orderings of a set P , then we say that �≺� extends�<� if for any p, q ∈ P , p < q implies p ≺ q.Order-Extension Priniple: Every partial ordering of a set P an be ex-tended to a linear ordering of P .



Related Results 145Obviously, the Order-Extension Priniple implies the Ordering Priniple, but theother diretion fails (see Mathias [62℄). Thus, the Ordering Priniple is slightlyweaker than the Order-Extension Priniple. Furthermore, Szpilrajn (who hangedhis name from Szpilrajn to Marzewski while hiding from the Nazi perseu-tion) showed in [86℄ that the Order-Extension Priniple follows from the Axiomof Choie, where one an even replae the Axiom of Choie by the Prime IdealTheorem (see for example Jeh [40, 2.3.2℄). We leave it as an exerise to thereader to show that the Ordering Priniple implies C(∞, < ℵ0). Thus, we get thefollowing sequene of impliations:PIT⇒ Order-Extension Priniple⇒ Ordering Priniple ⇒C(∞, < ℵ0)On the other hand, none of these impliations is reversible (see Läuhli [56℄ andPinus [74, �4B℄, Felgner and Truss [21, Lemma 2.1℄, Mathias [62℄, or Jeh [40,Chapter 7℄; ompare also with Chapter 7 |Related Result 48).36. More ordering priniples. Mathias showed in [62℄ that the following assertiondoes not imply the Order-Extension Priniple:If X is a set of well-orderable sets, then there is a funtion f suh thatfor eah x ∈ X, f(x) is a well-ordering of x.On the other hand, Truss [98℄ showed that following assertion, apparently onlyslightly stronger than the ordering priniple above, implies the Axiom of Choie:If X is a set and f a funtion on X suh that for eah x ∈ X, f(x) is anon-empty set of well-orderings of x, then {
f(x) : x ∈ X

} has a hoiefuntion.37. Priniple of Dependent Choies. Finally, let us mention a hoie priniple whihis losely related to the Countable Axiom of Choie. Its meaning is that one isallowed to make a ountable number of onseutive hoies.Priniple of Dependent Choies: If R is a binary relation on a non-emptyset S, and if for every x ∈ S there exists y ∈ S with xRy, then there isa sequene 〈xn : n ∈ ω〉 of elements of S suh that for all n ∈ ω we have
xnRxn+1.The Priniple of Dependent Choies, usually denoted DC, was formulated byBernays in [4℄ and for example investigated by Mostowski [68℄ (see also Jeh [40,Chapter 8℄). Even though DC is signi�antly weaker than AC, it is stronger thanC(ℵ0,∞) and (thus) implies for example that every Dedekind-�nite set is �nite(i.e., every in�nity set is trans�nite). Thus, in the presene of DC, many�kindof natural � propositions are still provable. On the other hand, having just DCinstead of full AC, most of the somewhat paradoxial onstrutions (e.g., makingtwo balls from one) annot be arried out anymore (see Herrlih [37℄ for some`disasters' that happen with and without AC). In my opinion, DC re�ets bestour intuition, and onsequently, ZF+DC would be a quite reasonable and smoothaxiomati system for Set Theory; however, it is not suitable for really exitingresults.38. An alternative to the Axiom of Choie. Let ω → (ω)ω be the statement thatwhenever the set [ω]ω is oloured with 2 olours, there exists an in�nite subset



146 5 The Axiom of Choieof ω, all whose in�nite subsets have the same olour (ompare with the Ramseyproperty de�ned in Chapter 9). In Chapter 2 we have seen that ω → (ω)ω failsin the presene of the Axiom of Choie. On the other hand, Mathias proved thatunder the assumption of the existene of an inaessible ardinal (de�ned onpage 315), ω → (ω)ω is onsistent with ZF+DC (see Mathias [64, Theorem 5.1℄).The ombinatorial statement ω → (ω)ω has many interesting onsequenes: Forexample Mathias [63℄ gave an elementary proof of the fat that if ω → (ω)ωholds, then there are no so-alled rare �lters and every ultra�lter over ω isprinipal (see Mathias [64, p. 91 �.℄ for similar results).39. The Axiom of Determinay. Another alternative to the Axiom of Choie is theAxiom of Determinay, whih asserts that all games of a ertain type are deter-mined. In order to be more preise we have to introdue �rst some terminology:With eah subset A of ωω we assoiate the following game GA, played by twoplayers I and II. First I hooses a natural number a0, then II hooses a naturalnumber b0, then I hooses a1, then II hooses b1, and so on. The game endsafter ω steps: if the resulting sequene 〈a0, b0, a1, b1, . . .〉 is in A, then I wins,otherwise II wins. A strategy (for I or II) is a rule that tells the player whatmove to make depending on the previous moves of both players; and a strategyis a winning strategy if the player who follows it always wins (for a more formalde�nition see Chapter 10). The game GA is determined if one of the players hasa winning strategy.Axiom of Determinay (AD): For every set A ⊆ ωω the game GA is deter-mined, i.e., either player I or player II has winning strategy.An easy diagonal argument shows that AC is inompatible with AD, i.e., assum-ing the Axiom of Choie there exists a set A ⊆ ωω suh that the game GA is notdetermined (f. Jeh [42, Lemma 33.1℄). In ontrast we have that AD impliesthat every ountable family of non-empty sets of reals has a hoie funtion(f. Jeh [42, Lemma 33.2℄). Moreover, one an show that Con(ZF+AD) implies
Con(ZF + AD + DC), thus, even in the presene of AD we still an have DC.Furthermore, AD implies that sets of reals are well behaved, e.g., every set ofreals is Lebesgue measurable, has the property of Baire, and every unountableset of reals ontains a perfet subset, i.e., a losed set without isolated points(f. Jeh [42, Theorem 33.3℄); however, it also implies that every ultra�lter over
ω is prinipal (f. Kanamori [45, Proposition 28.1℄) and that ℵ1 and ℵ2 are bothmeasurable ardinals (f. Jeh [42, Theorem 33.12℄). Beause of its nie onse-quenes for sets of reals, AD is a reasonable alternative to AC, espeially for theinvestigation of the real line (for the beauty of ZF + AD see for example Her-rlih [37, Setion 7.2℄). In 1962, when Myielskiand Steinhaus [71℄ introdued theAxiom of Determinay, they did not laim this new axiom to be intuitively true,but stated that the purpose of their paper is only to propose another theory whihseems very interesting although its onsisteny is problemati. Sine AD impliesthe existene of large ardinals, the onsisteny of ZF + AD annot be derivedfrom that of ZF. Moreover, using very sophistiated tehniques� far beyondthe sope of this book�Woodin proved that ZF + AD is equionsistent withZFC + �There are in�nitely many Woodin ardinals� (f. Kanamori [45, Theo-rem 32.16℄ or Jeh [42, Theorem 33.27℄). Further results and the orrespondingreferenes an be found for example in Kanamori [45, Chapter 6℄ and Jeh [42,Chapter 33℄.
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6How to Make Two Balls from One
Rests, whih are so onvenient to the omposer andsinger, arose for two reasons: neessity and the de-sire for ornamentation. As for neessity, it wouldbe impossible to sing an entire omposition withoutpausing, for it would ause fatigue that might wellprevent a singer from �nishing.Rest were adopted also for the sake of ornament.With them parts ould enter one after another infugue or onsequene, proedures that give a om-position an artful and pleasing e�et.Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558For two reasons we shall give the reader a rest: one reason is that thereader deserves a pause to re�et on the axioms of ZFC; the other reason isthat we would like to show Robinson's beautiful onstrution� relying onAC�of how to make two balls from one by dividing the ball into only �veparts.EquideomposabilityTwo geometrial �gures A and A′ (i.e., two sets of points lying on the straightline R, on the plane R2, or in the three-dimensional spae R3) are said tobe ongruent, denoted A ∼= A′, if A an be obtained from A′ by translationand/or rotation, but we shall exlude re�etions. Two geometrial �gures Aand A′ are said to be equideomposable, denoted A ≃ A′, if there is apositive integer n and partitions A = A1 ∪̇ . . . ∪̇An and A′ = A′

1 ∪̇ . . . ∪̇A′
n



154 6 How to Make Two Balls from Onesuh that for all 1 ≤ i ≤ n: Ai ∼= A′
i. To indiate that A and A′ are equide-omposable using at most n piees we shall write A ≃nA′.Below we shall present two somewhat paradoxial deompositions of the 2-dimensional unit sphere S2 as well as of the 3-dimensional solid unit ball

B1:Firstly we show that the unit sphere S2 an be partitioned into four parts,say S2 = A ∪̇B ∪̇C ∪̇F , suh that F is ountable, A ∼= B ∼= C, and A ∼=
B ∪̇C. This result is known as Hausdor�'s Paradox, even though it is just aparadoxial partition of the sphere S2 rather than a paradox.Seondly we show how to make two balls from one, in fat we show that
B1 ≃5 B1 ∪̇B1. This result is due to Robinson and is optimal with respet tothe number of piees needed, i.e., B1 6≃4 B1 ∪̇B1. We would like to mentionthat about two deades earlier, Banah and Tarski already showed that a unitball and two unit balls are equideomposable; however, their onstrutionrequires many more than �ve piees.Both deompositions, Hausdor�'s partition of the sphere as well as Robin-son's deomposition of the ball, rely on the Axiom of Choie. Moreover, it anbe shown that in the absene of the Axiom of Choie neither deompositionis provable� but this is beyond the sope of this book (see Related Re-sult 41). However, before we start the onstrutions, let us brie�y disuss themeasure-theoretial bakground of these somewhat paradoxial partitions, inpartiular of the deomposition of the ball: Firstly, why does Robinson's de-omposition of the ball seem paradoxial? Of ourse, it is beause the volumeis not preserved; but what are volumes? One ould onsider the notion ofvolume as a funtion µ whih assigns to eah set X ⊆ R3 a non-negativereal number, alled the volume of A. We require that the funtion µ has thefollowing basi properties:
• µ(∅) = 0 and µ(B1) > 0 (e.g., µ(B1) = 1),
• µ(X ∪ Y ) = µ(X) + µ(Y ) whenever X and Y are disjoint, and
• µ(X) = µ(Y ) whenever X and Y are ongruent.Now, by the fat that a unit ball and two unit balls are equideomposable, andimpliitly by Hausdor�'s result (see below), we see that there is no suh mea-sure on R3, i.e., µ is not de�ned for all subsets of R3. Roughly speaking, thereare some dust-like subsets of R3 (like the sets we shall onstrut) to whih weannot assign a volume. Having this in mind, Robinson's deomposition losesits paradoxial harater� but ertainly not its beauty.Hausdor�'s ParadoxBefore we show how to make two balls from one, we will present Hausdor�'spartition of the sphere. The itinerary is as follows: Firstly we de�ne an in�nitesubgroup H of SO(3), where SO(3) is the so-alled speial orthogonal group



Hausdor�'s Paradox 155onsisting of all rotations in R3 leaving �xed the origin. Even though the group
H is in�nite, it is generated by just two elements. Sine H is a subgroup of
SO(3), there is a natural ation of H on the unit sphere S2 whih indues anequivalene relation on S2 by x ∼ y ⇐⇒ ∃g ∈ H

(
g(x) = y

) (i.e., x ∼ yi� y belongs to the orbit of x). Then we hoose from eah equivalene lassa representative� this is where the Axiom of Choie omes in� and use theset of representatives to de�ne Hausdor�'s partition of the sphere.We begin the onstrution by de�ning the group H . For this, onsider thefollowing two elements of SO(3), whih will be the generators of H :
ϕ =




−1 0 0
0 −1 0
0 0 1



 ψ =
1

4




−2 −

√
6

√
6√

6 1 3

−
√
6 3 1



The linear mapping ϕ is the rotation through π about the axis (0, 0, 1), and
ψ is the rotation through 2π/3 about the axis (0, 1, 1). Thus, ϕ2 = ψ3 = ιwhere ι denotes the identity. We leave it as an exerise to the reader to showby indution on n that for all integers n ≥ 1 and for all εk = ±1 (where
1 ≤ k ≤ n) we have:

(
ϕψεn · · ·ϕψε1

)
=

1

2n+1




a1 a2
√
6 a3

√
6

b1
√
6 b2 b3

b′1
√
6 b′2 b′3


where all numbers a1, a2, . . . , b′3 are integers with

• a1 ≡ 2 mod 4,
• a2, a3, b1, . . . , b

′
3 are odd, and

• b1 ≡ b′1, b2 ≡ b′2, b3 ≡ b′3 mod 4.Hene, we onlude that for all n ≥ 1: (ϕψεn · · ·ϕψε1
)
/∈ {ι, ϕ}. Consequently,for all n ≥ 1, for all εk = ±1 (where 1 ≤ k ≤ n), and for ε0 ∈ {0, 1} and

εn+1 ∈ {0,±1}, we get:
ψεn+1 ·

(
ϕψεn · · ·ϕψε1

)
· ϕε0 6= ι (∗)In other words, the only relations between ϕ and ψ are ϕ2 = ψ3 = ι. Let H bethe group of linear transformations� in fat rotations� of R3 generated bythe two rotations ϕ and ψ. Then H is a subgroup of SO(3) and every elementof H is a rotation whih orresponds, by (∗), to a unique redued �word� ofthe form

ψεn+1ϕψεn · · ·ϕψε1ϕε0where n ≥ 0, εk = ±1 (for all 1 ≤ k ≤ n), ε0 ∈ {0, 1}, and εn+1 ∈ {0,±1}.We now onsider the so-alled Cayley graph of H : The Cayley graph of
H is a graph with vertex set H , where for ρ1, ρ2 ∈ H there is a direted edgefrom ρ1 to ρ2 if either ρ2 = ϕρ1 or ρ2 = ψρ1. In the former ase, the edge islabelled ϕ, in the latter ase it is labelled ψ, e.g., ψϕ ϕ−→ ϕψϕ or ψ2ϕ

ψ−→ ϕ.



156 6 How to Make Two Balls from OneTo eah vertex of the Cayley graph of H (i.e., to eah element of H) weassign a label, whih is either ❶, ❷, or ❸. The labelling is done aording tothe following rules:
• The identity ι gets the label ❶.
• If ρ ∈ H is labelled ❷ or ❸ and σ = ϕρ, then σ is labelled ❶.
• If ρ ∈ H is labelled ❶ and σ = ϕρ, then σ is labelled either ❷ or ❸.
• If ρ ∈ H is labelled ❶ (or ❷, or ❸) and σ = ψρ, then σ is labelled ❷ (or

❸, or ❶, respetively).These rules are illustrated by the following �gures and diagrams:
❶ oo ϕ // ❷/③

❸OO

ψ❶
xx

ψ qqqqqqqq

❷
&&ψ

MMMMMMMM

ϕ //

❶
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oo
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❶
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❷
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sssssssss
❸

oo
ψ2The lightfae label ③ indiates that if ρ is a redued word in H , labelled ❶,of the form ψερ′ for ε = ±1, then ϕρ is always labelled ❷ (not ③).The following �gure shows part of the labelled Cayley graph of H :
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❶ ❶The group H ats on the 2-dimensional unit sphere S2 and we de�ne theequivalene relation �∼� on S2 via x ∼ y i� there is a ρ ∈ H suh that



Robinson's deomposition 157
ρ(x) = y. The equivalene lasses of �∼� are usually alled H-orbits, andthe H-orbit ontaining x ∈ S2 is written [x]̃ . Let F ⊆ S2 be the set of all�xed points (i.e., the set of all y ∈ S2 suh that there is a ρ ∈ H \ {ι} with
ρ(y) = y). Sine H is ountable and every rotation ρ ∈ H has two �xed points,
F is ountable. We notie �rst that any point equivalent to a �xed point isa �xed point (i.e., for every x ∈ S2 \ F we have [x]̃ ⊆ S2 \ F ). Indeed, if
ρ(y) = y for some ρ ∈ H and y ∈ S2, then σρσ−1

(
σ(y)

)
= σ(y); that is, if yis �xed for ρ, then σ(y) is �xed for σ ρσ−1. Thus, a lass of equivalent pointsonsists either entirely of �xed points, or entirely of non-�xed points.By the Axiom of Choie there is a hoie funtion f for F =

{
[x]̃ : x ∈

S2 \ F
} and let M =

{
f
(
[x]̃

)
: x ∈ S2 \ F

}.Now we de�ne labels for all non-�xed points (i.e., points in S2 \ F ) asfollows: Firstly, every element inM is labelled ❶. Seondly, if x ∈ S2 \F , thenthere is a unique rotation ρ ∈ H suh that ρ(y) = x, where {y} = M ∩ [x]̃ .We de�ne the label of the point x by the label of ρ in the labelled Cayleygraph of H . This indues a partition of S2 \ F into the following three parts:
A =

{
x ∈ S2 \ F : x is labelled ❶

}

B =
{
x ∈ S2 \ F : x is labelled ❷

}

C =
{
x ∈ S2 \ F : x is labelled ❸

}Thus, S2 = A ∪̇B ∪̇C ∪̇F and by the labelling of the verties of the Cayleygraph of H we get:
B = ψ[A] , C = ψ−1[A] , B ∪̇C = ϕ[A] .Hene, we get that A ∼= B, A ∼= C, and that A ∼= B ∪̇C. We leave it as anexerise to the reader to show that this implies (S2 \F ) ≃4 (S2 \F ) ∪̇ (S2 \F ).For eah point x ∈ S2 let lx be the line joining the origin (i.e., the entreof the sphere) with x, and for S ⊆ S2 de�ne S̄ :=

⋃{lx : x ∈ S}. Thenthe sets Ā, B̄, and C̄, annot be Lebesgue measurable (otherwise we wouldhave 0 < µ(B̄) = µ(C̄) = µ(B̄ ∪ C̄), a ontradition). In fat, Hausdor�'sdeomposition shows that there is no non-vanishing measure on S2 whih isde�ned for all subsets of S2 suh that ongruent sets have the same measure.Robinson's DeompositionRobinson's deomposition of the ball is similar to Hausdor�'s partition of thesphere: Firstly we de�ne an in�nite subgroupG of SO(3), whereG is generatedby four generators. The ation of G on the unit ball B1 (with entre the origin)indues an equivalene relation on B1, and we hoose from eah equivalenelass a representative. With the set of representatives and a sophistiatedlabelling we �nally de�ne a partition of B1 into �ve parts A1, . . . , A5, suhthat we an make a solid unit ball with either the two sets A1 and A3, or withthe three sets A2, A4 and A5.



158 6 How to Make Two Balls from OneLet the rotations ϕ and ψ be as above. Let χ := ψϕψ. Then, oneeasily veri�es by indution on m that for all positive m ∈ ω we have
χm = ψ(ϕψ2)m−1ϕψ and χ−m = ψ2 ϕ(ψϕ)m−1ψ2. Now, by (∗), we getthat for every k ≥ 1 and any non-zero integers p1, p2, . . . , pk:

χp1ϕχp2ϕ . . . ϕχpk 6= ιFor 1 ≤ m ≤ 4 de�ne
ϕm = χmϕχm .We leave it again as an exerise to the reader to verify that for every k ≥ 1, anynon-zero integers p1, p2, . . . , pk, and any i1, . . . , ik ∈ {1, 2, 3, 4} where il 6= il+1for all 1 ≤ l < k:
ϕp1i1 ϕ

p2
i2
. . . ϕpkik 6= ι (∗∗)Let G be the subgroup of SO(3) generated by the four rotations ϕ1, . . . , ϕ4.We onsider now the labelled Cayley graph of G, where we allow againsome freedom in the labelling proess (indiated by lightfae labels). Therules for labelling the verties of the Cayley graph of G are illustrated by thefollowing �gure:
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Robinson's deomposition 159The following �gure shows part of the labelled Cayley graph of G in whihjust ϕ1 and ϕ2 are involved:
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❸The group G ats on the solid unit ball B1 and we de�ne the equivalenerelation �∼� on B1 like above via x ∼ y i� there is a ρ ∈ G suh that
ρ(x) = y. The G-orbit ontaining x ∈ B1 is again written [x]̃ . Let P be anarbitrary point on the unit sphere (i.e., on the surfae of B1), whih does notbelong to any rotation axis, and �nally let E ⊆ B1 be the set of all pointswhih belong to a rotation axis and whih are distint from the origin. It iseasy to see that for every x ∈ B1 \ E we have [x]̃ ⊆ B1 \ E. By the Axiomof Choie there is a hoie funtion f for F =

{
[x]̃ : x ∈ B1 \ E

} and let
M =

{
f
(
[x]̃

)
: x ∈ B1 \ E

}
\ {0}, where 0 denotes the origin.We �rst de�ne labels for all points in B1 \

(
E ∪ [P ]̃

) as follows:
• Every element in M is labelled ❶.
• The origin is labelled ③.
• If x ∈ B1 \ E and ρ(y) = x, where {y} = M ∩ [x]̃ , then the label of thepoint x is de�ned as the label of ρ in the labelled Cayley graph of G.Consider now the set E and �x any lass [z ]̃ ⊆ E. Choose a rotation θ 6= ιhaving a �xed point in [z ]̃ and whih is as short as possible, or more preisely,whih is expressible as a produt of the smallest possible number of fators ofthe form ϕ±1

m with m ∈ {1, 2, 3, 4}. Fix an arbitrary point x0 ∈ [z ]̃ suh that
θ(x0) = x0.



160 6 How to Make Two Balls from OneFirstly we show that if ρ(x0) = x0, then ρ = θn for some integer n. If
ρ = ι, then ρ = θ0 and we are done. Thus, we may assume that ρ 6= ι.Notie �rst that the initial and �nal fators of θ�where θ and all otherproduts of rotations are read from the right to the left � annot be inverse,sine otherwise, for some σ = ϕεm where m ∈ {1, 2, 3, 4} and ε ∈ {−1, 1}, therotation σθ σ−1 would be shorter than θ and would have a �xed point in thesame equivalene lass [z ]̃ . Thus, the rotations θ and θ−1 neither begin norend with the same fator. Now, if ρ has the same �xed point x0 as θ, then
ρθ = θρ. If ρθ does not simplify when ρ and θ are written in terms of the
ϕ±1
m where m ∈ {1, 2, 3, 4}, then, by (∗∗), θρ must also not simplify. Hene,
ρ must begin with the blok θ. Indutively one �nds that ρ is obtained bywriting the blok θ n-times, that is, ρ = θn, where n is a positive integer. Inase ρθ does simplify, then ρθ−1 does not (sine θ and θ−1 end with di�erentfators). Thus, we may apply the same argument as before to the equation
ρθ−1 = θ−1ρ, and �nd that ρ = θ−n, where n is again a positive integer.Seondly, notie that eah point y ∈ [z ]̃ may be written in the form σy(x0),where σy ∈ G is a rotation whih starts neither with the blok θ (when writtenin terms of the ϕ±1

k ), nor with the inverse of the last fator of θ�where θ isstill read from the right to the left. The former property is obvious; and toahieve the latter property onsider σyθn, where n is su�iently large, and thensimplify and remove any remaining bloks θ. Notie that this representationis unique: For suppose that σ(x0) = ρ(x0), where σ and ρ are again writtenin terms of the ϕ±1
m . Then ρ−1σ(x0) = x0, hene, ρ−1σ = θn. If n > 0, thisyields σ = ρθn, whih is impossible sine ρθn does not simplify and σ doesnot begin with the blok θ. If n < 0, we may interhange the roles of σ andρand again reah a ontradition. Hene we have n = 0, whih is σ = ρ.Thirdly, assume that θ is of the form

θ = ϕjkik ϕ
jk−1

ik−1
· · ·ϕj1i1where the il's (1 ≤ l ≤ k) belong to {1, 2, 3, 4} and eah exponent jl is ±1.So, starting with the point x0, we obtain suessively the k distint points

x0 , x1 = ϕj1i1 (x0) , x2 = ϕj2i2ϕ
j1
i1
(x0) , . . . , xk = ϕjkik ϕ

jk−1

ik−1
· · ·ϕj1i1 (x0) = x0whih form a losed yle. As shown above, eah point y ∈ [z ]̃ an be writtenuniquely in the form σy(x0), where σy starts neither with the blok θ nor withthe rotation ϕ−jk

ik
.Consider the following �gure:
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PSfrag replaements
x0 = θ(x0)

x1

x2

xi
xi+1

xk−1

y = σy(x0)

As a onsequene of the preeding arguments we get that, starting with x0,there are no other losed yles in [z ]̃ : Indeed, let y ∈ [z ]̃ and ρ 6= ι be suhthat ρ(y) = y. Now, y = σy(x0) where σy is as above. Now, ρσy(x0) = σy(x0)and therefore σ−1
y ρσy(x0) = x0. Consequently we have σ−1

y ρσy = θn whihimplies y ∈ {x0, . . . , xk}.Now we are ready to assign a label to eah point in E: Firstly, for every
[z ]̃ , where z ∈ E, we hoose a rotation θz 6= ι having a �xed point in [z ]̃and whih is as short as possible, and then hoose a point xz0 ∈ [z ]̃ suh that
θ(xz0) = xz0. Assume that θz is of the form θz = ϕjkik ϕ

jk−1

ik−1
· · ·ϕj1i1 where the il's(for 1 ≤ l ≤ k) belong to {1, 2, 3, 4} and eah exponent jl is ±1. Then fromthe point xz0 we obtain suessively the points xz1, . . . , xzk−1, x

z
k = xz0. We knowthat every point y ∈ [z ]̃ an be written uniquely in the form σy(x

z
0), where σystarts neither with the blok θz nor with the rotation ϕ−jk

ik
, and that, startingwith xz0, there are no other losed yles in [z ]̃ . Thus, in order to label thepoints in [z ]̃ it is enough to assign a label to the k points of the yle in away whih respets the labelling rules given above; the remaining points maybe labelled like the non-�xed points, i.e., like the points in B1 \

(
E ∪ [P ]̃

).



162 6 How to Make Two Balls from OneFor this, onsider the following shemata whih illustrate the labelling rules:
ϕ1 //

❶
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ϕ4 //

❶
UUUUUUUU ❶

❷

iiiiiiii
❷
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iiiiiiii
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❹
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1 0 0 0
1 0 0 0
0 1 1 1
0 1 1 1




︸ ︷︷ ︸
= R1




0 1 0 0
0 1 0 0
1 0 1 1
1 0 1 1




︸ ︷︷ ︸
= R2




1 1 0 1
1 1 0 1
0 0 1 0
0 0 1 0




︸ ︷︷ ︸
= R3




1 1 1 0
1 1 1 0
0 0 0 1
0 0 0 1




︸ ︷︷ ︸
= R4For 1 ≤ m ≤ 4, the matrix Rm, whih orresponds to ϕm, is suh that aij = 0i� whenever σ has label i❣, ϕmσ annot get label j❣. It is easy to see thatfor 1 ≤ m ≤ 4, the matrix RTm orresponds to ϕm−1. Consequently, the rota-tion θz orresponds to a ertain produt of the matries R1, . . . , R4 and theirtransposes. In partiular, θz orresponds to a 4 × 4 matrix Q. By onsider-ing the trae of Q, tr(Q), and by applying the fat that for any matries Aand B we have tr(AT ) = tr(A) and tr(AB) = tr(BA), one an easily verifythat tr(Q) 6= 0. This implies that there exists a sequene of labels say l0✐,

l1✐, . . ., lk✐with l0 = lk (here we use that tr(Q) 6= 0) suh that labelling xziwith li✐(for 0 ≤ i ≤ k) respets the labelling rules.So, we an assign a label to eah of the k points xz0, . . . , xzk−1 of the ylein a way whih respets the labelling rules, and onsequently, we an assign alabel to every point in E. Thus, the only points whih are not labelled yet arethe points in [P ]̃ : For the point P , and only for this single point, we modifythe labelling as illustrated by the following �gure (the further labelling of thepoints in [P ]̃ is done aording to the labelling rules):
❷ ❶ ❸
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Robinson's deomposition 163Finally, we have labelled all points of B1 \ {P} with four labels, whihindues a partition of B1 into the following �ve parts:
A1 =

{
x ∈ B1 : x is labelled ❶

}

A2 =
{
x ∈ B1 : x is labelled ❷

}

A3 =
{
x ∈ B1 : x is labelled ❸

}

A4 =
{
x ∈ B1 : x is labelled ❹

}

A5 = {P}Obviously, B1 = A1 ∪̇A2 ∪̇A3 ∪̇A4 ∪̇A5. We leave it as an exerise to thereader to hek that by the labelling rules (and the labelling of P ) we have:
• ϕ1[A1] = A1 ∪̇A2 ∪̇A5.
• ϕ2[A2] = A1 ∪̇A2 ∪̇A5.
• ϕ3[A3] = A3 ∪̇A4.
• ϕ4[A4] = (A3 ∪̇A4) \ {0}, where 0 denotes the origin.Hene, we get that A1

∼= A1 ∪̇A2 ∪̇A5
∼= A2, A3

∼= A3 ∪̇A4, and A4
∼=

(A3 ∪̇A4) \ {0}, and obviously we have {P} ∼= {0}.Now, with the two sets A1 and A3, as well as with the three sets A2, A4 and
A5, we an make a solid unit ball: Firstly, notie that B1 = ϕ1[A1] ∪̇ϕ3[A3].Seondly, let o be a translation whih moves P to the origin 0. Then B1 =
ϕ2[A2] ∪̇ ϕ4[A4] ∪̇ o[A5]. Hene, we �nally get

B1 ≃5 B1 ∪̇B1 .This result is optimal with respet to the number of piees needed, in otherwords we have
B1 6≃4 B1∪̇B1 .To see this, assume towards a ontradition that there are distane-preserving(not neessarily orientation-preserving) transformations ψ1, ψ2, ψ3, ψ4 and apartition B1 = P1 ∪̇P2 ∪̇P3 ∪̇P4 suh that B1 = ψ1[P1] ∪ ψ2[P2] and B1 =

ψ3[P3] ∪ ψ4[P4]. Firstly notie that not all transformations ψ1, ψ2, ψ3, ψ4 ouldleave the origin �xed, for then one opy of B1 would be without a entre. Nowsuppose for example that ψ4(0) 6= 0. Then S2 \ ψ4[B1] (where S2 denotes thesurfae of B1) ontains more than a hemisphere (i.e., more than half of S2). Inother words, ψ4[B1]∩S2, and in partiular ψ4[P4]∩S2, is ontained in less thana hemisphere. Sine ψ3[P3] must over S2 \ ψ4[P4], it must over more thana hemisphere, whih is only possible if ψ3(0) = 0 (otherwise, ψ3[P3] ∪ ψ4[P4]would not over S2). Thus, P3 itself must over more than a hemisphere, andonsequently, (P1 ∪ P2) ∩ S2 is ontained in less than a hemisphere. Hene,(
ψ1[P1]∪ψ2[P2]

)
∩S2 is properly ontained in S2, and therefore ψ1[P1]∪ψ2[P2]annot over S2.



164 6 How to Make Two Balls from OneNotesIn 1924, Banah and Tarski proved in [2℄ that if A and A′ are bounded subsets ofEulidean spae of three or more dimensions and both sets have interior points, then
A and A′ are equideomposable. In partiular, for A = B1 and A′ = B1∪̇B1, B1 ≃
B1∪̇B1 (f. [2, p. 262 (Lemme 22)℄). However, no estimate was given for the numberof piees required to make two balls from one. Some years later, von Neumann [8,p. 77℄ stated without proof that nine piees are su�ient, and about two deadeslater, Sierpi«ski improved von Neumann's result by showing that eight piees aresu�ient (f. [13℄). Finally, Robinson was able to show that in fat just �ve piees aresu�ient and that 5 is the smallest possible number of piees, i.e., B1 6≃4 B1∪̇B1.The proof of B1 ≃5 B1∪̇B1 given above is taken essentially from [10℄. How-ever, we have made a few modi�ations: For example we have taken Sierpi«ski'sonstrution given in [12℄ to obtain the four independent rotations ϕ1, ϕ2, ϕ3, ϕ4.Furthermore we have replaed the parts in Robinson's proof whih deal with prod-uts of relations with produts of matries, and introdued the trik with the traein order to �nd �xed points in produts of relations. Finally, we tried to visualise afew key steps in the proof by some �gures.The results of Banah and Tarski [2℄ � and indiretly also the other paradoxialdeompositions of geometrial �gures�were motivated by Hausdor�'s deompo-sition of the sphere, given in [3℄ (see also [5, pp. 5�10℄ or [4, p. 469 �.℄). The aimof Hausdor�'s deomposition was to show that it is impossible to de�ne a non-vanishing measure µ on S2 whih is de�ned for all subsets of S2, is �nitely additive(i.e., µ(A∪B) = µ(A)+µ(B) whenever A and B are disjoint), and has the propertythat ongruent sets have the same measure.Like Hartogs, also Hausdor� had to retire 1935 from his hair in Bonn and byOtober 1941 he was fored to wear the �yellow star�. Around the end of the yearhe was informed that he would be sent to Cologne �whih he knew was just apreliminary to deportation to Poland� but managed to avoid being sent. Shortlylater, in January 1942, he was informed again that he was to be interned now inEndenih, and together with his wife and his wife's sister, he ommitted suiide on26 January. Related Results40. Further paradoxial deompositions. In [8, p. 85 f.℄ von Neumann introduedthe following notion of deomposability: Let A and B be two subsets of ametri spae (X, d). A is said to be metrially smaller than B if there is abijetion f : A → B suh that for any distint points x, y ∈ A we have

d(x, y) < d
(
f(x), f(y)

). Furthermore, A is smaller by �nite deompositionthan B if there is a positive integer n and partitions A = A1 ∪̇ . . . ∪̇An and
B = B1 ∪̇ . . . ∪̇Bn suh that for all 1 ≤ i ≤ n we have that Ai is metriallysmaller than Bi. Now, von Neumann [8, p. 115 f.℄ showed that every interval ofthe real line is smaller by �nite deomposition than every other interval of thereal line. About two deades later, Sierpi«ski [14℄ proved a 2-dimensional ana-logue by showing that every dis is smaller by �nite deomposition than everyother dis.For the onsequenes of the paradoxial deompositions for Measure Theoryand its onnetions with Group Theory, Geometry, and Logi, we refer the



Referenes 165reader to Wagon [18℄, and for some historial bakground see Wapner [19℄.For other paradoxial deompositions see Lazkovih [7℄ or Sierpi«ski [15℄, andfor a seemingly stronger notion of equideomposability we refer the reader toWilson [20℄.41. Limits of deomposability. In 1923, Banah showed that there exists a �nitelyadditive measure m on R2, extending the Lebesgue measure µ, suh that m isde�ned for all subsets of R2 and has the property thatm(A) = m(A′) whenever
A ∼= A′ (see Banah [1, Théorème I℄). This implies that whenever A and A′ areLebesgue measurable subsets of R2 and A ≃ A′, then µ(A) = µ(A′) (see Banahand Tarski [2, Théorème 16℄). In partiular, the unit dis and two unit diss arenot equideomposable.Neither Hausdor�'s partition of the sphere nor Robinson's deomposition ofthe ball an be arried out without the aid of some form of the Axiom ofChoie. The reason for this is that in the presene of inaessible ardinals(f. Chapter 15 |Related Result 85), there exists a model of ZF in whih ev-ery set of reals is Lebesgue measurable (see Solovay [17℄, and Shelah [11℄ orRaisonnier [9℄).42. Squaring the irle. As mentioned above, there is no 2-dimensional analogueof Robinson's deomposition of the ball, i.e., there is no way of making twounit diss from one unit dis. However, Lazkovih [6℄ showed that a dis isequideomposable� by translations only�with a square of the same area. Theonstrution makes use of the Axiom of Choie and the �gures are partitionedinto about 1050 piees. Referenes1. Stefan Banah, Sur le problème de la mesure, Fundamenta Mathematiae,vol. 4 (1923), 7�33.2. Stefan Banah and Alfred Tarski, Sur la déomposition des ensembles depoints en parties respetivement ongruentes, Fundamenta Mathematiae,vol. 6 (1924), 244�277.3. Felix Hausdorff, Bemerkungen über den Inhalt von Punktmengen, Mathe-matishe Annalen, vol. 75 (1914), 428�433.4. , Grundzüge der Mengenlehre, de Gruyter, Leipzig, 1914 [reprint:Chelsea, New York, 1965].5. , Gesammelte Werke, Band IV: Analysis, Algebra und Zahlen-theorie, Springer-Verlag, Berlin, 2001.6. Miklós Lazkovih, Equideomposability and disrepany; a solution ofTarski's irle-squaring problem, Journal für die Reine und AngewandteMathematik, vol. 404 (1990), 77�117.7. , Paradoxial deompositions: A survey of reent results, First EuropeanCongress of Mathematis Paris, July 6�10, 1992, Vol. II (A. Joseph, F. Mignot,F. Murat, B. Prum, and R. Rentshler, eds.), [Progress in Mathematis 120],Birkhäuser, Basel, 1994, pp. 159�184.8. John von Neumann, Zur allgemeinen Theorie des Masses, FundamentaMathematiae, vol. 13 (1929), 73�116.
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7Models of Set Theory with Atoms
A musiian regards onsonanes more highly thandissonanes, so he omposes prinipally with them.Nevertheless, it seems that he also values thosesounds whih are dissonant.Now intervals that are dissonant produe a soundthat is disagreeable to the ear and render a ompo-sition harsh and without any sweetness. Thereforea musiian must know them not only to avoid themwhere onsonanes are required, but to use themwithin the parts of a omposition.Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558In this hapter, we shall onstrut various models of Set Theory inwhih the Axiom of Choie fails. In partiular, we shall onstrut a modelin whih C(ℵ0, 2) fails, and another one in whih a ardinal m exists suhthat m2 < [m]2. These somewhat strange models are onstruted in a similarway to models of ZF (see the umulative hierarhy introdued in Chapter 3).However, instead of starting with the empty set (in order to build the umu-lative hierarhy) we start with a set of atoms and de�ne a ertain group Gof permutations of these atoms. Roughly speaking, a set x is in the modelif x is �stable� under ertain subgroups H ⊆ G (i.e., for all permutations
π ∈ H , πx = x). In this way we an make sure that some partiular sets(e.g., hoie funtions for a given family in the model) do not belong to themodel. Unfortunately, sine we have to introdue atoms to onstrut thesemodels, we do not get models of ZF; however, using the Jeh-Sohor Em-bedding Theorem 17.2, we an embed arbitrarily large fragments of thesemodels into models of ZF, whih is su�ient for our purposes.



168 7 Models of Set Theory with AtomsPermutation ModelsIn this setion we shall give the de�nition of so-alled permutation models,but �rst have to say a few words about Set Theory with atoms, denoted ZFA:Set theory with atoms is haraterised by the fat that it admits so-alledatoms or urelements.Atoms are objets whih do not have any elements but are distint fromthe empty set. The olletion of atoms� assumed to be a set� is usuallydenoted by A, and we add the onstant symbol A to the language of SetTheory. Thus, the language of Set Theory with atoms onsists of the relationsymbol �∈� and the onstant symbol �A�, i.e., LZFA = {∈, A}.In ZFA we have two types of objets, namely sets and atoms, and sineatoms behave slightly di�erent than sets (e.g., they do not ontain elementsbut are di�erent from ∅), we have to add a new axiom for atoms (i.e., anaxiom for the symbol A) and have to modify the Axiom of Empty Set as wellas the Axiom of Extensionality.Axiom of Empty Set (for ZFA):
∃x

(
x /∈ A ∧ ∀z(z /∈ x)

)Axiom of Extensionality (for ZFA):
∀x∀y

(
(x /∈ A ∧ y /∈ A) → ∀z(z ∈ x↔ z ∈ y) → x = y

)Roughly speaking, any two objets, whih are not atoms but have the sameelements, are equal. Notie that the Axiom of Extensionality implies that theempty set is unique, i.e., ∅ is the only objet that has no elements but doesnot belong to A.Axiom of Atoms:
∀x

(
x ∈ A ↔ (x 6= ∅ ∧ ¬∃z(z ∈ x))

)In other words, an objet is an atom if and only if it ontains no elements butis di�erent from the set ∅. For an alternative de�nition of atoms see RelatedResult 43.It is time to mention that if ∀z¬ϕ(z), then we stipulate {
z : ϕ(z)

}
:= ∅ (notsome atom, whih would also be possible). For example, if x and y do not haveany elements in ommon, i.e., ∀z¬(z ∈ x∧ z ∈ y), then x∩ y = ∅. Notie thatwith this onvention we do not have to modify the Axiom of Extensionality forZFA.The development of the theory ZFA is very muh the same as that ofZF (exept for the de�nition of ordinals, where we have to require that anordinal does not have atoms among its elements). Let S be a set. Then bytrans�nite reursion on α ∈ Ω we an de�ne Pα(S) as follows: P∅(S) := S,

Pα+1(S) := Pα(S) ∪ P(Pα(S)) and Pα(S) :=
⋃
β∈αPα(S) when α is



Permutation models 169a limit ordinal. Furthermore, let P∞(S) :=
⋃
α∈Ω Pα(S). If M is a modelof ZFA and A is the set of atoms of M, then M = P∞(A). The lass

V̂ := P∞(∅), whih is a sublass of M, is a model of ZF and is alled thekernel. Notie that all ordinals belong to the kernel.Now, the underlying idea of permutation models, whih are models of ZFA,is the fat that the axioms of ZFA do not distinguish between the atoms, andso a permutation of the set of atoms indues an automorphism of the universe.Let A be a set of atoms and let M = P∞(A) be a model of ZFA. Fur-thermore, in M, let G be a group of permutations (or automorphisms) of A,where a permutation of A is a one-to-one mapping from A onto A. We saythat a set F of subgroups of G is a normal �lter on G if for all subgroups
H,K of G we have:(A) G ∈ F(B) if H ∈ F and H ⊆ K, then K ∈ F(C) if H ∈ F and K ∈ F , then H ∩K ∈ F(D) if π ∈ G and H ∈ F , then πHπ−1 ∈ F(E) for eah a ∈ A, {π ∈ G : πa = a} ∈ FFor every set x ∈ M there is a least ordinal α suh that x ∈ Pα(A). So, byindution on the ordinals, for every π ∈ G and for every set x ∈ M we ande�ne πx by stipulating

πx =






∅ if x = ∅,
πx if x ∈ A,
{πy : y ∈ x} otherwise.Notie that for all x, y ∈ M and every π ∈ G we have πx = y ⇐⇒ x = π−1yand x ∈ y ⇐⇒ πx ∈ πy, whih leads to the following de�nition: A bijetivelass funtion F : M → M is alled an ∈-automorphism of M if for all

x, y ∈ M we have x ∈ y ⇐⇒ F (x) ∈ F (y). In partiular, π : M → M isan ∈-automorphism of M.For x ∈ M, the symmetry group of x, denoted symG (x), is the groupof all permutations in G whih map x to x, in other words
symG (x) = {π ∈ G : πx = x} .A set x is said to be symmetri (with respet to a normal �lter F ) if thesymmetry group of x belongs to F , i.e., symG (x) ∈ F . By (E) we have thatevery atom a ∈ A is symmetri. A set x is alled hereditarily symmetri if

x as well as eah element of its transitive losure is symmetri. Notie that forall x ∈ M and every π ∈ G , x is hereditarily symmetri i� πx is hereditarilysymmetri.Let V ⊆ M be the lass of all hereditarily symmetri sets. Then V is atransitive model of ZFA and we all V a permutation model. Beause A,



170 7 Models of Set Theory with Atomsas well as every a ∈ A, is symmetri, we get that the set of atoms A belongsto V .Beause ∅ is hereditarily symmetri and for all ordinals α the set Pα(∅)is hereditarily symmetri too, the kernel V̂ = P∞(∅) is a sublass of V .Notie that every π ∈ G whih is not the identity mapping is a non-trivial
∈-automorphism of V. On the other hand, all ∈-automorphisms of models ofZF are trivial. In partiular, by indution on α one easily veri�es the followingFat 7.1. For any set x ∈ V̂ and any π ∈ G we have πx = x.Sine the atoms a ∈ A do not ontain any elements, but are distint fromthe empty set, the permutation models are not models of ZF. However, by theJeh-Sohor Embedding Theorem 17.2 one an embed arbitrarily largefragments of a permutation model into a well-founded model of ZF.Most of the well-known permutation models are of the following simpletype: Let G be a group of permutations of A. A family I of subsets of A, forexample I = fin(A), is a normal ideal if for all subsets E,F of A we have:(a) ∅ ∈ I(b) if E ∈ I and F ⊆ E, then F ∈ I() if E ∈ I and F ∈ I, then E ∪ F ∈ I(d) if π ∈ G and E ∈ I, then πE ∈ I(e) for eah a ∈ A, {a} ∈ IFor eah set S ⊆ A, let

fixG (S) =
{
π ∈ G : πa = a for all a ∈ S

}and let F be the �lter on G generated by the subgroups {fixG (E) : E ∈ I}.Then F is a normal �lter. Furthermore, x is symmetri if and only if thereexists a set of atoms Ex ∈ I suh that
fixG (Ex) ⊆ symG (x)where Ex is alled a support of x. Notie that if Ex is a support of x and

Ex ⊆ Fx ∈ I, then Fx is a support of x as well.Below, we give some relationships whih are onsistent with ZF betweenthe ardinals de�ned in Chapter 4. We will do this by investigating the rela-tions between ertain sets in some permutation models. The general onstru-tion will be as follows: Let V be a permutation model with a set of atoms Aand let m be a set in V. Let C(m) :=
{
x ∈ V : V � |x| = |m|

}. Then C(m) isin general a lass in V. The ardinality of m in the model V (denoted by m)is de�ned by m := C(m) ∩ Pα(A) ∩ V, where α is the smallest ordinal suhthat C(m) ∩ Pα(A) ∩ V 6= ∅.If m is a set in a permutation model V and we have for example V �

| seq(m)| < | fin(m)|, and therefore V � seq(m) < fin(m), then, by the Jeh-Sohor Embedding Theorem 17.2, there exist a well-founded model V̂



The basi Fraenkel model 171of ZF and a set m̂ suh that V̂ � | seq(m̂)| < | fin(m̂)| and onsequently
V̂ � seq(m̂) < fin(m̂), where m̂ and n̂ are the ardinalities of the sets m̂and n̂ respetively. In fat, the Jeh-Sohor Embedding Theorem 17.2enables us to translate every relation between sets in a permutation model toa well-founded model. Hene, in order to prove that a relation between someardinals is onsistent with ZF, it is enough to �nd a permutation model inwhih the desired relation holds between the orresponding sets. Below weshall make use of this method without expliitly mentioning it.The Basi Fraenkel ModelIn this setion we shall present a simple example of a permutation model inwhih the Axiom of Choie fails.Let A be a ountable in�nite set (the atoms), let G be the group of allpermutations of A, and let Ifin be the set of all �nite subsets of A. Obviously,
Ifin is a normal ideal and the �lter derived from Ifin as desribed above is anormal �lter.Let VF0 (F for Fraenkel) be the orresponding permutation model, theso-alled basi Fraenkel model. Note that a set x belongs to VF0 if andonly if x is symmetri and eah y ∈ x belongs to VF0 , too.Before we start with some results involving subsets of A, let us reall that aset S is trans�nite if ℵ0 ≤ |S|; otherwise S is alled D-�nite.Lemma 7.2. Let E ∈ Ifin; then eah S ⊆ A with support E is either �nite oro-�nite, i.e., A \S is �nite. Furthermore, if S is �nite, then S ⊆ E, and if Sis o-�nite, then (A \ S) ⊆ E.Proof. Let S ⊆ A with support E. Beause E is a support of S, for all
π ∈ fix(E) and every a ∈ A we have πa ∈ S i� a ∈ S. If S ontains anelement a0 of A \ E, then it ontains them all, sine permutations in fix(E)an send a0 to any other element of A\E. Thus, either S ⊆ E or (A\S) ⊆ E.As a onsequene we get the following result (f. Chapter 4 |Related Re-sult 18): Let m denote the ardinality of the set of atoms of the basi Fraenkelmodel. Then

VF0 �
(
22

m)ℵ0
= 2fin(m) .Indeed, every subset of A in VF0 is either �nite or o-�nite, and therefore,

2m = 2 ·fin(m). Hene, (22m
)ℵ0

=
(
2fin(m)

)2·ℵ0 and by Läuhli's Lemma 4.27this is equal to 2fin(m).Proposition 7.3. Let A be the set of atoms of the basi Fraenkel model andlet m denote its ardinality. Then VF0 � ℵ0 6≤ m; in partiular, in VF0 thereare in�nite D-�nite sets. In partiular, it is not provable in ZF that every
D-�nite set is �nite.



172 7 Models of Set Theory with AtomsProof. If there is a one-to-one mapping f : ω → A, then the set S =
{
f(2n) :

n ∈ ω
} would be an in�nite, o-in�nite set of atoms, whih is a ontraditionto Lemma 7.2. ⊣We have seen in Chapter 4 that for every in�nite ardinal m, 2ℵ0 ≤ 2fin(m).In ontrast to this fat, the following result shows that in the model VF0 , thepower set of an in�nite set an be D-�nite, whih shows that even for in�niteardinals m, the statement ℵ0 ≤ 2m is in general not provable in ZF.Proposition 7.4. Let A be the set of atoms of the basi Fraenkel model andlet m denote its ardinality. Then VF0 � ℵ0 6≤ 2m. In partiular, it is notprovable in ZF that the power set of an in�nite set is trans�nite.Proof. Assume towards a ontradition that there exists a one-to-one funtion

f : ω → P(A) whih belongs to VF0 . Then, beause f is symmetri, thereis a �nite set Ef ⊆ A (a support of f) suh that fixG (Ef ) ⊆ symG (f). Now,let n ∈ ω be suh that fixG (Ef ) * symG

(
f(n)

) (suh an n exists beause,by Lemma 7.2, Ef supports only �nitely many subsets of A). Further, let
π ∈ fixG (Ef ) be suh that πf(n) 6= f(n). By Fat 7.1 we get that πn = n, andtherefore, f(πn) = f(n). So, Ef annot be a support of f whih ontraditsthe hoie of Ef and shows that a one-to-one funtion from ω into P(A)annot belong to the model VF0 . ⊣By Proposition 4.22 we know that if 2m = n · fin(m) for some n ∈ ω, then
n = 2k for some k ∈ ω. The next result shows that also a kind of onverse istrue:Proposition 7.5. For every number n of the form n = 2k, where k ∈ ω,there is a set Ak in VF0 suh that VF0 �

∣∣P(Ak)
∣∣ =

∣∣n× fin(Ak)
∣∣.Proof. If n = 20, then the statement is true for every �nite set A0 (in everymodel of Set Theory).Let k ∈ ω \ {0} and let n = 2k. Further, let A be the set of atoms of VF0and let Ak = k ×A. By Lemma 7.2 we know that every subset of A (in VF0)is either �nite or o-�nite and therefore |P(A)| = 2 · | fin(A)|. Thus, in VF0 wehave |P(Ak)| = |P(k ×A)| = |P(A)k| =

∣∣(2 × fin(A)
)k∣∣ =

∣∣2k × fin(A)k
∣∣ =∣∣2k × fin(Ak)

∣∣, and therefore VF0 �
∣∣P(Ak)

∣∣ =
∣∣n× fin(Ak)

∣∣. ⊣The Seond Fraenkel ModelThe set of atoms of the seond Fraenkel model onsists of ountably manymutually disjoint 2-element sets:
A =

⋃

n∈ω

Pn , where Pn = {an, bn} (for n ∈ ω)



The seond Fraenkel model 173Let G be the group of those permutations of A whih preserve the pairs Pn,i.e., π({an, bn}) = {an, bn} (for eah π ∈ G and every n ∈ ω). Further, let Ifinbe the set of all �nite subsets of A. Then Ifin is a normal ideal and the �ltergenerated by Ifin is a normal �lter.Let VF2 be the orresponding permutation model, alled the seondFraenkel model. The following theorem summarises the main features ofthis model.Theorem 7.6. (a) For eah n ∈ ω the set Pn belongs to VF2 .(b) The sequene 〈Pn : n ∈ ω〉 belongs to VF2 . In partiular, the set of pairs
{Pn : n ∈ ω} is ountable in VF2 .() There is no hoie funtion on {Pn : n ∈ ω}. In partiular, C(ℵ0, 2) failsin VF2 whih shows that ZF 0 C(ℵ0, 2).Proof. (a) For eah π ∈ G and for every n ∈ ω we have πPn = Pn, whihimplies that every Pn is symmetri.(b) For eah π ∈ G we have π(〈Pn : n ∈ ω〉

)
= 〈πPn : n ∈ ω〉 = 〈Pn : n ∈ ω〉,and therefore by (a), 〈Pn : n ∈ ω〉 is hereditarily symmetri.() Assume that there is a hoie funtion f on {Pn : n ∈ ω} whih belongs to

VF2 . The hoie funtion f would be a funtion from ω into ⋃{Pn : n ∈ ω}suh that f(n) ∈ Pn (for every n ∈ ω). Let {a0, b0, . . . , ak, bk} be a supportof f and let π ∈ fixG

(
{a0, b0, . . . , ak, bk}

) be suh that πak+1 = bk+1. Then
π(k+ 1) = k+1, but π(f(k+ 1)

)
6= f(k+1), whih implies that πf 6= f andontradits the fat that {a0, b0, . . . , ak, bk} is a support of f . ⊣We leave it as an exerise to the reader to show that C2, whih is a moregeneral hoie priniple than C(ℵ0, 2), already fails in VF0 .The following result shows that in VF2 , König's Lemma fails even for binarytrees.Proposition 7.7. In VF2 there exists an in�nite binary tree whih does nothave an in�nite branh.Proof. We onstrut the binary tree T = (V,E) with vertex set V and edgeset E as follows: For n ∈ ω let Vn =

{
s ∈ nA : ∀i ∈ n (s(i) ∈ Pi)

} and let
V =

⋃
n∈ω Vn. Further, let 〈s, t〉 ∈ E i� for some n ∈ ω, s ∈ Vn, t ∈ Vn+1, and

t|n = s. It is easily veri�ed that T is an in�nite tree and sine every vertex
s ∈ V has exatly two suessors, namely s⌢an and s

⌢
bn, where s ∈ Vn and

s
⌢
x denotes the onatenation of the sequene s and the element x, T is evena binary tree. On the other hand, an in�nite branh through T would yield ahoie funtion on {Pn : n ∈ ω}, a ontradition to Theorem 7.6.(). ⊣In a similar way one an show that Ramsey's original theorem fails in VF2 :Proposition 7.8. In VF2 there exist an in�nite set S and a 2-olouring of

[S]2 suh that no in�nite subset of S is homogeneous.



174 7 Models of Set Theory with AtomsProof. Let S be the set of atoms of VF2 and olour a 2-element set of atoms
{a, b} red, if {a, b} = Pn for some n ∈ ω; otherwise, olour it blue. We leave itas an exerise to the reader to show that no in�nite homogeneous set belongsto VF2 . ⊣The last result of this setion is a kind of in�nite version of Proposition 7.5.Proposition 7.9. In VF2 , let m denote the ardinality of the set of atoms.Then VF2 � 2m = 2ℵ0 · fin(m).Proof. By the Cantor-Bernstein Theorem 3.17 it is enough to �nd twoone-to-one mappings f : P(A) → ω2 × fin(A) and g : ω2 × fin(A) → P(A).For every n ∈ ω let Un =

⋃
i∈n Pi.For S ⊆ A let m =

⋃{n+1 : |Pn∩S| = 1}. Then FS = S∩Um is �nite andfor every n > m we have either Pn ⊆ S or Pn∩S = ∅. Now de�ne χS : ω → 2by stipulating χS(n) = 0 i� Pn+m+1 ∩ S = ∅, and de�ne f(S) := 〈χS , FS〉. Itis easily veri�ed that the funtion f is one-to-one.Let 〈χ, F 〉 ∈ ω2 × fin(A) and de�ne again m =
⋃{n + 1 : |Pn ∩ F | = 1}.Then F0 = F ∩ Um and F1 = F \ F0 are �nite. Further, let

Sχ,F = F0 ∪
⋃{

P2n : Pn ⊆ F1

}
∪
⋃{

P2n+m+1 : χ(n) = 1
}
⊆ Aand de�ne g(〈χ, F 〉) := Sχ,F . It is again easy to hek that the funtion g isone-to-one. ⊣The Ordered Mostowski ModelThe set of atoms A of the ordered Mostowski model onsists of an in�niteountable set together with an ordering �<M� suh that A is densely orderedand does not have a smallest or greatest element, i.e., A is order-isomorphi tothe rational numbers. Let G be the group of all order-preserving permutationsof A and let Ifin be the ideal of the �nite subsets of A. Then again, Ifin is anormal ideal and the �lter generated by Ifin is a normal �lter.Let VM (M for Mostowski) be the orresponding permutation model,alled the ordered Mostowski model.First let us show that the binary relation �<M � belongs to the model VM .In other words, for any two distint atoms a1 and a2 we an deide in VMwhether we have a1 <M a2 or a2 <M a1.Lemma 7.10. The set R< =

{
〈a1, a2〉 : a1 <M a2} ⊆ A×A belongs to VM .Proof. If a1 <M a2, then πa1 <M πa2 (for any π ∈ G ), and therefore, 〈a1, a2〉 ∈

R< i� 〈πa1, πa2〉 ∈ R<, whih implies that symG (R<) = G . ⊣Beause by de�nition all sets in the ordered Mostowski model must be sym-metri, eah set in VM has a �nite support. Moreover, eah set in VM has aunique least support:



The ordered Mostowski model 175Lemma 7.11. (a) If E1 and E2 are supports of x, then also E = E1 ∩ E2 isa support of x.(b) Every set x ∈ VM has a least support.() The lass of all pairs (x,E), where x ∈ VM and E is the least support of
x, is symmetri.Proof. (a) Let E1 and E2 be two �nite supports of the set x ∈ VM andlet E = E1 ∩ E2. Notie that for every π ∈ fixG (E) there are �nitely many
ρ1, . . . , ρn ∈ fixG (E1) and σ1, . . . , σn ∈ fixG (E2) suh that π = ρ1σ1 · · · ρnσn.To see this, it might be better to draw a piture than to prove it formally(e.g., let E1 = {a0, a1, a2} and E2 = {b0, b1, b2} be suh that a0 = b0 <

M
a1 <

M b1 <
M a2 <

M b2, and let π ∈ fixG

(
{a0}

) be suh that b2 <M πc forsome a0 <M c <M b1). Sine ρix = x = σix (for all 1 ≤ i ≤ n) we have
πx = ρ1σ1 · · · ρnσnx = ρ1σ1 · · ·σn−1ρnx = . . . = ρ1x = xfor all π ∈ fixG (E), whih shows that π ∈ symG (x). Hene, fixG (E) ⊆

symG (x) whih implies that E is a support of x.(b) Let E0 be a support of x. The least support of x is the intersetion of allsupports of x whih are subsets of E0. Sine there are only �nitely many ofsuh supports, by (a), the intersetion is a support of x.() Let x ∈ VM and let E be the least support of x. If π ∈ G , then
fixG (πE) = π · fixG (E) · π−1 and symG (πx) = π · symG (x) · π−1, and thus, if
E is a support of x, then πE is a support of πx. ⊣For every �nite set E ⊆ A, one an give a omplete desription of the subsetsof A with support E, whih leads to the followingLemma 7.12. If E ⊆ A is a �nite set of ardinality n, then there are 22n+1sets S ⊆ A in VM suh that E is a support of S.Proof. Let E = {a1, . . . , an} be suh that a1 <M . . . <M an. Assume that E isa support of the set S ⊆ A. If there is an s0 ∈ S suh that ai <M s0 <M ai+1(for some 1 ≤ i < n), then {s ∈ A : ai <

M s <M ai+1} ⊆ S. To see this,notie that for every s with ai <M s <M ai+1 there is a π ∈ fixG (E) suh that
πs0 = s. Similarly, if there is an s ∈ S suh that s <M a1 (or an <M s), then
{s ∈ A : s <M a1} ⊆ S (or {s ∈ A : an <

M s} ⊆ S). Now, there are n + 1suh intervals and every interval is entirely ontained in S or disjoint from S.Further, for eah 1 ≤ i ≤ n, either ai ∈ S or ai /∈ S. Hene, there are 22n+1di�erent subsets of A whih have E as a support. ⊣Sine the set of atoms in the ordered Mostowski model is in�nite, the followingresult implies that the Axiom of Choie fails in VM (ompare this result withProposition 7.4).Lemma 7.13. Let A be the set of atoms of the ordered Mostowski model andlet m denote its ardinality. Then VM � ℵ0 6≤ 2m.



176 7 Models of Set Theory with AtomsProof. We have to show that there is no one-to-one mapping f : ω → P(A).Now, if a �nite set E ⊆ A is a support of f , then E supports eah of thein�nitely many distint sets f(n) (n ∈ ω), beause all permutations �x eah
n ∈ ω. On the other hand, by Lemma 7.12, a �nite set E ⊆ A an supportjust �nitely many sets. ⊣By Theorem 4.21, for every in�nite ardinal m we have fin(m) < 2m. Inontrast to this result we show now that VM � 2m ≤∗ fin(m), where m denotesthe ardinality of the set of atoms of VM . As a onsequene we get by Fat 4.8that 22m ≤ 2fin(m), whih implies by the Cantor-Bernstein Theorem 3.17that VM � 22

m

= 2fin(m).Proposition 7.14. Let A be the set of atoms of the ordered Mostowskimodel. Then in VM there is a surjetion from fin(A) onto P(A). Thus, it isonsistent with ZF that there are in�nite ardinals m suh that 2m ≤∗ fin(m),even though fin(m) < 2m is provable in ZF for every in�nite ardinal m.Proof. The key idea in order to onstrut a surjetive funtion g : fin(A) ։
P(A) is to de�ne an ordering of the subsets of A sharing a given �nite support.For E = {a1 <M . . . <M an} ∈ fin(A) let I0 = {a ∈ A : a <M a1}, In = {a ∈
A : an <

M a}, and Ii = {a ∈ A : ai <
M a <M ai+1} for 1 ≤ i ≤ n − 1. Forevery funtion χ ∈ 2n+12 we assign a set Sχ ∈ P(A) by

Sχ =
⋃

χ(2i)=1

Ii ∪
{
ai : χ(2i− 1) = 1

}
.Then for every χ ∈ 2n+12, E is a support of Sχ and for every S0 ⊆ A suhthat E is a support of S0 there is a χ0 ∈ 2n+12 suh that S0 = Sχ0 (thisfollows from Lemma 7.12).We now onsider for a moment the set 2n+22: Let �<l� be the lexiographiordering on 2n+22, i.e., ξ <l ξ′ if there is a j ∈ 2n+ 2 suh that ξ(j) < ξ′(j),but for all i < j we have ξ(i) = ξ′(i). For ξ ∈ 2n+22 let ξ̄ ∈ 2n+22 be suh thatfor all i ∈ 2n+ 2, ξ̄(i) := 1 − ξ(i). We de�ne the funtion µ : 2n+22 → 2n+22by stipulating

µ(ξ) =

{
ξ if ξ <l ξ̄,
ξ̄ otherwise,in other words, µ(ξ) is ξ or ξ̄, whihever begins with 0.Let us turn bak to the set 2n+12. For χ ∈ 2n+12 let χ+ := χ∪

{
〈2n+1, 0〉

}.Notie that χ+ ∈ 2n+22. We de�ne the ordering �≺n� on 2n+12 by stipulating
χ0 ≺n χ1 ⇐⇒ µ(χ+

0 ) <l µ(χ
+
1 ) .Now, we are ready to de�ne a surjetion from fin(A) onto P(A). For this,onsider the following funtion:

g : fin(A) −→ P(A)

E 7−→ Sχ∗
|E|



The Prime Ideal Theorem revisited 177where for |E| = n, χ∗
n denotes the nth funtion of 2n+12 with respet to theordering �≺n�.By onstrution, for every set S0 ∈ P(A) there is a �nite set E suh that

E is a support of S0 and S0 = Sχ∗
|E|

. Indeed, let E0 be the least support of
S0. Then there is an n ∈ ω suh that S0 = Sχ∗n . By the properties of theordering �≺|E0|�, n ≥ |E0| and we leave it as an exerise to show that E0 anbe extended to a �nite set E suh that |E| = n and Sχ∗

|E|
= S0. Hene, themapping g is surjetive as required. ⊣Proposition 7.15. Let m denote the ardinality of the set of atoms of theordered Mostowski model. Then

VM � n · fin(m) < 2m < ℵ0 · fin(m)for every n ∈ ω.Proof (Sketh). 2m ≤ ℵ0 · fin(m): For S ⊆ A let E be the least support of S,let n = |E|, and let k ∈ ω be suh that S = Sχk
, where χk denotes the kthfuntion of 2n+12 with respet to the ordering �≺n� de�ned above. Then themapping S 7→ (k, Sχk

) is an injetive funtion from P(A) into ω × fin(A).
2m 6= ℵ0 · fin(m): This is an immediate onsequene of Lemma 7.13.
n · fin(m) ≤ 2m: For j ∈ n and E ∈ fin(A) large enough we an de�ne Sj,Eas the jth set whih has E as its least support. For E ∈ fin(A) whih are notlarge enough to allow suh an enoding, we have to work with a large enoughauxiliary set E0 and then do some enoding for example on E ∪E0.
n · fin(m) 6= 2m: Assume towards a ontradition that there is an injetivefuntion f : P(A) →֒ n × fin(A). Let k ∈ ω be suh that 22k+1 > n · 2kand let E0 ⊆ A be a �nite set of size k. By Lemma 7.12 there are 22k+1subsets of A, say S1, S2, . . ., whih have E0 as their support. Sine there areonly 2k subsets of E0, by the hoie of k there is a �rst Si (1 ≤ i ≤ 22k+1)suh that f(Si) /∈ n × fin(E0). Now, f(Si) = 〈m,F0〉 for some m ∈ k and

F0 ∈ fin(A). Sine F0 * E0 we have |E0 ∪ F0| > |E0| and an proeedwith E1 = E0 ∪ F0. Finally, with the sets E0, E1, . . . we get ℵ0 ≤ 2m, whihontradits Lemma 7.13. ⊣The Prime Ideal Theorem RevisitedIn this setion we show that the Prime Ideal Theorem holds in the orderedMostowski model. In other words, the Axiom of Choie is not provable in ZFAfrom the Prime Ideal Theorem.Theorem 7.16. The Prime Ideal Theorem holds in the ordered Mostowskimodel.



178 7 Models of Set Theory with AtomsProof. By Theorem 5.15 it is enough to show that in VM , for every binarymess B there is a funtion f whih is onsistent with B.Let B ∈ VM be a binary mess on a set S, and let EB be the least supportof B. On S de�ne an equivalene relation by stipulating x ∼ y i� there is a
π ∈ fixG (EB) suh that y = πx. For every x ∈ S let

[x]̃ =
{
πx : π ∈ fixG (EB)

} (the orbit of x)and let S̃ =
{
[x]̃ : x ∈ S

}. Notie that x ∼ y i� [x]̃ = [y]̃ .The goal� whih will beome lear later� is to lift some funtions t ofthe binary mess on S to funtions h de�ned on �nite subsets of S̃ in order toget a binary mess B̃ on S̃ so that every funtion g on S̃ whih is onsistentwith B̃ indues a funtion f ∈ VM whih is onsistent with B. Let B̃ onsist ofall binary funtions h de�ned on �nite subsets Q̃ of S̃ that satisfy the followingondition: For every �nite set P ⊆ ⋃{
[x]̃ : [x]̃ ∈ Q̃

} there is a t ∈ B suhthat t is de�ned on P and
t(x) = h

(
[x]̃

) for every x ∈ P .If this is the ase, we say that the set P admits the funtion h. In other words,
P admits h if and only if there is a binary funtion t ∈ B whih is de�nedon P suh that whenever x, y ∈ P and x ∼ y, then t(x) = t(y) = h

(
[x]̃

). Inorder to show that B̃ is a binary mess, we have to verify that for every �niteset Q̃ ⊆ S̃ there is a binary funtion h ∈ B̃ whih is de�ned on Q̃.One we know that B̃ is a binary mess, we an take any g on S̃ onsistentwith B̃ and de�ne
f(x) = g

(
[x]̃

)for every x ∈ S. The funtion f is obviously symmetri, hene f ∈ VM , andwe are done. So, all that we have to do is to prove the following laim:For every �nite set Q̃ ⊆ S̃ there is a binary funtion h ∈ B̃ de�ned on
Q̃, suh that for every �nite set P ⊆ ⋃{

[x]̃ : [x]̃ ∈ Q̃
}, P admits h.For simpliity we distinguish two ases:

EB is empty : Let Q̃ be a �nite subset of S̃ =
{
[x]̃ : x ∈ S

} and let Q =
{
x ∈

S : [x]̃ ∈ Q̃}. We are looking for a binary funtion h on Q̃ suh that every�nite subset of Q admits h. Notie that we have r = 2q binary funtions h on
Q̃ to hoose from, where q = |Q̃|. In M, �x some P0 ⊆ Q whih has exatlyone element in eah equivalene lass [x]̃ ∈ Q̃ and notie that by de�nitionof S̃, Q =

⋃{
πP0 : π ∈ G

}. Let us say that P ⊆ Q is a k-set if there are
k permutations π1, . . . , πk ∈ G suh that P = π1P0 ∪ . . . ∪ πkP0. Sine every�nite subset of Q is inluded in a k-set for some k, it is su�ient to show thatfor every k and for every k-set P there is a binary funtion h on Q̃ suh that
P admits h.



The Prime Ideal Theorem revisited 179Let k be arbitrary but �xed. We say that two k-sets P1 and P2 are iso-morphi if P2 = π(P1) for some π ∈ G . Notie that being isomorphi is anequivalene relation. If P1 and P2 are isomorphi and P1 admits h (where his some binary funtion on Q̃), then also P2 admits h. To see this, �rst notiethat sine EB = ∅, a binary funtion t belongs to B i� πt belongs to B (forany π ∈ G ). If P1 admits h, then there is a t ∈ B suh that t is de�ned on
P1 and for all x ∈ P1 we have t(x) = h([x]̃ ). Let P2 = π(P1) and onsiderthe binary funtion πt ∈ B: Sine t(x) ∈ {0, 1}, π(t(x)) = h([x]̃ ). Further,for eah y ∈ P2 there is an x ∈ P1 suh that y = πx, whih implies that thebinary funtion πt is de�ned on P2. Hene, for any y ∈ P2 and x = π−1y ∈ P1we have (πt)(y) = (πt)(πx) = t(x) = h([x]̃ ) = h([y]̃ ), whih shows that P2admits h. Thus, if a k-set P admits the binary funtion h, then all k-setsbelonging to the same isomorphism lass as P also admit h.Now we show that there are only �nitely many isomorphism lasses of k-sets: Let E0 be the least support of P0 and let n = |E0|. Let {E1, . . . , Ek} and
{E′

1, . . . , E
′
k} be two sets of n-element subsets of A (where A is the set of atomsof VM ). We say that these two so-alled (k, n)-sets are isomorphi if there isa π ∈ G whih transforms the set {E1, . . . , Ek} into the set {E′

1, . . . , E
′
k}.Notie that there are only �nitely many isomorphism lasses of (k, n)-sets. Tosee this, let us just onsider the ase when n = k = 2: Let E1 = {a, b} and

E2 = {c, d}, and without loss of generality let us assume that a < b, c < d,and that a = min{a, b, c, d}. Then the seven di�erent types we an have arerepresented by a < b < c < d, a < b = c < d, a < c < b < d, a < c < b = d,
a = c < b < d, a = c < b = d, and a < c < d < b.For eah E = πE0 let PE := πP0. Notie that for every E = πE0 thereis a funtion h de�ned on Q̃ suh that PE admits h. (Let t ∈ B be anyfuntion de�ned on PE .) Further, for eah (k, n)-set Ē = {E1, . . . , Ek} =
{π1E0, . . . , πkE0} let PĒ := π1P0 ∪ . . . ∪ πkP0. If Ē and Ē′ are isomorphi,then so are the two k-sets PĒ and PĒ′ . On the other hand, for every k-set
P there are k permutations π1, . . . , πk ∈ G suh that P = π1P0 ∪ . . . ∪ πkP0,whih implies that P = PĒ where Ē = {π1E0, . . . , πkE0}, and onsequentlywe get that PĒ and PĒ′ are isomorphi i� Ē and Ē′ are isomorphi. Hene,sine there are only �nitely many isomorphism lasses of (k, n)-sets, there areonly �nitely many isomorphism lasses of k-sets.Thus it su�es to �nd a binary funtion h suh that for any set of rep-resentatives {Ē1, . . . , Ēp}, where p is the number of isomorphism lasses of
(k, n)-sets, we have that eah k-set PĒi

(1 ≤ i ≤ p) admits h.Now we apply the Finite Ramsey Theorem 2.3 whih tells us that forall m,n, r ∈ ω there exists an N ∈ ω suh that for every olouring of [N ]nwith r olours, there exists a set H ∈ [N ]m, all whose n-element subsets havethe same olour: Let m = k · n and r = 2q, and let F ∈ [A]N be a set of
N atoms. Further, let P =

⋃{
PE : E ∈ [F ]n

} and take any t ∈ B whihis de�ned on P . Then eah t|PE
orresponds to one of the r possible binaryfuntions h1, . . . , hr de�ned on Q̃, whih indues a olouring on [F ]n with rolours. By the Finite Ramsey Theorem 2.3 we �nd a set H ∈ [F ]m suh



180 7 Models of Set Theory with Atomsthat for every E ∈ [H ]n, t|PE
is the same funtion and therefore indues aunique funtion on Q̃, say h. Finally, by the hoie of m, the set H ontainsmembers from eah isomorphism lass, whih implies that eah k-set P ⊆ Qadmits h.

EB is non-empty : Assume EB = {a1, . . . , al} where a1 < . . . < al. Instead of
G we have to work with fixG (EB). Let I1 = |{a ∈ A : a < a1}|, Ij = |{a ∈ A :
aj−1 < a < aj}| (for 1 < j < l), and Il = |{a ∈ A : al < a}|. Let P0 and E0 beas above and for 1 ≤ j ≤ l let nj := |E0 ∩ Ij |. Instead of (k, n)-sets onsidersets of the form {E1, . . . , En}, where for 1 ≤ i ≤ n, Ei = 〈Ei,1, . . . , Ei,l〉 and foreah 1 ≤ j ≤ l, Ei,j ⊆ Ij and |Ei,j | = nj . Now we an proeed as above untilwe reah the point where the Finite Ramsey Theorem omes in. Here, theombinatoris gets slightly more involved and instead of the Finite RamseyTheorem we need Rado's generalisation, whih is Theorem 2.7 given inChapter 2: It says that for all r, l,m, n1, . . . , nl ∈ ω there is some N ∈ ω suhthat whenever [N ]n1 × . . . × [N ]nl is oloured with r olours, then there are
M1, . . . ,Ml ∈ [N ]m suh that [M1]

n1 × . . . × [Ml]
nl is monohromati. Let

m = max{k · ni : 1 ≤ i ≤ l} and r = 2q, and let F1, . . . , Fl ∈ [A]N be N -element sets of atoms suh that for every 1 ≤ j ≤ l, Fj ⊆ Ij . Then we �nd
l sets Mj ∈ [Fj ]

m suh that [M1]
n1 × . . . × [Ml]

nl is monohromati, whihimplies again that eah k-set P ⊆ Q admits the same funtion h. ⊣Custom-Built Permutation ModelsBelow we shall onstrut two permutation models. The �rst one is designedin order to show that the existene of in�nite ardinals m for whih seq(m) <
fin(m) is onsistent with ZF. By modifying the �rst ustom-built permutationmodel, this somewhat ounter intuitive result an even be pushed a little bitfurther by showing that also the existene of in�nite ardinals m for whih
m2 < [m]2 is onsistent with ZF.The �rst ustom-built permutation modelThe set of atoms of the �rst ustom-built permutation model is built byindution, where every atom enodes a �nite sequene of atoms on a lowerlevel and every �nite sequene of atoms appears in �nitely many atoms.By indution on n ∈ ω we onstrut sets An, funtions Seqn from An to
seq(An−1), and groups Gn whih are subgroups of the group of permutationsof An as follows:(α) A0 := {a0}, where a0 is an atom, Seq0(a0) = 〈 〉, and G0 = {ι} is thegroup of all permutations of A0.For n ∈ ω let kn = |Gn|, and let Sn be the set of sequenes of An of lengthless than or equal to n+1 whih do not belong to the range of Seqn. Then



Custom-built permutation models 181(β) An+1 := An ∪̇
{
(n+ 1, ζ, i) : ζ ∈ Sn ∧ i < kn + kn

}.(γ) Seqn+1 is a funtion from An+1 to seq(An) de�ned as follows:Seqn+1(x) =




Seqn(x) if x ∈ An,
ζ if x = (n+ 1, ζ, i) ∈ An+1 \An.(δ) Gn+1 is the subgroup of the group of permutations of An+1 ontainingall permutations h suh that for some gh ∈ Gn and jh < kn+ kn we have

h(x) =





gh(x) if x ∈ An,
(
n+ 1, gh(ζ), i +n jh

) if x = (n+ 1, ζ, i) ∈ An+1 \An,where gh(ζ)(m) := gh
(
ζ(m)

) and +n is addition modulo (kn + kn).Let A :=
⋃{An : n ∈ ω}. For eah triple (n, ζ, i) ∈ Ã we assign an atom α(n,ζ,i)and de�ne the set of atoms by stipulating Ã := A0 ∪

{
α(n,ζ,i) : (n, ζ, i) ∈ A

}.However, for the sake of simpliity we shall work with A as the set of atomsrather than with Ã. Let Seq :=
⋃{Seqn : n ∈ ω}; then Seq is a funtion from

A onto seq(A). Furthermore, let Aut(A) be the group of all permutations of A.Then G :=
{
H ∈ Aut(A) : ∀n ∈ ω(H |An

∈ Gn)
} is a group of permutationsof A. Finally, let F be the �lter on G generated by {

fixG (E) : E ∈ fin(A)
}(whih happens to be normal) and let Vs (s for sequenes) be the lass ofall hereditarily symmetri objets. Now we are ready to prove the followingresult.Proposition 7.17. Let m denote the ardinality of the set of atoms A of Vs.Then Vs � seq(m) < fin(m).Proof. Firstly we prove that Vs � seq(m) ≤ fin(m) by onstruting a one-to-one funtion f in Vs whih maps seq(A) into fin(A). For any sequene ζ ∈

seq(A) there is a least nζ ∈ ω suh that ζ ∈ Snζ
. De�ne f : seq(A) → fin(A)by stipulating

f(ζ) =
{
a ∈ A : ∃i(a = α(nζ+1,ζ,i))

}
.Obviously, f is injetive and it remains to show that f belongs to Vs. Takean arbitrary permutation π ∈ G and let ζ ∈ seq(A) be an arbitrary sequene.Notie �rst that by the de�nition of G , nζ = nπζ . Thus, for eah i < knζ

+knζthere is a j < knζ
+knζ

suh that π(nζ+1, ζ, i) = (nπζ+1, πζ, j), whih showsthat π〈ζ, f(ζ)〉 =
〈
πζ, f(πζ)

〉, and sine ζ was arbitrary we get πf = f .In order to prove that Vs � seq(m) 6= fin(m) assume towards a ontradi-tion that there is a one-to-one funtion g ∈ Vs from fin(A) into seq(A).Notie �rst that for every E ∈ fin(A) there are C,F ∈ fin(A) suh that
E ⊆ C, and for all x ∈ A \ C we have ∣∣{πx : π ∈ fixG (C)}

∣∣ > 2, and∣∣{πF : π ∈ fixG (C)
}∣∣ = 2. Indeed, hoose n ≥ 1 suh that E ⊆ An, and let
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C := An and F :=

{
(n + 1, ζ, i) ∈ An+1 : i is even}. Then F has exatlytwo images under the permutations of fixG (C), and for all x ∈ A \C we have∣∣{πx : π ∈ fixG (C)}

∣∣ ≥ (kn + kn) > 2.Let E be a support of g and let C and F be as above. If the sequene g(F )belongs to seq(C), then for some π ∈ fixG (C), πF 6= F , hene, g(πF ) 6= g(F ).But this ontradits that C is a support of g and that π ∈ fixG (C). Otherwise,if the sequene g(F ) does not belong to seq(C), there is an m ∈ ω suh that
x0 := g(F )(m) /∈ C. Hene, by the hoie of C and F we have ∣∣{πx0 : π ∈
fixG (C)

}∣∣ > 2, and ∣∣{πF : π ∈ fixG (C)
}∣∣ = 2. Sine every π ∈ fixG (C) maps

g to itself, in partiular 〈F, g(F )〉 to 〈πF, πg(F )〉, and sine
∣∣{πF : π ∈ fixG (C)

}∣∣ <
∣∣{πx0 : π ∈ fixG (C)

}∣∣ ,the image under g of a 2-element set has stritly more than two elements,whih is obviously a ontradition. ⊣The seond ustom-built permutation modelThe set of atoms of the seond ustom-built permutation model is also builtby indution, and every atom enodes an ordered pair of atoms on a lowerlevel. The model we �nally get will be a model in whih there exists a ar-dinal m suh that m2 < [m]2, whih is to some extent just a �nite version ofProposition 7.17. The atoms are onstruted as follows:(α) A0 is an arbitrary ountable in�nite set of atoms.(β) G0 is the group of all permutations of A0.(γ) An+1 := An∪̇
{
(n+ 1, p, ε) : p ∈ An ×An ∧ ε ∈ {0, 1}

}.(δ) Gn+1 is the subgroup of the permutation group of An+1 ontaining allpermutations h for whih there are gh ∈ Gn and εh ∈ {0, 1} suh that
h(x) =




gh(x) if x ∈ An,
(n+ 1, gh(p), εh +2 ε) if x = (n+ 1, p, ε),where for p = 〈p1, p2〉 ∈ An, gh(p) := 〈gh(p1), gh(p2)〉 and +2 denotesaddition modulo 2.Let A :=

⋃{An : n ∈ ω} and let Aut(A) be the group of all permutations of
A. Then

G :=
{
H ∈ Aut(A) : ∀n ∈ ω (H |An

∈ Gn)
}is a group of permutations of A. Let F be the �lter on G generated by{

fixG (E) : E ∈ fin(A)
} (whih happens to be normal) and let Vp (p forpairs) be the lass of all hereditarily symmetri objets. Now we are ready toprove the followingProposition 7.18. Let m denote the ardinality of the set of atoms A of Vp.Then Vp � m2 < [m]2.



Custom-built permutation models 183Proof. First we show that Vp � m2 ≤ [m]2. For this it is su�ient to �nd aone-to-one funtion f ∈ Vp from A2 into [A]2. We de�ne suh a funtion asfollows. For x, y ∈ A let
f
(
〈x, y〉

)
:=

{
(n+m+ 1, 〈x, y〉, 0), (n+m+ 1, 〈x, y〉, 1)

}
,where n and m are the smallest numbers suh that x ∈ An and y ∈ Am,respetively. For any π ∈ G and x, y ∈ A we have πf(〈x, y〉) = f(〈πx, πy〉)and therefore, the funtion f is as desired and belongs to Vp.Now assume towards a ontradition that there exists a one-to-one funtion

g ∈ Vp from [A]2 into A2 and let Eg be a �nite support of g. Without loss ofgenerality we may assume that if (n + 1, 〈x, y〉, ε
)
∈ Eg, then also x, y ∈ Eg(this will be needed later). Let k := |Eg| and for x, y ∈ A let g({x, y}) =

〈t0{x,y}, t1{x,y}〉. Let r := k + 4 and let N ∈ ω be suh that for every olouring
τ : [N ]2 → r2 we �nd a 3-element set H ∈ [N ]3 suh that τ |[H]2 is onstant.Suh a number N exists by the Finite Ramsey Theorem 2.3. Choose Ndistint elements x0, . . . , xN−1 ∈ A0 \ Eg, let X = {x0, . . . , xN−1} and let
{ch : h < k} be an enumeration of Eg (reall that k = |Eg|). We de�ne aolouring τ : [X ]2 → r × r as follows. For {xi, xj} ∈ [X ]2, where i < j, let
τ({xi, xj}) = 〈τ0({xi, xj}), τ1({xi, xj})〉 where for l ∈ {0, 1} we de�ne

τl({xi, xj}) :=





h if tl{xi,xj}
= ch,

k if tl{xi,xj}
= xi,

k + 1 if tl{xi,xj}
= xj ,

k + 2 if tl{xi,xj}
∈ A0 \

(
{xi, xj} ∪ Eg

)
,

k + 3 if tl{xi,xj}
∈ A \ (A0 ∪ Eg).By the de�nition of N we �nd 3 elements xι0 , xι1 , xι2 ∈ X with ι0 < ι1 <

ι2 suh that for both l ∈ {0, 1}, τl is onstant on [{xι0 , xι1 , xι2}]2. So, for
{xιi , xιj} ∈ [{xι0 , xι1 , xι2}]2 with i < j and for some l ∈ {0, 1}, we are in atleast one of the following ases:(1) tl{xιi

,xιj
} = ch0 and t1−l{xιi

,xιj
} = ch1(2) tl{xιi

,xιj
} = ch and t1−l{xιi

,xιj
} = xιi(3) tl{xιi

,xιj
} = ch and t1−l{xιi

,xιj
} = xιj(4) tl{xιi

,xιj
} = t1−l{xιi

,xιj
} and tl{xιi

,xιj
} ∈ {xιi , xιj}(5) tl{xιi

,xιj
} = xιi and t1−l{xιi

,xιj
} = xιj(6) tl{xιi

,xιj
} ∈ A0 \ (Eg ∪ {xιi , xιj})(7) tl{xιi

,xιj
} ∈ A \ (Eg ∪ A0)



184 7 Models of Set Theory with AtomsIf we are in ase (1) or (2), then g({xι0 , xι1}) = g({xι0 , xι2}), and there-fore g is not a one-to-one funtion. If we are in ase (3), then g is also nota one-to-one funtion beause g({xι0 , xι2}) = g({xι1 , xι2}), and the same istrue for g if we are in ase (4), e.g., g({xι0, xι1}) = 〈xι0 , xι0〉 = g({xι0 , xι2}).If we are in ase (5), then let π ∈ fix(Eg) be suh that πxι0 = xι1and πxι1 = xι0 . Assume that g({xι0 , xι1}) = 〈xι0 , xι1〉 (the ase when
g({xι0 , xι1}) = 〈xι1 , xι0〉 is similar). Then we have π{xι0 , xι1} = {xι0 , xι1},but πg({xι0 , xι1}) = 〈xι1 , xι0〉 6= 〈xι0 , xι1〉, and therefore Eg is not a supportof g whih ontradits the hoie of Eg �whih, by our assumption, has theproperty that whenever (n+ 1, 〈x, y〉, ε

)
∈ Eg also x, y ∈ Eg.If we are in ase (6), then let l ∈ {0, 1} be suh that tl{xι0 ,xι1}

∈ A0 \ (Eg ∪
{xι0 , xι1}) and let a := tl{xι0 ,xι1}

. Without loss of generality we may assume
l = 0, thus, a = t0{xι0 ,xι1}

. Take an arbitrary a′ ∈ A0 \ (Eg ∪ {a, xι0 , xι1}) andlet π ∈ fix(Eg ∪ {xι0 , xι1}) be suh that πa = a′ and πa′ = a. Then we get
π{xι0 , xι1} = {xι0 , xι1} but
g
(
π{xι0 , xι1}

)
= g

(
{xι0 , xι1}

)
= 〈a, x〉 6= 〈a′, x′〉 = π〈a, x〉 = πg

(
{xι0 , xι1}

)
.Hene, Eg is not a support of g whih ontradits the hoie of Eg.If we are in ase (7), then let l ∈ {0, 1} be suh that tl{xι0 ,xι1}

∈ A \ (Eg ∪
A0), thus tl{xι0 ,xι1}

= (n + 1, p, ε) for some (n + 1, p, ε) ∈ A. Further, let
π ∈ fix(Eg ∪ {xι0 , xι1}) be suh that π(n+1, p, ε) = (n+1, p, 1− ε). Then wehave π{xι0 , xι1} = {xι0 , xι1} but πg({xι0 , xι1}) 6= g({xι0 , xι1}), and therefore
Eg is not a support of g whih ontradits the hoie of Eg.So, in all the ases, either g is not one-to-one or Eg is not a support of g,whih ontradits our assumption and ompletes the proof. ⊣NotesPermutation models. The method of permutation models was introdued byFraenkel [2, 4, 3, 5, 6℄, and, in a preise version with supports, by Lindenbaum andMostowski [18℄ and by Mostowski [20, 21, 22℄. The present version with �lters is dueto Speker [23℄. In partiular, the seond Fraenkel model an be found for examplein Fraenkel [2℄, where he proved that the Axiom of Choie for ountable families ofpairs is unprovable in ZFA (for a proof in a more general setting see Mendelson [19℄),and the ordered Mostowski model is introdued in [21, � 4, p. 236℄ in order to showthat the Axiom of Choie is independent from the Ordering Priniple. (Some morebakground an be found for example in Lévy [17℄.)The Prime Ideal Theorem. The independene of the Axiom of Choie from thePrime Ideal Theorem in ZFA was proved �rst by Halpern [10℄ (but the proof presentedabove is taken from Jeh [13, Chapter 7, �1℄). A few years later, the same result inZF was proved by Halpern and Lévy [12℄, using the Halpern-Läuhli Theorem.The ustom-built models. The �rst ustom-built permutation model as well asProposition 7.17 is due to Shelah and an be found in [8, Theorem 2℄. The seond



Related Results 185ustom-built permutation model, whih is just a modi�ation of the �rst one, isdue to Halbeisen, but the ruial part of Proposition 7.18 is again due to Shelah(f. Halbeisen and Shelah [9, Propostition 7.3.1℄).Related Results43. Alternative de�nition of atoms. Atoms ould also be de�ned by stipulating
a ∈ A ⇐⇒ a = {a}. This approah has the advantage that we do not need tomodify the Axiom of Extensionality; however, it has the disadvantage thatmodels of ZFA would not be well-founded� exept in the ase when A = ∅.44. The Axiom of Choie in Algebra. Läuhli shows in [14℄ that many lassialresults in Algebra annot be proved without the aid of the Axiom of Choie.For example he shows that it is onsistent with ZFA that there exists vetorspaes without algebrai bases, or in whih there exist two algebrai bases withdi�erent ardinalities.45. More ardinal relations. Let m denote the ardinality of the set of atoms ofthe basi Fraenkel model VF0 . Then the following statements hold in VF0(f. Halbeisen and Shelah [9, Proposition 7.1.3℄):(a) fin(m) ⊥ seq1-1(m) and fin(m) ⊥ seq(m).(b) seq1-1(m) ⊥ 2m and seq(m) ⊥ 2m.() seq1-1(m) < seq(m).Unlike in the basi Fraenkel model, the ardinalities fin(m), 2m, seq1-1(m), and
seq(m) are all omparable in the ordered Mostowski model. Let m denote theardinality of the set of atoms of VM . Then the following sequene of inequalitiesholds in VM :

m < [m]2 < m
2 < fin(m) < 2

m < seq1-1(m) < fin2(m) < seq1-1(fin(m)) <

< fin(2m) < fin3(m) < fin4(m) < . . . < finn(m) < seq(m) < 2
fin(m) = 2

2m(See for example Halbeisen and Shelah [9, p. 249℄ or Halbeisen [7℄, or just usethe ideas of the proof of Proposition 7.15.) Furthermore we have that
VM �

(
2
2m

)ℵ0

= 2
2mwhih follows for example from the fat that VM � 22

m

= 2fin(m) and Läuhli'sLemma 4.27.Finally, let m denote the ardinality of the set of atoms of the seond Fraenkelmodel. Then, by Proposition 7.9 and Läuhli's Lemma 4.27 we have
VF2 �

(
2
2m

)ℵ0

= 2
2m .46. Multiple Choie and Kurepa's Priniple in Fraenkel's models. In Chapter 5 wehave seen that Multiple Choie and Kurepa's Priniple are both equivalent in ZFto the Axiom of Choie. On the other hand, one an show that Multiple Choieholds in the model VF0 and that Kurepa's Priniple holds in the model VF2 (seeLévy [16℄ and Halpern [11℄ respetively, or Jeh [13, Theorem 9.2℄). This showsthat these two hoie priniples �whih imply AC in ZF�are weaker than ACin ZFA.



186 7 Models of Set Theory with Atoms47. Countable unions of ountable sets. In order to show that a union of ountablymany ountable sets is not neessarily ountable, one an work for examplein the permutation model given by Fraenkel [6℄: The set of atoms onsists ofountably many mutually disjoint ountable sets. So, A =
⋃
n∈ω Cn where eah

Cn is ountable. For eah n ∈ ω, the group Gn onsists of all permutations of
Cn and G =

∏
n∈ω Gn. The normal �lter F on G is generated by produts ofthe form ∏

n∈ωHn, where Hn is either equal to Gn or the trivial group, and theformer is the ase for all but �nitely many n's.48. Ordering priniples in Mostowski's model. Mostowski showed in [21℄ that inZFA, the Axiom of Choie is not provable from the Ordering Priniple (see alsoJeh [13, Theorem 4.7℄). In fat he showed that the Ordering Priniple holds inthe ordered Mostowski model VM , whereas the Axiom of Choie obviously failsin that model. Notie also that even the Prime Ideal Theorem, whih implies theOrdering Priniple, holds in VM .In [1℄, Felgner and Truss gave a diret proof � not referring to the Prime IdealTheorem�of the fat that the Order-Extension Priniple holds in VM , and then,by modifying VM , they were able to show that in ZFA, the Prime Ideal Theoremis not provable from the Order-Extension Priniple.Läuhli showed in [15℄ (see also Jeh [13, p. 53℄) that the following form of theAxiom of Choie holds in VM : For every family of non-empty well-orderable setsthere is a hoie funtion. Notie that this implies that in VM , the union of aountable set of ountable sets is always ountable.49. Another ustom-built permutation model. Let m denote the ardinality of theset of atoms of the �rst ustom-built permutation model Vs. Then one anshow that Vs � seq1-1(m) < seq(m) < 2m (see Halbeisen and Shelah [9, Propo-sition 7.4.1℄, or use Proposition 7.17 and show that m is D-�nite.)So, for an in�nite ardinals m we an have seq1-1(m) < seq(m) < 2m (whih holdsin Vs) as well as 2m < seq1-1(m) < seq(m) (whih holds in VM ), and thereforeboth statements are onsistent with ZF. It is now natural to ask whether it isalso possible to put 2m between the ardinals seq1-1(m) and seq(m) (reall thatby Theorem 4.24, for all in�nite ardinals m we have seq1-1(m) 6= 2m 6= seq(m)).Indeed, the existene of an in�nite ardinal m for whih
seq1-1(m) < 2

m < seq(m)is also onsistent with ZF and the permutation model in whih this holds � givenin Halbeisen and Shelah [9, Setion 7.4℄ � is due to Shelah.Referenes1. Ulrih Felgner and John K. Truss, The independene of the prime idealtheorem from the order-extension priniple, The Journal of Symboli Logi,vol. 64 (1999), 199�215.2. Adolf Fraenkel, Der Begri� �de�nit� und die Unabhängigkeit des Aus-wahlaxioms, Sitzungsberihte der Preussishen Akademie der Wis-senshaften zu Berlin. Physialish-Mathematishe Klasse, vol. 21(1922), 253�257 (see [24℄ for a translation into English).
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8Twelve Cardinals and their Relations
The onsonanes are those intervals whih areformed from the natural steps.An interval may be diminished when one of itssteps is replaed by a smaller one.Or it may be augmented when one of its steps isreplaed by a larger one. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558In this hapter we investigate twelve ardinal harateristis and theirrelations to one another. A ardinal harateristi of the ontinuum is anunountable ardinal number whih is less than or equal to c that desribesa ombinatorial or analytial property of the ontinuum. Like the power ofthe ontinuum itself, the size of a ardinal harateristi is often independentfrom ZFC. However, some restritions on possible sizes follow from ZFC, andwe shall give a omplete list of what is known to be provable in ZFC abouttheir relation. Later in Part II, but mainly in Part III, we shall see how onean diminish or augment some of these twelve ardinals without hangingertain other ardinals. In fat, these ardinal harateristis are also used toinvestigate ombinatorial properties of the various foring notions introduedin Part III.We shall enounter some of these ardinal harateristis (e.g., p) moreoften than others (e.g., i). However, we shall enounter eah of these twelveardinals again, and like the twelve notes of the hromati sale, these twelveardinals will build the framework of our investigation of the ombinatorialproperties of foring notions that is arried out in Part III.On the one hand, it would be good to have the de�nition of a ardinalharateristi at hand when it is needed; but on the other hand, it is alsoonvenient to have all the de�nitions together (espeially when a ardinalharateristi is used several times), rather than sattered over the entire



190 8 Twelve Cardinals and their Relationsbook. De�ning all twelve ardinals at one also gives us the opportunity toshow what is known to be provable in ZFC about the relationship betweenthese twelve ardinals. Thus, one might �rst skip this hapter and go bak toit later and take bits and piees when neessary.The Cardinals ω1 and cWe have already met both ardinals, c and ω1: c is the ardinality of the ontin-uum R, and ω1 is the smallest unountable ardinal. Aording to Fat 4.3,
c = 2ω is also the ardinality of the sets [0, 1], ω2, ωω, and [0, 1] \ Q; andby Lemma 4.10, ω1 an also be onsidered as the set of order types of well-orderings of Q.The Continuum Hypothesis, denoted CH, states that c is the least unount-able ardinal, i.e., c = ω1 (f. Chapter 4), whih is equivalent to saying thatevery subset of R is either ountable or of the same ardinality as R. Fur-thermore, the Generalised Continuum Hypothesis, denoted GCH, states that forevery ordinal α ∈ Ω, 2ωα = ωα+1. Gödel showed that L � GCH, where L is theonstrutible universe (see the orresponding note in Chapter 5), thus, GCHis onsistent with ZFC.Eah of the following ten ombinatorial ardinal harateristis of the on-tinuum is unountable and less than or equal to c. Thus, if we assume CH, thenthese ardinals are all equal to c. However, as we shall see in Part II, CH is notprovable in ZFC. In other words, if ZFC is onsistent then there are models ofZFC in whih CH fails, i.e., models in whih ω1 < c. In those models, possible(i.e., onsistent) relations between the following ardinal harateristis willbe provided in Part II and Part III.The Cardinal pFor two sets x, y ⊆ ω we say that x is almost ontained in y, denoted
x ⊆∗ y, if x \ y is �nite, i.e., all but �nitely many elements of x belong to
y. For example a �nite subset of ω is almost ontained in ∅, and ω is almostontained in every o-�nite subset of ω (i.e., in every y ⊆ ω suh that ω \ y is�nite). A pseudo-intersetion of a family F ⊆ [ω]ω of in�nite subsets of ωis an in�nite subset of ω that is almost ontained in every member of F . Forexample ω is a pseudo-intersetion of the family of o-�nite sets. Furthermore,a family F ⊆ [ω]ω has the strong �nite intersetion property (s�p) ifevery �nite subfamily has in�nite intersetion. Notie that every family witha pseudo-intersetion neessarily has the s�p, but not vie versa. For exampleany �lter F ⊆ [ω]ω has the s�p, but no ultra�lter on [ω]ω has a pseudo-intersetion.



The ardinals b and d 191Definition of p. The pseudo-intersetion number p is the smallest ar-dinality of any family F ⊆ [ω]ω whih has the s�p but whih does not havea pseudo-intersetion; more formally
p = min

{
|F | : F ⊆ [ω]ω has the s�p but no pseudo-intersetion} .Sine ultra�lters on [ω]ω are families whih have the s�p but do not havea pseudo-intersetion, and sine every ultra�lter on [ω]ω is of ardinality c,the ardinal p is well-de�ned and p ≤ c. It is natural to ask whether p anbe smaller than c; however, the following result shows that p annot be toosmall.Theorem 8.1. ω1 ≤ p.Proof. Let E = {Xn ∈ [ω]ω : n ∈ ω} be a ountable family whih has the s�p.We onstrut a pseudo-intersetion of E as follows: Let a0 :=

⋂
X0 and forpositive integers n let

an =
⋂(⋂

{Xi : i ∈ n} \ {ai : i ∈ n}
)
.Further, let Y = {an : n ∈ ω}; then for every n ∈ ω, Y \ {ai : i ∈ n} ⊆ Xnwhih shows that Y ⊆∗ Xn, hene, Y is a pseudo-intersetion of E . ⊣The Cardinals b and dFor two funtions f, g ∈ ωω we say that g dominates f , denoted f <∗ g, iffor all but �nitely many integers k ∈ ω, f(k) < g(k), i.e., if there is an n0 ∈ ωsuh that for all k ≥ n0, f(k) < g(k). Notie that ordering �<∗ � is transitive,however, �<∗ � it is not a linear ordering (we leave it as an exerise to thereader to �nd funtions f, g ∈ ωω suh that neither f <∗ g nor g <∗ f).A family D ⊆ ωω is dominating if for eah f ∈ ωω there is a funtion

g ∈ D suh that f <∗ g.Definition of d. The dominating number d is the smallest ardinalityof any dominating family; more formally
d = min

{
|D | : D ⊆ ωω is dominating} .A family B ⊆ ωω is unbounded if there is no single funtion f ∈ ωωwhih dominates all funtions of B, i.e., for every f ∈ ωω there is a g ∈ Bsuh that g ≮∗ f . Sine �<∗ � is not a linear ordering, an unbounded family isnot neessarily dominating� but vie versa (see Fat 8.2).Definition of b. The bounding number b is the smallest ardinality ofany unbounded family; more formally

b = min
{
|B| : B ⊆ ωω is unbounded} .



192 8 Twelve Cardinals and their RelationsObviously, the family ωω itself is dominating and therefore unbounded,whih shows that d and b are well-de�ned and b, d ≤ c. Moreover, we have thefollowingFat 8.2. b ≤ d.Proof. It is enough to show that every dominating family is unbounded. So,let D ⊆ ωω be a dominating family and let f ∈ ωω be an arbitrary funtion.Sine D is dominating, there is a g ∈ D suh that f <∗ g, i.e., there is an
n0 ∈ ω suh that for all k ≥ n0, f(k) < g(k). Hene we get g ≮∗ f , and sine
f was arbitrary this implies that D is unbounded. ⊣It is natural to ask whether b an be smaller than d, or at least smallerthan c; however, the following result shows that b annot be too small.Theorem 8.3. ω1 ≤ b.Proof. Let E = {gn ∈ ωω : n ∈ ω} be a ountable family. We onstrut afuntion f ∈ ωω whih dominates all funtions of E : For eah k ∈ ω let

f(k) =
⋃{

gi(k) : i ∈ k
}
.Then for every k ∈ ω and eah i ∈ k we have f(k) ≥ gi(k) whih shows thatfor all n ∈ ω, gn <∗ f , hene, f dominates all funtions of E . ⊣One ould also de�ne dominating and unbounded families with respet tothe ordering �< � de�ned by stipulating f < g ⇐⇒ ∀k ∈ ω

(
f(k) < g(k)

).Then the orresponding dominating number would be the same as d, as anydominating family an be made dominating in the new sense by adding all�nite modi�ations of its members; but the orresponding bounding numberwould drop to ω, as the family of all onstant funtions is unbounded (weleave the details to the reader).The Cardinals s and rA set x ⊆ ω splits an in�nite set y ∈ [ω]ω if both y ∩ x and y \ x are in�nite(i.e., |y ∩ x| = |y \ x| = ω). Notie that any x ⊆ ω whih splits a set y ∈ [ω]ωmust be in�nite. A splitting family is a family S ⊆ [ω]ω suh that eah
y ∈ [ω]ω is split by at least one x ∈ S .Definition of s. The splitting number s is the smallest ardinality of anysplitting family; more formally

s = min
{
|S | : S ⊆ [ω]ω is splitting} .



The ardinals s and r 193By Theorem 8.1 and later results we get ω1 ≤ s�we leave it as anexerise to the reader to �nd a diret proof of the unountability of s.In the proof of the following result we will see how to onstrut a splittingfamily from a dominating family.Theorem 8.4. s ≤ d.Proof. For eah stritly inreasing funtion f ∈ ωω with f(0) > 0 let
σf =

⋃{[
f2n(0), f2n+1(0)

)
: n ∈ ω

}
,where for a, b ∈ ω, [a, b) := {k ∈ ω : a ≤ k < b} and fn+1(0) = f

(
fn(0)

) with
f0(0) := 0. Let D ⊆ ωω be a dominating family. Without loss of generalitywe may assume that every f ∈ D is stritly inreasing and f(0) > 0, and let

SD =
{
σf : f ∈ D

}
.We show that SD is a splitting family. So, �x an arbitrary x ∈ [ω]ω and let

fx ∈ ωω be the (unique) stritly inreasing bijetion between ω and x. Moreformally, de�ne fx : ω ։ x by stipulating
fx(k) =

⋂(
x \

{
fx(i) : i ∈ k

})
.Notie that for all k ∈ ω, fx(k) ≥ k. Sine D is dominating there is an f ∈ Dsuh that fx <∗ f , whih implies that there is an n0 ∈ ω suh that for all

k ≥ n0 we have fx(k) < f(k). For eah k ∈ ω we have k ≤ fk(0) as well as
k ≤ fx(k). Moreover, for k ≥ n0 we have

fk(0) ≤ fx
(
fk(0)

)
< f

(
fk(0)

)
= fk+1(0)and therefore fx(fk(0)) ∈

[
fk(0), fk+1(0)

). Thus, for all k ≥ n0 we have
fx

(
fk(0)

)
∈ σf i� k is even, whih shows that both x ∩ σf ∩ x and x \ σfare in�nite. Hene, σf splits x, and sine x was arbitrary, SD is a splittingfamily. ⊣A reaping family�also known as re�ning or unsplittable family� isa family R ⊆ [ω]ω suh that there is no single set x ∈ [ω]ω whih splits allelements of R, i.e., for every x ∈ [ω]ω there is a y ∈ R suh that y ∩ x or

y \ x is �nite. In other words, a family R is reaping if for every x ∈ [ω]ω thereis a y ∈ R suh that y ⊆∗ (ω \ x) or y ⊆∗ x. The origin of �reaping� in thisontext is that A reaps B i� A splits B, by analogy with a sythe uttingthe stalks of grain when one reaps the grain. So, a reaping family would be asplitting family. However, the more logial approah, where �reaps� means �isunsplit by�, seems to have no onnetion with the everyday meaning of theword �reap�.



194 8 Twelve Cardinals and their RelationsDefinition of r. The reaping number r is the smallest ardinality of anyreaping family; more formally
r = min

{
|R| : R ⊆ [ω]ω is reaping} .Sine the family [ω]ω is obviously reaping, r is well-de�ned and r ≤ c.Furthermore, by Theorem 8.3, the following result implies that every reapingfamily is unountable:Theorem 8.5. b ≤ r.Proof. Let E = {xξ ∈ [ω]ω : ξ ∈ κ < b} be an arbitrary family of in�nitesubsets of ω of ardinality stritly less than b. We show that E is not a reapingfamily. For eah xξ ∈ E let gξ ∈ ωω be the unique stritly inreasing bijetionbetween ω and xξ\{0}. Further, let g̃ξ(k) := gkξ (0), where gk+1

ξ (0) = gξ
(
gkξ (0)

)and g0ξ (0) := 0. Consider Ẽ = {g̃ξ : ξ ∈ κ}. Sine κ < b, the family Ẽ isbounded, i.e., there exists an f ∈ ωω suh that for all ξ ∈ κ, g̃ξ <∗ f . Let
x =

⋃
k∈ω

[
f2k(0), f2k+1(0)

). Then for eah ξ ∈ κ there is an nξ ∈ ω suhthat for all k ≥ nξ, fk(0) ≤ g̃ξ
(
fk(0)

)
< f

(
fk(0)

). This implies that neither
xξ ⊆∗ x nor xξ ⊆∗ (ω \ x), and hene, E is not a reaping family. ⊣The Cardinals a and iTwo sets x, y ∈ [ω]ω are almost disjoint if x∩ y is �nite. A family A ⊆ [ω]ωof pairwise almost disjoint sets is alled an almost disjoint family; and amaximal almost disjoint (mad) family is an in�nite almost disjoint family
A ⊆ [ω]ω whih is maximal with respet to inlusion, i.e., A is not properlyontained in any almost disjoint family A ′ ⊆ [ω]ω.Definition of a. The almost disjoint number a is the smallest ardinalityof any maximal almost disjoint family; more formally

a = min
{
|A | : A ⊆ [ω]ω is mad} .Before we show that b ≤ a (whih implies that a is unountable), let usshow �rst that there is a mad family of ardinality c.Proposition 8.6. There exists a maximal almost disjoint family of ardinal-ity c.Proof. Notie that by Teihmüller's Priniple, every almost disjoint family anbe extended to a mad family. So, it is enough to onstrut an almost disjointfamily A0 of ardinality c. Let {si : i ∈ ω} be an enumeration of ⋃n∈ω

nω,i.e., for eah t : n→ ω there is a unique i ∈ ω suh that t = si. For f ∈ ωω let
xf =

{
i ∈ ω : ∃n ∈ ω (f |n = si)

}
.



The ardinals a and i 195Then, for any distint funtions f, g ∈ ωω, xf ∩ xg is �nite. Indeed, if f 6= g,then there is an n0 ∈ ω suh that f(n0) 6= g(n0) whih implies that for all
k > n0, f |k 6= g|k, and hene, |xf ∩xg| ≤ n0+1. Now, let A0 := {xf : f ∈ ωω}.Then A0 ⊆ [ω]ω is a set of pairwise almost disjoint in�nite subsets of ω,therefore, A0 is an almost disjoint family of ardinality |ωω| = c. ⊣The following result implies that a is unountable and in the proof we willshow how one an onstrut an unbounded family from a mad family.Theorem 8.7. b ≤ a.Proof. Let A = {xξ : ξ ∈ κ} be a mad family. It is enough to onstrutan unbounded family of ardinality |A |. Let z = ω \⋃ξ∈κ xξ; then z is �nite(otherwise,A ∪{z} would be an almost disjoint family whih properly ontains
A ). Let x′0 := x0∪z∪{0} and for positive integers n ∈ ω let x′n :=

(
xn∪{n}

)
\⋃

k∈n x
′
k. Then, sine A is an almost disjoint family, {x′n : n ∈ ω} is a familyof pairwise disjoint in�nite subsets of ω and by onstrution, ⋃n∈ω x

′
n = ω.Moreover, (A \{xξ : ξ ∈ ω}

)
∪{x′n : n ∈ ω} is still mad. For n ∈ ω let gn ∈ ωωbe the unique stritly inreasing bijetion from x′n to ω, and let h : ω → ω×ωde�ned by stipulating

h(m) = 〈n, k〉 where m ∈ x′n and k = gn(m) .By de�nition, for eah n ∈ ω, h[x′n] = {
〈n, k〉 : k ∈ ω

}, and for all ξ ∈ κ,
h[xω+ξ] ∩ x′n is �nite. Further, for eah ξ ∈ κ de�ne fξ ∈ ωω by stipulating

fξ(k) =
⋃(

h[xω+ξ] ∩ x′k
)and let B = {fξ ∈ ωω : ξ ∈ κ}. Then by de�nition |B| = |A |; moreover, Bis unbounded. Indeed, if there would be a funtion f ∈ ωω whih dominatesall funtions of B, then the in�nite set {h−1

(
〈n, f(n)〉

)
: n ∈ ω

} would have�nite intersetion whih eah element of A ontrary to maximality of A . ⊣A family I ⊆ [ω]ω is alled independent if the intersetion of any �nitelymany members of I and the omplements of any �nitely many other membersof I is in�nite. More formally, I ⊆ [ω]ω is independent if for any n,m ∈ ωand disjoint sets {xi : i ∈ n}, {yj : j ∈ m} ⊆ I ,
⋂

i∈n

xi ∩
⋂

j∈m

(ω \ yj) is in�nite ,where we stipulate ⋂ ∅ := ω. Equivalently, I ⊆ [ω]ω is independent if for any
I, J ∈ fin(I ) with I ∩ J = ∅ we have

⋂
I \

⋃
J is in�nite .We leave it as an exerise to the reader to show that if I is in�nite, then

I is independent i� for any disjoint sets I, J ∈ fin(I ), ⋂ I \⋃ J 6= ∅.



196 8 Twelve Cardinals and their RelationsA maximal independent family is an independent family I ⊆ [ω]ωwhih is maximal with respet to inlusion, i.e., I is not properly ontainedin any independent family I ′ ⊆ [ω]ω.Definition of i. The independene number i is the smallest ardinalityof any maximal independent family; more formally
i = min

{
|I | : I ⊆ [ω]ω is independent} .We shall see that max{r, d} ≤ i (whih implies that i is unountable), but�rst let us show that there is a maximal independent family of ardinality c.Proposition 8.8. There is a maximal independent family of ardinality c.Proof. It is enough to onstrut an independent family of ardinality c onsome ountably in�nite set. So, let us onstrut an independent family ofardinality c on the ountably in�nite set

C =
{
〈s, A〉 : s ∈ fin(ω) ∧ A ⊆ P(s)

}
.Further, for eah x ⊆ [ω]ω de�ne

Px :=
{
〈s, A〉 ∈ C : x ∩ s ∈ A

}
.Notie that for any distint x, y ∈ [ω]ω there is a �nite set s ∈ fin(ω) suhthat x ∩ s 6= y ∩ s, and onsequently we get Px 6= Py whih implies thatthe set I0 =

{
Px : x ∈ [ω]ω

}
⊆ [C]ω is of ardinality c. Moreover, I0 isan independent family on C. Indeed, for any �nitely many distint in�nitesubsets of ω, say x0, . . . , xm, . . . , xm+n where m,n ∈ ω, there is a �nite set

s ⊆ ω suh that for all i, j with 0 ≤ i < j ≤ m + n we have xi ∩ s 6= xj ∩ s.Let A = {s∩xi : 0 ≤ i ≤ m} ⊆ P(s), and for every k ∈ ω \ s let sk := s∪{k}and Ak := A ∪
{
t ∪ {k} : t ∈ A

}. Then
{
〈sk, Ak〉 : k ∈ ω \ s

}
⊆

⋂

0≤i≤m

Pxi
\

⋃

1≤j≤n

Pxm+j
,whih shows that ⋂{Pxi

: 0 ≤ i ≤ m} \⋃{Pxm+j
: 1 ≤ j ≤ n} is in�nite, andtherefore, I0 is an independent family on C of ardinality c. ⊣The following result implies that i is unountable.Theorem 8.9. max{r, d} ≤ i.Proof. r ≤ i: The idea is to show that every maximal independent familyyields a reaping family of the same ardinality. For this, let I ⊆ [ω]ω be amaximal independent family of ardinality i and let

R =
{⋂

I \
⋃
J : I, J ∈ fin(I ) ∧ I ∩ J = ∅

}
.



The ardinals a and i 197Then R is a family of ardinality i. Furthermore, sine I is a maximal inde-pendent family, for every x ∈ [ω]ω we �nd a y ∈ R (i.e., y =
⋂
I \⋃ J) suhthat either x ∩ y or (ω \ x) ∩ y is �nite, and beause (ω \ x) ∩ y = y \ x, thisshows that x does not split all elements of R. Thus, R is a reaping family ofardinality i, and therefore r ≤ i.

d ≤ i: The idea is to show that an independent family of ardinality stritlyless than d annot be maximal. For this, suppose I = {Xξ : ξ ∈ κ < d} ⊆ [ω]ωis an in�nite independent family of ardinality κ < d. We shall onstrut aset Z ∈ [ω]ω suh that I ∪ {Z} is still independent, whih implies that theindependent family I is not maximal. For this it is enough to show that forany �nite, disjoint subfamilies of I , say I and J , the in�nite set ⋂
I \ ⋃

Jmeets both Z and ω \ Z in an in�nite set.Let Iω := {Xn : n ∈ ω} ⊆ I be a ountably in�nite subfamily of I andfor eah n ∈ ω let X0
n := Xn and X1

n := ω \Xn. Further, for eah g ∈ ω2 let
Cn,g =

⋂

k∈n

X
g(k)
kand for I ′ := I \ Iω de�ne

F =
{⋂

I ′ \
⋃
J ′ : I ′ and J ′ are �nite, disjoint subfamilies of I

′
}
.Claim. The family C = {Cn,g : n ∈ ω} has a pseudo-intersetion that hasin�nite intersetion with every set in F .Proof of Claim. Sine I is an in�nite independent family of ardinality κ < d,

F ⊆ [ω]ω is a family of ardinality κ suh that eah set in F has in�niteintersetion with every member of C . For any h ∈ ωω de�ne
Y hg =

⋃

n∈ω

(
Cn,g ∩ h(n)

)
.Sine 〈Cn,g : n ∈ ω〉 is dereasing (i.e., Cn,g ⊇ Cm,g whenever n ≤ m), Y hgis almost ontained in eah member of C �however, Y hg is not neessarilyin�nite. It remains to hoose the funtion h ∈ ωω so that Y hg is in�nite (i.e.,

Y hg is a pseudo-intersetion of C ) and has in�nite intersetion with every set in
F . Notie �rst that for every A ∈ F and for every n ∈ ω, A∩Cn,g is in�nite;thus, for every A ∈ F we an de�ne a funtion fA(n) ∈ ωω by stipulating

fA(n) = the nth element (in inreasing order) of A ∩Cn,g.Sine |F | < d, the family {fA : A ∈ F} is not dominating. In partiular,there is a funtion h0 ∈ ωω with the property that for eah A ∈ F the set
DA =

{
n ∈ ω : h0(n) > fA(n)

}is in�nite. Now, for eah A ∈ F and every n ∈ DA we have h0(n) ≥ fA(n)+1whih implies that |A∩h0(n)| ≥ |A∩fA(n)+1| = n, and sine DA is in�nite,



198 8 Twelve Cardinals and their Relationsalso A ∩ Y h0
g is in�nite. Finally, by onstrution Y h0

g is a pseudo-intersetionof C that has in�nite intersetion with every set in F . ⊣ClaimBy the Claim, for every g ∈ ω2 there is a set, say Yg ∈ [ω]ω, whih has thefollowing two properties:(1) For all n ∈ ω, Yg ⊆∗
⋂
k∈nX

g(k)
k .(2) Yg ∩ (⋂

I ′ \ ⋃
J ′
) is in�nite whenever I ′ and J ′ are �nite, disjoint sub-families of I ′.It follows from (1) that for any distint g, g′ ∈ ωω, Yg and Yg′ are almostdisjoint. Let now

Q0 =
{
g ∈ ωω : ∃n0 ∈ ω ∀k ≥ n0

(
g(k) = 0

)}and
Q1 =

{
g ∈ ωω : ∃n1 ∈ ω ∀k ≥ n1

(
g(k) = 1

)}
.Then Q0 ∪ Q1 is a ountably in�nite subset of ωω. Let {gn : n ∈ ω} be anenumeration of Q0 ∪Q1 and for eah n ∈ ω let Y ′

gn
:= Ygn \⋃{Ygk : k ∈ n}.Then {Y ′

gn
: n ∈ ω} is a ountable family of pairwise disjoint in�nite subsetsof ω. Finally let

Z =
⋃

g∈Q0

Y ′
g and Z ′ =

⋃

g∈Q1

Y ′
g .Then Z and Z ′ are disjoint. Now we show that Z has in�nite intersetion withevery ⋂

I \⋃J , where I and J are arbitrary �nite subfamilies of I ; and sinethe same also holds for Z ′ ⊆ ω \ Z, I ∪ {Z} is an independent family, i.e.,the independent family I of ardinality < d is not maximal.Given any �nite, disjoint subfamilies I, J ⊆ I , and let I0 = I ∩ Iω ,
J0 = J ∩ Iω , I ′ = I \ I0, J ′ = J \ J0, where Iω = {Xn : n ∈ ω}. Further, let
m ∈ ω be suh that I0 ∪ J0 ⊆ {Xn : n ∈ m} ⊆ Iω and �x g ∈ Q0 suh thatfor all n ∈ m, (

Xn ∈ (I0 ∪ J0) ∧ g(n) = 0
)
↔ Xn ∈ I0 .We get the following inlusions:

⋂
I \

⋃
J ⊇

(⋂
I ′ \

⋂
J ′
)
∩

⋂

n∈m

Xg(n)
n

∗⊇
(⋂

I ′ \
⋂
J ′
)
∩ YgThe intersetion on the very right is in�nite (by property (2) of Yg) and isontained in Z (beause g ∈ Q0). Hene, we have found an in�nite set whihis almost ontained in Z ∩

(⋂
I \⋃ J

), and therefore Z is in�nite. ⊣The Cardinals par and homBy Ramsey's Theorem 2.1, for every olouring π : [ω]2 → 2 there is an
x ∈ [ω]ω whih is homogeneous for π, i.e., π|[x]2 is onstant. This leads to thefollowing ardinal harateristi:



The ardinals par and hom 199Definition of hom. The homogeneity number hom is the smallest ar-dinality of any family F ⊆ [ω]ω with the property that for every olouring
π : [ω]2 → 2 there is an x ∈ F whih is homogeneous for π.The following result implies that hom is unountable. In fat we will showthat eah family whih ontains a homogeneous set for every 2-olouring of
[ω]2 is reaping and that eah suh family yields a dominating family of thesame ardinality.Theorem 8.10. max{r, d} ≤ hom.Proof. Let F ⊆ [ω]ω be a family suh that for every olouring π : [ω]2 → 2there is an x ∈ F whih is homogeneous for π. We shall show that F isreaping and that F ′ = {fx ∈ ωω : x ∈ F} is dominating, where fx is thestritly inreasing bijetion between ω and x.
d ≤ hom : Firstly we show that F is a dominating family. For any stritlyinreasing funtion f ∈ ωω with f(0) = 0 de�ne πf : [ω]2 → 2 by stipulating

πf
(
{n,m}

)
= 0 ⇐⇒ ∃k ∈ ω

(
f(2k) ≤ n,m < f(2k + 2)

)
.Then, for every x ∈ F whih is homogeneous for πf we have f <∗ fx whihimplies that F ′ is dominating.

r ≤ hom : Now we show that F is a reaping family. Take any y ∈ [ω]ω andde�ne πy : [ω]2 → 2 by stipulating
πy

(
{n,m}

)
= 0 ⇐⇒ {n,m} ⊆ y ∨ {n,m} ∩ y = ∅ .Now, for every x ∈ F whih is homogeneous for πy we have either x ⊆ y or

x ∩ y = ∅, and sine y was arbitrary, F is reaping. ⊣Reall that a set H ∈ [ω]ω is alled almost homogeneous for a olouring
π : [ω]2 → 2 if there is a �nite set K ⊆ H suh that H \K is homogeneousfor π. This leads to the following ardinal harateristi:Definition of par. The partition number par is the smallest ardinalityof any family P of 2-olourings of [ω]2 suh that no single H ∈ [ω]ω is almosthomogeneous for all π ∈ P.By Proposition 2.8 we get that par is unountable, and the followingresult gives an upper bound for par.Theorem 8.11. par = min{s, b}.Proof. First we show that par ≤ min{s, b} and then we show that par ≥
min{s, b}. par ≤ s : Let S ⊆ [ω]ω be a splitting family and for eah x ∈ Sde�ne the olouring πx : [ω]2 → 2 by stipulating

πx
(
{n,m}

)
= 0 ⇐⇒ {n,m} ⊆ x ∨ {n,m} ∩ x = ∅



200 8 Twelve Cardinals and their Relationsand let P = {πx : x ∈ S }. Then, sine S is splitting, no in�nite set is almosthomogeneous for all π ∈ P.
par ≤ b : Let B ⊆ ωω be an unbounded family. Without loss of generality wemay assume that eah g ∈ B is stritly inreasing. For eah g ∈ B de�ne theolouring πg : [ω]2 → 2 by stipulating

πg
(
{n,m}

)
= 0 ⇐⇒ g(n) < m where n < m .Assume towards a ontradition that some in�nite set H ∈ [ω]ω is almosthomogeneous for all olourings in P = {πg : g ∈ B}. We shall show that

H yields a funtion whih dominates the unbounded family B, whih isobviously a ontradition. Consider the funtion h ∈ ωω whih maps eahnatural number n to the seond member of H above n; more formally,
h(n) := min

{
m ∈ H : ∃k ∈ H(n < k < m)

}. For eah n ∈ ω we have
n < k < h(n) with both k and h(n) in H . By almost homogeneity of H ,for eah g ∈ B there is a �nite set K ⊆ ω suh that H \K is homogeneousfor πg, i.e., for all {n,m} ∈ [H \ K]2 with n < m we have either g(n) < mor g(n) ≥ m. Sine H is in�nite, the latter ase is impossible. On the otherhand, the former ase implies that for all n ∈ H \K, g(n) < h(n), hene, hdominates g and onsequently h dominates eah funtion of B.
par ≥ min{s, b} : Suppose P =

{
πξ : ξ ∈ κ < min{s, b}

} is a family of
2-olouring of [ω]2. We shall onstrut a set H ∈ [ω]ω whih is almost homo-geneous for all olourings π ∈ P. For eah ξ ∈ κ and all n ∈ ω de�ne thefuntion fξ,n ∈ ω2 by stipulating

fξ,n(m) =

{
πξ
(
{n,m}

) for m 6= n,
0 otherwise.Sine |{fξ,n : ξ ∈ κ ∧ n ∈ ω}| = κ · ω = κ < s, there is an in�nite set A ⊆ ωon whih all funtions fξ,n are almost onstant; more formally, for eah ξ ∈ κand eah n ∈ ω there are gξ(n) ∈ ω and jξ(n) ∈ {0, 1} suh that for all

m ≥ gξ(n), fξ,n(m) = jξ(n). Moreover, sine κ < s there is an in�nite set
B ⊆ A on whih eah funtion jξ ∈ ω2 is almost onstant, say jξ(n) = iξfor all n ∈ B with n ≥ bξ. Further, sine κ < b there is a stritly inreasingfuntion h ∈ ωω whih dominates eah gξ, i.e., for eah ξ ∈ κ there is aninteger cξ suh that for all n ≥ cξ, gξ(n) < h(n). Let H = {xk : k ∈ ω} ⊆ Bbe suh that for all k ∈ ω, h(xk) < xk+1. Then H is almost homogeneous foreah πξ ∈ P. Indeed, if n,m ∈ H are suh that max{bξ, cξ} ≤ n < m, then
gξ(n) < h(n) < m and therefore πξ({n,m}

)
= fξ,n(m) = jξ(n) = iξ, i.e.,

H \max{bξ, cξ} is homogeneous for πξ. ⊣The Cardinal hA family H = {Aξ : ξ ∈ κ} ⊆ P
(
[ω]ω

) of mad families of ardinality c isalled shattering if for eah x ∈ [ω]ω there is a ξ ∈ κ suh that x has in�nite



The ardinal h 201intersetion with at least two distint members of Aξ, i.e., at lest two sets of
Aξ split x. We leave it as an exerise to the reader to show that there areshattering families of ardinality c (for eah x ∈ [ω]ω take two disjoint sets
y, y′ ⊆ x suh that ω \ (y ∪ y′) is in�nite and extend {y, y′} to a mad familyof ardinality c).Definition of h. The shattering number h is the smallest ardinality ofa shattering family; more formally

h = min
{
|H | : H is shattering} .If one tries to visualise a shattering family, one would probably draw akind of matrix with c olumns, where the rows orrespond to the elements ofthe family (i.e., to the mad families). Having this piture in mind, the size ofthe shattering family would then be the height of the matrix, and this wherethe letter �h� omes from.In order to prove that h ≤ par we shall show how to onstrut a shatteringfamily from any family P of 2-olourings of [ω]2 suh that no single set isalmost homogeneous for all π ∈ P; the following lemma is the key idea inthat onstrution:Lemma 8.12. For every olouring π : [ω]2 → 2 there is a mad family Aπ ofardinality c suh that eah A ∈ Aπ is homogeneous for π.Proof. Let A ⊆ [ω]ω be an arbitrary almost disjoint family of ardinality

c and let π be a 2-olouring of [ω]2. By Ramsey's Theorem 2.1, for eah
A ∈ A we �nd an in�nite set A′ ⊆ A suh that A′ is homogeneous for π.Let A ′ = {A′ : A ∈ A }; then A ′ is an almost disjoint family of ardinality
c where eah member of A ′ is homogeneous for π. Let {xξ : ξ ∈ κ ≤ c} bean enumeration of [ω]ω \A ′. By trans�nite indution de�ne A0 = A ′ and foreah ξ ∈ κ let

Aξ+1 =






Aξ ∪ {xξ} if xξ is homogeneous for π andfor eah A ∈ Aξ, xξ ∩ A is �nite,
Aξ otherwise.By onstrution, Aπ =

⋃
ξ∈κ Aξ is an almost disjoint family of ardinality c,all whose members are homogeneous for π. Moreover, Aπ is a mad family.Indeed, if there would be an x ∈ [ω]ω suh that for all A ∈ Aπ, x ∩ A is�nite, then, by Ramsey's Theorem 2.1, there would be an xξ0 ∈ [x]ω (forsome ξ0 ∈ κ) whih is homogeneous for π. In partiular, xξ0 would belong to

Aξ0+1. Hene, x ∩ xξ0 is in�nite, where xξ0 ∈ A , whih is a ontradition tothe hoie of x. ⊣Theorem 8.13. h ≤ par.



202 8 Twelve Cardinals and their RelationsProof. Let P be a family of 2-olourings of [ω]2 suh that no single set isalmost homogeneous for all π ∈ P and let HP = {Aπ : π ∈ P}, where Aπis like in Lemma 8.12. We laim that HP is shattering. Indeed, let H ⊆ ωbe an arbitrary in�nite subset of ω. By the property of P, there is a π ∈ Psuh that H is not almost homogeneous for π. Consider Aπ ∈ HP : Sine
Aπ is mad, there is an A ∈ Aπ suh that H ∩ A is in�nite, and sine A ishomogeneous for π, H \ A is in�nite too; and again, sine Aπ is mad, thereis an A′ ∈ Aπ (distint from A) suh that (H \A)∩A′ is in�nite. This showsthat H has in�nite intersetion with two distint members of Aπ. Hene, HPis shattering. ⊣In order to prove that p ≤ h we have to introdue some notions: If A and
A ′ are mad families (of ardinality c), then A ′ re�nes A , denoted A ′≻≻A,if for eah A′ ∈ A ′ there is an A ∈ A suh that A′ ⊆∗ A. A shattering family
{Aξ : ξ ∈ κ} is alled re�ning if Aξ′≻≻Aξ whenever ξ′ > ξ.The next result is the key lemma in the proof that every shattering familyof size h indues a re�ning shattering family of the same ardinality.Lemma 8.14. For every family E = {Aξ : ξ ∈ κ < h} of ardinality κ < h ofmad families of ardinality c there exists a mad family A ′ whih re�nes eah
Aξ ∈ E . Furthermore, A ′ is of ardinality c.Proof. Let E = {Aξ : ξ ∈ κ < h} be a family of less than h mad families ofardinality c. For every x ∈ [ω]ω we �nd an x′ ∈ [x]ω with the property thatfor eah Aξ ∈ H there is an A ∈ Aξ suh that x′ ⊆∗ A. Indeed, if there isno suh x′ (for some given x ∈ [ω]ω), then a bijetion between x and ω wouldyield a shattering family of ardinality κ < h, ontrary to the de�nition of h.Now, if A ′ ⊆ {x′ : x ∈ [ω]ω} is a mad family, then A ′ is of ardinality c (sine
A0 is of ardinality c) and re�nes eah Aξ ∈ E (sine A ′ ⊆ {x′ : x ∈ [ω]ω}).It remains to show that mad families A ′ ⊆ {x′ : x ∈ [ω]ω} exist. Indeed, if
A ⊆ {x′ : x ∈ [ω]ω} is an almost disjoint family whih is not maximal, thenthere exists an x ∈ [ω]ω suh that for all A ∈ A , x ∩ A is �nite. Notie that
A ∪ {x′} is still an almost disjoint family, hene, by Teihmüller's Priniple,every almost disjoint family A ⊆ {x′ : x ∈ [ω]ω} an be extended to a madfamily A ′ ⊆ {x′ : x ∈ [ω]ω}. ⊣Proposition 8.15. If H = {Aξ : ξ ∈ h} is a shattering family of ardinality
h, then there exists a re�ning shattering family H ′ = {A ′

ξ : ξ ∈ h} suh thatfor eah ξ ∈ h we have A ′
ξ≻≻Aξ.Proof. The proof is by trans�nite indution: Let A ′

0 := A0 and assume wehave already de�ned A ′
ξ for all ξ ∈ η where η ∈ h. Apply Lemma 8.14 to thefamily {A ′

ξ : ξ ∈ η} ∪ {Aη} to obtain A ′
η and let H ′ = {A ′

ξ : ξ ∈ h}. ⊣Now, the proof of p ≤ h is straightforward.Theorem 8.16. p ≤ h.



Summary 203Proof. By Proposition 8.15 there exists a re�ning shattering family H =
{Aξ : ξ ∈ h} of ardinality h. With H we shall build a family F ⊆ [ω]ω ofardinality h whih has the s�p but whih does not have a pseudo-intersetion:Chose any x0 ∈ A0 and assume we have already hosen xξ ∈ Aξ for all ξ ∈ ηwhere η ∈ h. Sine H is re�ning we an hose a xη ∈ Aη suh that xη is apseudo-intersetion of {xξ : ξ ∈ η}. Finally let F = {xξ : ξ ∈ h}. Then F isa family of ardinality ≤ h whih has the s�p, but sine H is shattering, noin�nite set is almost ontained in every member of F , i.e., F does not havea pseudo-intersetion. ⊣SummaryThe diagram below shows the relations between the twelve ardinals. A lineonneting two ardinals indiates that the ardinal lower on the diagram isless than or equal to the ardinal higher on the diagram (provably in ZFC).
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ω1Later we shall see that eah of following relations is onsistent with ZFC:
• a < c (Proposition 18.5)
• i < c (Proposition 18.11)
• ω1 < p = c (Proposition 19.1)
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• a < d = r (Corollary 21.11)
• s = b < d (Proposition 21.13)
• d < r (Proposition 22.4)
• d > r (Proposition 23.7)
• p < h (Proposition 24.12) NotesMost of the lassial ardinal harateristis and their relations presented here anbe found for example in van Douwen [42℄ and Vaughan [43℄, where one �nds alsoa few historial notes (for d see also Kanamori [27, p. 179 f.℄). Proposition 8.8 isdue to Fihtenholz and Kantorovith [22℄, but the proof we gave is Hausdor�'s, whogeneralised in [26℄ the result to arbitrary in�nite ardinals (see also Exerise (A6)on p. 288 of Kunen [29℄). Theorem 8.9 is due to Shelah [33℄, however, the proofis taken from Blass [5℄ (see also [4, Theorem 21℄), where the laim in the proof isdue to Ketonen [28, Proposition 1.3℄. Theorem 8.10 and Theorem 8.11 are due toBlass and the proofs are taken from Blass [5℄ (see also [4, Setion 6℄). The shatteringardinal h was introdued and investigated by Balar, Pelant, and Simon in [2℄(f. Related Result 51). Related Results50. The Continuum Hypothesis. There are numerous statements from areas likeAlgebra, Combinatoris, or Topology, whih are equivalent to CH. For exampleErd®s and Kakutani showed that CH is equivalent to the statement that R isthe union of ountably many sets of rationally independent numbers (f. [20,Theorem 2℄). Many more equivalents to CH an be found in Sierpi«ski [39℄. Forthe historial bakground of CH we refer the reader to Felgner [21℄.51. On the shattering number h. Balar, Pelant, and Simon showed that h ≤ cf(c)(see [2, Theorem 4.2℄), gave a diret prove for h ≤ b (see [2, Theorem 4.5℄)and for h ≤ s (follows from [2, Lemma 2.11.()℄), and showed that h is regular(see [2, Lemma 2.11.(b)℄. Furthermore, Lemma 2.11.() of Balar, Pelant, andSimon [2℄ states that there are shattering families of size h whih have a verystrong ombinatorial property:Base Matrix Lemma. There exists a shattering family H =

{
Aξ ⊆ [ω]ω :

ξ ∈ h
} whih has the property that for eah X ∈ [ω]ω there is a ξ ∈ h and an

A ∈ Aξ suh that A ⊆∗ X.Proof. Let F =
{
Aξ ⊆ [ω]ω : ξ ∈ h

} be an arbitrary but �xed re�ning shatter-ing family of ardinality h. We �rst prove the followingClaim. For every in�nite set X ∈ [ω]ω there exists an ordinal ξ̄ ∈ h suh that∣∣{C ∈ Aξ̄ : |C ∩X| = ω
}∣∣ = c.Proof of Claim. Let X ∈ [ω]ω be an arbitrary in�nite subset of ω. Firstly weshow that there exists a stritly inreasing sequene 〈ξn : n ∈ ω〉 in h, suh thatfor eah n ∈ ω and f ∈ n2 we �nd a set Cf ∈ Aξn with the following properties:
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• |Cf ∩X| = ω,
• if f, f ′ ∈ n2 are distint, then Cf 6= Cf ′ , and
• for all f ∈ n2 and m ∈ n, Cf ⊆∗ Cf |m .The sequene 〈ξn : n ∈ ω〉 is onstruted by indution on n: First we hoose anarbitrary ξ0 ∈ h. Now, suppose we have already found ξn ∈ h for some n ∈ ω.Sine F is a shattering family, for every h ∈ n2 there exists a ζh > ξn suh thatthe in�nite set Ch ∩ X has in�nite intersetion with at least two members of
Aζh . Let ξn+1 =

⋃{
ζh : h ∈ n2

}. Then, sine F is re�ning, we �nd a family{
Cf : f ∈ n+12

}
⊆ Aξn+1 with the desired properties.Let ξ̄ :=

⋃
n∈ω ξn; then the ordinal ξ̄ is smaller than h: Otherwise, sine F isre�ning, the family {Aξn : n ∈ ω} would be a shattering family of ardinality

ω, ontraditing the fat that h ≥ ω1.By onstrution, for eah f ∈ ω2 we �nd a Cf ∈ Aξ̄ suh that Cf ∩X is in�nite(notie that for eah n ∈ ω, |Cf |n ∩X| = ω), and sine F is re�ning we have
Cf 6= Cf ′ whenever f, f ′ ∈ ω2 are distint. Thus, ∣∣{Cf ∈ Aξ̄ : f ∈ ω2

}∣∣ = c andfor eah f ∈ ω2 we have |Cf ∩X| = ω. ⊣ClaimNow we onstrut the shattering family H =
{
Aξ ⊆ [ω]ω : ξ ∈ h

} as follows:For eah ξ ∈ h, let Xξ be the family of all X ∈ [ω]ω suh that
∣∣{C ∈ Aξ : |C ∩X| = ω

}∣∣ = c .If Xξ = ∅, then let Aξ = Aξ. Otherwise, de�ne (e.g., by trans�nite indution)an injetion gξ : Xξ →֒ Aξ suh that for eah X ∈ Xξ, ∣∣X ∩ gξ(X)
∣∣ = ω.Now, for eah C ∈ Aξ, let CC ⊆ [C]ω be an almost disjoint family suh that⋃

CC = C, and whenever C = gξ(X) for some X ∈ Xξ (i.e., |X ∩ C| = ω),then there exists an A ∈ CC with A ⊆∗ X. Let Aξ := {A ∈ CC : C ∈ Aξ} andlet H := {Aξ : ξ ∈ h}. Then, by onstrution, for every X ∈ [ω]ω we �nd anordinal ξ ∈ h and an in�nite set A ∈ Aξ suh that A ⊆∗ X. ⊣52. The tower number t∗. A family T = {Tα : α ∈ κ} ⊆ [ω]ω is alled a tower if
T is well-ordered by ∗⊇ (i.e., Tβ ⊆∗ Tα ↔ α < β) and does not have a pseudo-intersetion. The tower number t is the smallest ardinality (or height) of atower. Obviously we have p ≤ t and the proof of Theorem 8.16 shows that
t ≤ h. However, it is open whether p < t is onsistent with ZFC (for partialresults see for example van Douwen [42℄, Blass [5℄, or Shelah [35℄).53. A linearly ordered subset of [ω]ω of size c. Let {qn ∈ Q : n ∈ ω} be anenumeration of the rational numbers Q and for every real number r ∈ R let
Cr := {n ∈ ω : qn ≤ r}. Then, for any real numbers r0 < r1 we have Cr0  Cr1and |Cr1 \Cr0 | = ω. Thus, with respet to the ordering � �, {Cr : r ∈ R} ⊆ [ω]ωis a linearly ordered set of size c. In general one an show that whenever M isin�nite, the partially ordered set (P(M), 

) ontains a linearly ordered subsetof size stritly greater than |M |.54. The σ-reaping number rσ
∗. A family R ⊆ [ω]ω is alled σ-reaping if no ount-ably many sets su�e to split all members of R. The σ-reaping number rσ isthe smallest ardinality of any σ-reaping family (for a de�nition of rσ in termsof bounded sequenes see Vojtá² [44℄). Obviously we have r ≤ rσ, but it is notknown whether r = rσ is provable in ZFC, i.e., it is not known whether r < rσ isonsistent with ZFC (see also Vojtá² [44℄ and Brendle [8℄).



206 8 Twelve Cardinals and their Relations55. On i and hom∗. We have seen that max{r, d} ≤ hom (see Theorem 8.10) andthat max{r, d} ≤ i (see Theorem 8.9). Moreover, Blass [4, Setion 6℄ showedthat hom = max{rσ, d} (see also Blass [5℄). Thus, in every model in whih r =
rσ we have hom ≤ i. Furthermore, one an show that hom < i is onsistentwith ZFC: In Balar, Hernández-Hernández, and Hru²ák [1℄ it is shown that
max{r, of (M )} ≤ i, where of (M ) is the o�nality of the ideal of meagre sets.On the other hand, it is possible to onstrut models in whih d = rσ = ω1and of (M ) = ω2 = c (see for example Shelah and Zapletal [36℄ or Brendle andKhomskii [15℄). Thus, in suh models we have ω1 = hom < i = ω2. However, itis open whether i < hom (whih would imply r < rσ) is onsistent with ZFC.56. The ultra�lter number u. A family F ⊆ [ω]ω is a base for an ultra�lter
U ⊆ [ω]ω if U =

{
y ∈ [ω]ω : ∃x ∈ F (x ⊆ y)

}. The ultra�lter number u isthe smallest ardinality of any ultra�lter base. We leave it as an exerise to thereader to show that r ≤ u.57. Consisteny results. The following statements are onsistent with ZFC:
• r < u (f. Goldstern and Shelah [23℄)
• u < d (f. Blass and Shelah [6℄ or see Chapter 23 |Related Result 130)
• u < a (f. Shelah [34℄, see also Brendle [13℄)
• h < par (f. Shelah [32, Theorem 5.2℄ or Dow [19, Proposition 2.7℄)
• hom < c (see Chapter 23 |Related Result 138)
• d < a (f. Shelah [34℄, see also Brendle [10℄)
• ω1 = b < a = s = d = ω2 (f. Shelah [32, Setions 1&2℄)
• κ = b = a < s = λ for any regular unountable ardinals κ < λ (f. Brendleand Fisher [14℄)
• b = κ < κ+ = a = c for κ > ω1 (f. Brendle [7℄)
• ω1 = s < b = d = r = a = ω2 (f. Shelah [32, Setion 4℄)
• cf(a) = ω (f. Brendle [11℄)
• h = ω2 + there are no towers of height ω2 (f. Dordal [17℄).Some more results an be found for example in Blass [5℄, Brendle [9, 12℄,van Douwen [42℄, Dow [19℄, and Dordal [18℄.58. Combinatorial properties of maximal almost disjoint families. An unountableset of reals is a σ-set if every relative Borel subset is a relative Gδ set. Brendleand Piper showed in [16℄ that CH implies the existene of a mad family whihis also a σ-set (in that paper, they also disuss related results assuming Martin'sAxiom).59. Appliations to Banah spae theory. Let ℓp(κ) denote the Banah spae ofbounded funtions f : κ→ R with �nite ℓp-norm, where for 1 ≤ p <∞,

‖f‖ = p

√∑

α∈κ

|f(α)|p ,and for p = ∞,
‖f‖ = sup

{
|f(α)| : α ∈ κ

}
.As mentioned above, Hausdor� generalised Proposition 8.8 to arbitrary in-�nite ardinals κ, i.e., if κ is an in�nite ardinal then there are independentfamilies on κ of ardinality 2κ. Now, using independent families on κ of ardi-nality 2κ it is quite straightforward to show that ℓ∞(κ) ontains an isomorphi
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9The Shattering Number revisited
As variety brings pleasure and delight, so exessiverepetition generates boredom and annoyane.Besides, the omposer would be thought by onnois-seurs of the art to have a meagre store of ideas.But it is not only permitted but admirable to du-pliate a passage or melody as many times asone wishes if the ounterpoint is always di�erentand varied. For suh repetitions strike us as be-ing somehow ingenious, and we should try to writethem wherever they seem suitable.Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558In this hapter we shall have a loser look at the shattering number h. Inthe preeding hapter, h was introdued as the minimum height of a shatteringmatrix. However, like other ardinal harateristis, h has di�erent faets. Inthis hapter we shall see that h is losely related to the Ramsey property, aombinatorial property of subsets of ω (disussed at the end of Chapter 2)whih an be regarded as a generalisation of Ramsey's Theorem.The Ramsey PropertyBy Ramsey's Theorem 2.1, for every 2-olouring of [ω]2 there is a homoge-neous set; on the other hand we have seen that there are 2-olourings of [ω]ωwithout a homogeneous set (see the example given in Chapter 2). Obviously,every olouring π : [ω]ω → {0, 1} indues a set Cπ ⊆ [ω]ω by stipulating
Cπ =

{
x ∈ [ω]ω : π(x) = 1

}.By identifying 2-olourings of [ω]ω with subsets of [ω]ω, the existene of a
2-olouring of [ω]ω without a homogeneous set is equivalent to the existene



212 9 The Shattering Number revisitedof a set C ⊆ [ω]ω suh that for all x ∈ [ω]ω there are y0, y1 ∈ [x]ω suh that
y0 /∈ A and y1 ∈ A.Now, a set C ⊆ [ω]ω has the Ramsey property, if there exists a set
x ∈ [ω]ω suh that either [x]ω ⊆ C or [x]ω∩C = ∅. Notie that the �nite as wellas the o-�nite subsets of [ω]ω have the Ramsey property, but notie also thatnot all subsets of [ω]ω have the Ramsey property (f. Chapter 5 |RelatedResult 38).Below, we investigate a property of subsets of [ω]ω whih is slightly strongerthan the Ramsey property, but �rst we have to introdue the following nota-tion.For a �nite set s ∈ fin(ω) and an in�nite set x ∈ [ω]ω suh that max(s) <
min(x) (i.e., ⋃ s <

⋂
x), let
[s, x]ω =

{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}
.Now, a set C ⊆ [ω]ω is alled ompletely Ramsey if for every set [s, x]ωthere is a y ∈ [x]ω suh that either [s, y]ω ⊆ C or [s, y]ω ∩ C = ∅. If we arealways in the latter ase (i.e., for eah [s, x]ω there is a y ∈ [x]ω suh that

[s, y]ω ∩ C = ∅), then C is alled ompletely Ramsey-null. In partiular,for s = ∅ and x = ω we onlude that any ompletely Ramsey set has theRamsey property. On the other hand, not every set whih has the Ramseyproperty is ompletely Ramsey (we leave it as an exerise to the reader to �nda ounterexample).The proof of the following result uses a so-alled fusion argument, a teh-nique whih we will meet again in Part III (Lemma 9.1 itself is used in theproof of Theorem 9.2).Lemma 9.1. If C ⊆ [ω]ω is ompletely Ramsey-null, then for eah x ∈ [ω]ωthere is a y ∈ [x]ω suh that C ontains no in�nite set z ⊆∗ y.Proof. Let C be ompletely Ramsey-null and x ∈ [ω]ω be arbitrary. By de�ni-tion of ompletely Ramsey-null there is a y0 ∈ [x]ω suh that [∅, y0]ω ∩C = ∅and let a0 = min(y0). Assume we have already onstruted a sequene
x ⊇ y0 ⊇ . . . ⊇ yn of in�nite subsets of ω as well as a sequene a0 < . . . < anof natural numbers suh that for all s ∈ P(an−1 + 1),

[s, yk]
ω ∩ C = ∅ .For h = 2an+1 let {si : i ∈ h} be an enumeration of P(an + 1) where

s0 = ∅. Further let z0 = yn \ (an + 1) and for eah i ∈ h hoose an in�niteset zi+1 ⊆ zi suh that [si+1, zi+1]
ω ∩ C = ∅ (notie that we an do thisbeause C is ompletely Ramsey-null). Finally let yn+1 = zh−1; then for all

s ∈ P(an + 1) we have
[s, yn+1]

ω ∩ C = ∅ .Let now an+1 = min(yn+1) and start the proess again with the sequenes
x ⊇ y0 ⊇ . . . ⊇ yn+1 and a0 < . . . < an+1. At the end we get an in�nite



The ideal of Ramsey-null sets 213sequene a0 < a1 < . . . < an < . . . and by onstrution the set y = {ai : i ∈ ω}has the property that for eah s ∈ fin(ω) with max(s) ∈ y,
[
s, y \

(
max(s) + 1

)]ω ∩ C = ∅ ,whih implies that for eah in�nite set z ⊆∗ y we have [∅, z]ω ∩C = ∅, i.e., Contains no in�nite set z ⊆∗ y. ⊣The Ideal of Ramsey-Null SetsBelow, we onsider the set of ompletely Ramsey-null sets. So, let
R0 =

{
C ⊆ [ω]ω : C is ompletely Ramsey-null}be the olletion of all subsets of [ω]ω whih are ompletely Ramsey-null. Sine

R0 is losed under subsets (i.e., C ∈ R0 and C′ ⊆ C implies C′ ∈ R0) and�nite unions (i.e., C0, . . . , Cn ∈ R0 implies C0 ∪ . . .∪Cn ∈ R0), R0 is an idealon P
(
[ω]ω

).Obviously, [ω]ω /∈ R0 but for every x ∈ [ω]ω we have {x} ∈ R0. Thus, theset [ω]ω an be overed by c ompletely Ramsey-null sets whih implies thatthe union of c sets from R0 an be a set whih does not belong to R0. Theseobservations lead to the following two ardinal numbers.Definition. The additivity of R0, denoted add(R0), is the smallest num-ber of sets in R0 with union not in R0; more formallyadd(R0) = min
{
|C | : C ⊆ R0 ∧

⋃
C /∈ R0

}
.Definition. The overing number ofR0, denoted ov(R0), is the smallestnumber of sets in R0 with union [ω]ω; more formallyov(R0) = min

{
|C | : C ⊆ R0 ∧

⋃
C = [ω]ω

}
.We leave it as an exerise to the reader to show (using a fusion argu-ment) that any ountable union of ompletely Ramsey-null sets is ompletelyRamsey-null. Hene, ω1 ≤ add(R0), and onsequently we get ω1 ≤ add(R0) ≤ov(R0) ≤ c. Moreover, we even have the following result.Theorem 9.2. add(R0) = ov(R0) = h.Proof. Beause add(R0) ≤ ov(R0) it is enough to show that ov(R0) ≤ hand that h ≤ add(R0).ov(R0) ≤ h: Let {Aξ : ξ ∈ h} be a shattering family of ardinality h. For eah

ξ ∈ h let Dξ =
{
y ∈ [ω]ω : ∃x ∈ Aξ(y ⊆∗ x)

} and let Cξ = [ω]ω \Dξ. Firstlynotie that for eah ξ ∈ h, Cξ ∈ R0. Indeed, take any [s, y]ω, then, sine Aξ ismad, there is an x ∈ Aξ suh that y ∩ x is in�nite; thus, [s, y ∩ x]ω ⊆ Dξ, or



214 9 The Shattering Number revisitedequivalently [s, y ∩ x]ω∩Cξ = ∅. Seondly notie that ⋃ξ∈hCξ = [ω]ω. Indeed,take any y ∈ [ω]ω, then, sine {Aξ : ξ ∈ h} is shattering, there is a ξ ∈ h andtwo distint elements x, x′ ∈ Aξ suh that y ∩ x as well as y ∩ x′ is in�nite;hene, y /∈ Dξ, or equivalently y ∈ Cξ.
h ≤ add(R0): Let {Cξ ⊆ [ω]ω : ξ ∈ κ < h} ⊆ R0 be a family of ompletelyRamsey-null sets of ardinality κ < h. We will show that ⋃ξ∈κ Cξ ∈ R0. Foreah ξ ∈ κ let

Dξ =
{
y ∈ [ω]ω : ∀z ∈ [ω]ω(z ⊆∗ y → [∅, z]ω ∩ C = ∅)

}
.Now we hoose for eah ξ ∈ κ an almost disjoint family Aξ ⊆ Dξ of ardinality

c whih is maximal with respet to inlusion. Notie that by Lemma 9.1, foreah x ∈ [ω]ω there is a y ∈ Aξ suh that x ∩ y is in�nite, i.e., Aξ ⊆ Dξ is amad family (on [ω]ω) of ardinality c. Indeed, if there would be an x ∈ [ω]ωAξwhih has �nite intersetion with eah member of Aξ, then, by Lemma 9.1,there is a y ∈ [x]ω suh that y ∈ Dξ \ Aξ whih would imply that Aξ is notmaximal. Beause κ < h we an apply Lemma 8.14 and get a mad family A ′whih re�nes eah Aξ. Take any set [s, x]ω. Sine A ′ is mad, there is a y′ ∈ A ′suh that x∩ y′ is in�nite; let z = x∩ y′. Beause A ′ re�nes all Aξ's, for eah
ξ ∈ κ there is a y ∈ Aξ suh that z ⊆∗ y, and sine Aξ ⊆ Dξ, by de�nition of
Dξ we get [∅, s ∪ z]ω ∩ Cξ = ∅, in partiular, [s, z]ω ∩ Cξ = ∅. Thus, for everyset [s, x]ω there exists a z ∈ [x]ω suh that for all ξ ∈ κ, [s, z]ω ∩ Cξ = ∅, i.e.,
[s, z]ω ∩⋃

ξ∈κ Cξ = ∅, hene ⋃
ξ∈κ Cξ ∈ R0. ⊣The Ellentuk TopologyBelow, we give a topologial haraterisation of ompletely Ramsey sets, butbefore we have to introdue the basi notions of General Topology:A topologial spae is a pair (X,O) onsisting of a set X and a family

O of subsets of X satisfying the following onditions.(O1) ∅ ∈ O and X ∈ O.(O2) If O1 ∈ O and O2 ∈ O, then O1 ∩O2 ∈ O.(O3) If F ⊆ O, then ⋃
F ∈ O.The set X is alled a spae, the elements of X are alled points of the spae,and the subsets of X belonging to O are alled open and the omplements ofopen sets are alled losed. The family O of open subsets of X is also alleda topology on X .Let us onsider for example the real line R. For r1, r2 ∈ R de�ne (r1, r2) :=

{r ∈ R : r1 < r < r2}. Now, a set O ⊆ R is alled open if for every r ∈ Othere exists a real ε > 0 suh that (r − ε, r + ε) ⊆ O (i.e., every r ∈ O isontained in an open interval ontained in O). We leave it as an exerise tothe reader to show that the family of open sets satis�es onditions (O1)�(O3).From (O2) is follows that the intersetion of any �nite family of open setsis an open set, and from (O3) it follows that the union of any family of open



The Ellentuk topology 215sets is open. Notie that arbitrary intersetions of losed sets as well as �niteunions of losed sets are losed sets. For an arbitrary set A ⊆ X let
A
◦
=

⋃{
O ∈ O : O ⊆ A

}be the interior of A; and let
Ā =

⋂{
C : C is losed and A ⊆ C

}be the losure of A. Notie that A◦ is the largest open set ontained in Aand that Ā is the smallest losed set ontaining A.A family B ⊆ O is alled a base for a topologial spae (X,O) if everynon-empty open subset of X an be represented as the union of a subfamilyof B. The sets in a basis B are also alled basi open sets. If a family B ofsubsets of X is suh that X ∈ B and every non-empty �nite intersetion ofsets in B belongs to B, then (X,O), where
O =

{⋃
F : F ⊆ B

}
,is a topologial spae with base B (notie that ⋃ ∅ = ∅). In this ase we saythat the topology on X is generated by the basi open sets O ∈ B.For example the topology onR introdued above is generated by the ount-ably many basi open intervals (q1, q2), where q1, q2 ∈ Q.Let (X,O) be a topologial spae and let A ⊆ X be a subset of X .

• A is alled dense if for every open set O ∈ O, A ∩O 6= ∅.
• A is alled nowhere dense if X \A ontains an open dense set.
• A is alled meagre if A is the union of ountably many nowhere densesets.
• A has the Baire property if there is an open set O ∈ O suh that O△Ais meagre, where O△A = (O \ A) ∪ (A \ O) (i.e., x /∈ O△A i� either

x ∈ A ∩O or x /∈ A ∪O).Obviously, meagre sets and open sets have the Baire property and ountableunions of meagre sets are meagre. Moreover, the following result shows thatthe Baire property is losed under omplementation and ountable unions andintersetions.Fat 9.3. (a) Every losed set has the Baire property.(b) The omplement of a set with the Baire property has the Baire property.() Unions and intersetions of ountably many sets with the Baire propertyhave the Baire property.Proof. (a) Let A ⊆ X be a losed subset of X . We shall show that A \ A◦is nowhere dense. Firstly, A \ A◦ = A ∩ (X \ A◦), thus, A \ A◦ is losed and
X \ (A \A◦) is open. Seondly, no open set O ∈ O is ontained in A \A◦, and
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(
X \ (A \ A◦)

) is a non-empty open set. Thus, X \ (A \ A◦) isopen dense, or equivalently, A \A◦ is nowhere dense. In partiular, A◦△A ismeagre whih shows that A has the Baire property.(b) Assume that A ⊆ X has the Baire property and let O ∈ O be suh that
O△A is meagre. Let Ō := X \ (X \O)◦ be the losure of O. By (a), Ō \O isnowhere dense. Thus, A△Ō is meagre and therefore (X \A)△(X \ Ō) is alsomeagre, whih shows that X \A has the Baire property.() By (b) it is enough to prove () for unions. So, let {An ⊆ X : n ∈ ω

} bea family of sets whih have the Baire property. For eah n ∈ ω let On ∈ O bean open set suh that On△An is meagre. Then
M =

⋃

n∈ω

On △
⋃

n∈ω

An ⊆
⋃

n∈ω

(
On△An

)is a subset of a ountable union of meagre sets. Hene, M is meagre whihshows that ⋃n∈ω An has the Baire property. ⊣Consider now the set [ω]ω. The aim is to de�ne a topology on [ω]ω suh thata set A ⊆ [ω]ω has the Baire property (with respet to that topology) if andonly if A is ompletely Ramsey. For this let
B =

{
[s, x]ω ⊆ [ω]ω : s ∈ fin(ω) ∧ x ∈ [ω]ω ∧max(s) < min(x)

}
,where we de�ned [s, x]ω :=

{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}. Obviously, [ω]ω =
[∅, ω]ω ∈ B and we leave it as an exerise to the reader to show that every non-empty �nite intersetion of sets in B belongs to B �notie that [s, x]ω∩[t, y]ωis either empty or it is [s ∪ t, x ∩ y]ω . Thus, O =

{⋃
F : F ⊆ B

} is atopology on [ω]ω, alled the Ellentuk topology.In Chapter 21 we shall introdue a topology on ωω whih orresponds tothe topology on [ω]ω generated by the basi open sets [s, ω \max(s) + 1]ω.Notie that with respet to the Ellentuk topology, eah singleton set
{x} ⊆ [ω]ω is nowhere dense and all ountable sets are meagre. Furthermore,by de�nition, subsets of meagre sets as well as ountable unions of meagre setsare meagre. Thus, the olletion of all meagre subsets of [ω]ω is an ideal on
P

(
[ω]ω

). The following theorem shows that the ideal of meagre sets oinidewith the ideal of ompletely Ramsey-null sets, and that a set is ompletelyRamsey i� it has the Baire property; for the latter result we have to prove�rst the following lemma, whose proof uses twie a fusion argument.Lemma 9.4. Every open set is ompletely Ramsey.Proof. Firstly we introdue some terminology: Let O ⊆ [ω]ω be an arbitrarybut �xed open set. A basi open set [s, x]ω is alled good (with respet to
O), if there is a set y ∈ [x]ω suh that [s, y]ω ⊆ O; otherwise it is alledbad. Further, [s, x]ω is alled ugly if [s ∪ {a}, x \ a+]ω is bad for all a ∈ x,where a+ := a + 1. Notie that if [s, x]ω is ugly, then [s, x]ω is bad, too.



The Ellentuk topology 217Finally, [s, x]ω is alled ompletely ugly if [s ∪ {a0, . . . , an}, x \ a+n ]ω is badfor all {a0, . . . , an} ⊆ x with a0 < . . . < an. If [s, x]ω is ompletely ugly, then
[s, x]ω ∩ O = ∅ (notie that [s, x]ω ∩ O is open, and therefore is either emptyor ontains a basi open set [t, y]ω ⊆ [s, x]ω).Now, in order to show that the open set O is ompletely Ramsey it isenough to prove that every basi open set [s, x]ω is either good or there existsa z ∈ [x]ω suh that [s, z]ω is ompletely ugly. This is done in two steps: Firstlywe show that if [s, x]ω is bad, then there exists a y ∈ [x]ω suh that [s, y]ω isugly, and seondly we show that if [s, y]ω is ugly, then there exists a z ∈ [y]ωsuh that [s, z]ω is ompletely ugly.Claim 1. If the basi open set [s, x]ω is bad, then there exists a set y ∈ [x]ωsuh that [s, y]ω is ugly.Proof of Claim 1. Let x0 := x and a0 := min(x0), and for i ∈ ω let xi+1 ⊆
(xi \ a+i ) suh that [s ∪ {ai}, xi+1]

ω ⊆ O if possible, and xi+1 = xi \ a+iotherwise. Further, let ai+1 := min(xi+1). Stritly speaking we assume that
[ω]ω is well-ordered and that xi+1 is the �rst element of [ω]ω with the requiredproperties. Now, let y =

{
ai : [s ∪ {ai}, xi+1]

ω * O
}. Beause [s, x]ω is bad,

y ∈ [ω]ω, whih implies that [s, y]ω is ugly. ⊣Claim 1Claim 2. If the basi open set [s, y]ω is ugly, then there exists a set z ∈ [y]ωsuh that [s, z]ω is ompletely ugly.Proof of Claim 2. This follows by an iterative appliation of Claim 1. Let
y0 := y and let a0 := min(y0). For every i ∈ ω we an hoose a set
yi+1 ⊆ (yi \ a+i ), where ai := min(yi), suh that for eah t ⊆ {a0, . . . , ai}we have either [s ∪ t, yi+1]

ω is ugly or [s ∪ t, yi+1]
ω ⊆ O. Let z := {ai : i ∈ ω}and assume towards a ontradition that there exists a �nite set t ⊆ zsuh that [s ∪ t, z \max(t)+]ω is good. Notie that sine [s, y]ω was assumedto be ugly, t 6= ∅. Now, let t0 be a smallest �nite subset of z suh that

[s ∪ t0, z \max(t0)
+]ω is good and let t−0 = t0 \ {max(t0)}. By de�nition of

t0, [s ∪ t−0 , z \max(t0)]
ω annot be good (i.e., it is bad), and therefore, byonstrution of z, it must be ugly. On the other hand, if [s ∪ t−0 , z \max(t0)]

ωis ugly, then [s ∪ t0, z \max(t0)
+]ω is bad, whih is a ontradition to our as-sumption that [s ∪ t0, z \max(t0)

+]ω is good. Thus, for all �nite subsets t ⊆ z,
[s ∪ t, z \max(t)+]ω is ugly, and therefore [s, z]ω is ompletely ugly. ⊣Claim 2Let [s, x]ω be an arbitrary basi open set. If [s, x]ω is good, then there exists a
y ∈ [x]ω suh that [s, y]ω ⊆ O. Otherwise, [s, x]ω is bad and we �nd a z ∈ [x]ωsuh that [s, z]ω is ompletely ugly, i.e., [s, z]ω ∩ O = ∅. Hene, the arbitraryopen set O is ompletely Ramsey. ⊣We shall use the very same fusion arguments again in Chapter 24 in order toprove that Mathias foring has pure deision (see proof of Theorem 24.3).Theorem 9.5 (Ellentuk). For every A ⊆ [ω]ω we have:(a) A is nowhere dense if and only if A is ompletely Ramsey-null.



218 9 The Shattering Number revisited(b) A is meagre if and only if A is nowhere dense.() A has the Baire property if and only if A is ompletely Ramsey.Proof. (a) A set A ⊆ [ω]ω is nowhere dense i� for eah basi open set [s, x]ωthere exists a basi open set [t, y]ω ⊆ [s, x]ω suh that [t, y]ω∩A = ∅. Hene, weobviously have that every ompletely Ramsey-null set is nowhere dense. Forthe other diretion assume that A ⊆ [ω]ω is not ompletely Ramsey-null, i.e.,there is a basi open set [s, x]ω suh that for all basi open sets [s, y]ω ⊆ [s, x]ωwe have [s, y]ω∩A 6= ∅. By a fusion argument we an onstrut a set z0 ∈ [x]ωsuh that for all [t, y]ω ⊆ [s, z0]
ω we have [t, y]ω ∩A 6= ∅, i.e., A is not nowheredense.(b) On the one hand, nowhere dense sets are meagre. On the other hand, byTheorem 9.2 we have add(R0) = h and sine h is unountable we get thatountable unions of ompletely Ramsey-null sets (i.e., of nowhere dense sets)are ompletely Ramsey-null. Thus, meagre sets are ompletely Ramsey-nulland therefore nowhere dense.() On the one hand, if A ⊆ [ω]ω is ompletely Ramsey, then O =

⋃{
[s, y]ω :

[s, y]ω ⊆ A
} is an open subset of A and for eah basi open set [s, x]ω there isa y ∈ [x]ω suh that either [s, y]ω ⊆ A (i.e., [s, y]ω ⊆ (A∩O) and in partiular

[s, y]ω ∩ (O△A) = ∅), or [s, y]ω ∩ A = ∅ (i.e., [s, y]ω ∩ (A ∪ O) = ∅ and inpartiular [s, y]ω ∩ (O△A) = ∅). In both ases we have [s, y]ω ∩ (O△A) = ∅whih implies that O△A is meagre and shows that A has the Baire property.On the other hand, if A ⊆ [ω]ω has the Baire property then there is anopen set O ⊆ [ω]ω suh that O△A is meagre, thus by (b), O△A is ompletelyRamsey-null. Now, O△A ∈ R0 i� for eah basi open set [s, y]ω there is a
z ∈ [y]ω suh that [s, z]ω ∩ (O△A) = ∅. Beause O is ompletely Ramsey (byLemma 9.4), for every basi open set [s, x]ω there is a set y ∈ [x]ω suh thateither [s, y]ω ⊆ O or [s, y]ω ∩O = ∅, and in both ases there is a z ∈ [y]ω suhthat [s, z]ω ∩ (O△A) = ∅. Thus, we have either [s, z]ω ⊆ A or [s, z]ω ∩A = ∅,whih shows that A is ompletely Ramsey. ⊣As a onsequene we get the followingCorollary 9.6. The union of less than h ompletely Ramsey sets is om-pletely Ramsey.Proof. Let κ < h and let {

Cξ ⊆ [ω]ω : ξ ∈ κ
} be a family of ompletelyRamsey sets. For eah ξ ∈ κ let Oξ ⊆ [ω]ω be an open set suh that Oξ△Cξis meagre. Then

D =
⋃

ξ∈κ

Oξ △
⋃

ξ∈κ

Cξ ⊆
⋃

ξ∈κ

(
Oξ△Cξ

)is a subset of a union of κ meagre sets, and sine κ < h, D is meagre andtherefore ⋃
ξ∈κ Cξ is ompletely Ramsey. ⊣



A generalised Suslin operation 219A generalised Suslin OperationFirst we introdue an operation on ertain families of sets and then we showthat the olletion of ompletely Ramsey sets is losed under that operation.Reall that for arbitrary ardinals κ, seq(κ) denotes the set of all �nitesequenes whih an be formed with elements of κ. As usual we identify theset seq(κ) with the set ⋃
n∈ω

nκ. Let {
Qs : s ∈ seq(κ)

} be a family of setsindexed by elements of seq(κ) and de�ne
Aκ

{
Qs : s ∈ seq(κ)

}
=

⋃

f∈ωκ

⋂

n∈ω

Qf |n .The operation Aω is alled the Suslin operation.Now we will show that the olletion of ompletely Ramsey sets (i.e., the ol-letion of sets having the Baire property) is losed under the generalised Suslinoperation Aκ whenever ω ≤ κ < h, i.e., for every family {
Qs : s ∈ seq(κ)

} ofompletely Ramsey sets, Aκ

{
Qs : s ∈ seq(κ)

} is ompletely Ramsey.A set A ⊆ [ω]ω is meagre in the basi open set [s, x]ω if the intersetion
A∩ [s, x]ω is meagre. Thus, by (a)& (b) of Theorem 9.5, A is meagre in [s, x]ωif for every [t, y]ω ⊆ [s, x]ω there is a y′ ∈ [y]ω suh that A∩ [t, y′]ω = ∅. Now,for an arbitrary but �xed set A ⊆ [ω]ω let

M =
⋃{

[s, x]ω : A is meagre in [s, x]ω
}
.The main part of the following lemma is that A ∪

(
[ω]ω \M

) has the Baireproperty.Lemma 9.7. For A and M as above we have:(a) A is meagre in eah basi open set [s, x]ω ⊆M .(b) M ∩A is meagre.() A ∪
(
[ω]ω \M

) has the Baire property.Proof. (a) Let [s, x]ω ⊆M be an arbitrary basi open subset of M and let
N =

{
[t, y]ω ⊆ [s, x]ω : A is meagre in [t, y]ω

}
.Then, by de�nition of M and sine the basi open sets of the Ellentuk topol-ogy are losed under �nite intersetions,⋃N = [s, x]ω. So, for eah basi openset [u, z]ω ⊆ [s, x]ω there is a [t, y]ω ⊆ [u, z]ω whih belongs to N and we �nda y′ ∈ [y]ω suh that [t, y′]ω ∩A = ∅. Sine [u, z]ω ⊆ [s, x]ω was arbitrary and

[t, y′]ω ⊆ [u, z]ω, this shows that A is meagre in [s, x]ω.(b) We have to show that [ω]ω\(M∩A) ontains an open dense set, i.e., for ev-ery basi open set [s, x]ω there is a [t, y]ω ⊆ [s, x]ω suh that [t, y]ω∩M∩A = ∅.Let [s, x]ω be an arbitrary basi open set. If [s, x]ω∩M = ∅, then we are done.



220 9 The Shattering Number revisitedOtherwise, sine M is open, [s, x]ω ∩ M ⊇ [t, y]ω for some basi open set
[t, y]ω; and sine [t, y]ω ⊆ M , by (a), A is meagre in [t, y]ω. Hene, there is a
[t, y′]ω ⊆ [t, y]ω suh that [t, y′]ω∩A = ∅ whih shows that [t, y′]ω∩(M∩A) = ∅.() Notie that A ∪

(
[ω]ω \M

)
=

(
[ω]ω \M

)
∪ (M ∩A). Now, by (b), M ∩Ais meagre, and beause M is open, [ω]ω \M is losed. Thus, A ∪

(
[ω]ω \M

)is the union of a meagre set and a losed set and therefore has the Baireproperty. ⊣The following result is used in the proof of Theorem 9.9.Proposition 9.8. For every A ⊆ [ω]ω there is a set C ⊇ A whih has theBaire property and whenever Z ⊆ C \A has Baire property, then Z is meagre.Proof. Let C = A∪
(
[ω]ω\M

) whereM =
⋃{

[s, x]ω : A is meagre in [s, x]ω
}.By Lemma 9.7.() we know that C has the Baire property. Now let Z ⊆ C \Abe suh that Z has the Baire property. If Z is not meagre, then there exists abasi open set [t, y]ω suh that [t, y]ω \Z is meagre. In partiular, A is meagrein [t, y]ω and therefore [t, y]ω ⊆ M . On the other hand, sine [t, y]ω ∩ Z 6= ∅and Z ∩M = ∅ we get that [t, y]ω *M , a ontradition. ⊣Now we are ready to prove that the olletion of ompletely Ramsey sets(i.e., the Baire property) is losed under the generalised Suslin operation Aκwhenever κ < h.Theorem 9.9. Let κ < h be an in�nite ardinal and for eah s ∈ seq(κ) let

Qs ⊆ [ω]ω. If all sets Qs are ompletely Ramsey, then
Aκ

{
Qs : s ∈ seq(κ)

}is ompletely Ramsey too.Proof. Let {Qs : s ∈ seq(κ)
} be a family of ompletely Ramsey sets. We haveto show that the set A = Aκ

{
Qs : s ∈ seq(κ)

} is ompletely Ramsey. Withoutloss of generality we may assume that Qs ⊇ Qt whenever s ⊆ t. For every
s ∈ seq(κ) let

As :=
⋃

f ∈ ωκ
s=f ||s|

⋂

n∈ω
n≥|s|

Qf |n .We leave it as an exerise to the reader to verify that A = A∅ and that forevery s ∈ seq(κ) we have As ⊆ Qs and As =
⋃
α∈κAs⌢〈α〉. Further, notiethat

A = Aκ

{
As : s ∈ seq(κ)

}
.By Proposition 9.8, for eah s ∈ seq(κ) we �nd a set Cs ⊇ As whih isompletely Ramsey and whenever Z ⊆ Cs \As is ompletely Ramsey, then Zis ompletely Ramsey-null. Beause Qs ⊇ As and Qs is ompletely Ramsey,we may assume that Cs ⊆ Qs, and thus,
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A = Aκ

{
Cs : s ∈ seq(κ)

}
.Let C := C∅ and notie that A =

⋃
α∈κA〈α〉 ⊆ ⋃

α∈κ C〈α〉, in partiular,
C ⊆ ⋃

α∈κ C〈α〉. Now we show that
C \A ⊆

⋃

α∈κ

C〈α〉 ⊆
⋃

f∈ωκ

⋂

n∈ω

Cf |n ⊆
⋃

s∈seq(κ)

(
Cs \

⋃

α∈κ

Cs⌢〈α〉

)
.Let x ∈ [ω]ω be suh that

x /∈
⋃

s∈seq(κ)

(
Cs \

⋃

α∈κ

C
s
⌢
〈α〉

)
. (/∈)If for all α ∈ κ, x /∈ C〈α〉, then x /∈ C. On the other hand, if there existsan α0 ∈ κ suh that x ∈ C〈α0〉, then by (/∈) we �nd an α1 suh that x ∈

C〈α0,α1〉, and again by (/∈) we �nd an α2 suh that x ∈ C〈α0,α1,α2〉, et etera,and �nally we �nd an f ∈ ωκ suh that for all n ∈ ω, x ∈ Cf |n , whihimplies that x ∈ A. Further, Cs \⋃α∈κ Cs⌢〈α〉 ⊆ Cs \
⋃
α∈κAs⌢〈α〉 = Cs \As,and sine ⋃

α∈κCs⌢〈α〉 is the union of less than h ompletely Ramsey sets,
Cs \ ⋃

α∈κ Cs⌢〈α〉 is ompletely Ramsey, and as a subset of Cs \ As it isompletely Ramsey-null. Thus, C \ A, as a subset of a union of less than hompletely Ramsey-null sets, is ompletely Ramsey-null, and beause C isompletely Ramsey, A is ompletely Ramsey too. ⊣NotesLemma 9.1 and Theorem 9.2 are due to Plewik [18℄. The Ellentuk topology on
[ω]ω was introdued by Ellentuk in [6℄ (for a omprehensive exposition of GeneralTopology we refer the reader to Engelking [7℄). The main result of that paper is The-orem 9, whih is now known as Ellentuk's Theorem 9.5 (see also Matet [16℄).However, the aim of Ellentuk's paper was to give a simpler proof for the fat thatevery analyti set is ompletely Ramsey� a fat whih also follows from Theo-rem 9.9 (f. Galvin and Prikry [8℄ and Silver [19℄). The proof of Theorem 9.9 issimilar to the proof of Jeh [12, Theorem 11.18℄ and is essentially taken from Hal-beisen [9, Setion 3℄ (see also Matet [15, Proposition 9.8℄).Related Results60. The ideal of ompletely doughnut null sets∗. In Chapter 2, the doughnut propertywas introdued. Now, similarly as we de�ned the idealR0 of ompletely Ramsey-null sets one an de�ne the ideal v0 of ompletely doughnut null sets. By The-orem 9.2 we know that add(R0) = ov(R0), however, it is not known whetherwe also have add(v0) = ov(v0) (see Halbeisen [10, Question 4℄). A partial an-swer to this problem an be found in Kalemba, Plewik, and Wojiehowska [13℄,where it is shown that t = min{cf(c), r} implies add(v0) = ov(v0).



222 9 The Shattering Number revisited61. R0 and other σ-ideals on [ω]ω. In [5℄, Corazza ompares the ideal of om-pletely Ramsey-null sets with other σ-ideals like the ideal of Lebesgue measurezero, meagre, and Marzewski measure zero sets of reals (see also Louveau [14℄,Aniszzyk, Frankiewiz, Plewik [1℄, and Brown [3℄).62. Ellentuk type theorems. In [4℄, Carlson and Simpson survey the interplay be-tween topology and Ramsey Theory. In partiular, an abstrat version of Ellen-tuk's Theorem 9.5 is introdued and disussed. For a further developmentof this theory see for example Mijares [17℄.Let βω \ ω denote the set of all non-prinipal ultra�lters over ω. For A ⊆ ω de�ne
A∗ = {U ∈ βω \ ω : A ∈ U } ,and let B

∗ = {A∗ : A ⊆ ω}. Notie that ω∗ = βω \ω and that A∗ = ∅ i� A is �nite.Furthermore, for all A∗, B∗ ∈ B
∗ we have

A∗ ∩B∗ = (A ∩B)∗ and A∗ ∪ B∗ = (A ∪ B)∗.In partiular, B
∗ has the property that intersetions of sets in B

∗ belong to B
∗,thus, B

∗ is a base for a topology on βω \ ω. The set βω \ ω with the topologygenerated by the basi open sets A∗ ∈ B
∗ is a topologial spae whih has manyinteresting properties; the following results an be found for example in Todor£e-vi¢ [20, Setion 14℄.

• βω \ ω is Hausdor� ([20, Lemma 1℄).
• βω \ ω is ompat ([20, Lemma 2℄).
• βω \ ω ontains no non-trivial onverging sequenes ([20, Theorem 2℄).For an introdution to βω \ ω see van Mill [21℄, and for ombinatorial properties of
βω \ ω we refer the reader to Hindman and Strauss [11℄.63. The minimum height of a tree π-base of βω\ω. A family P ⊆ B

∗ of basi opensets is a π-base for βω\ω if every non-empty element of B
∗ ontains a memberof P . If a π-base P ⊆ B

∗ is a tree when onsidered as a partially ordered setunder reverse inlusion (i.e., for every A∗ ∈ P , A∗
≤ := {B∗ ∈ P : A∗ ⊆ B∗} iswell-ordered by �⊇ �), then P is alled a tree π-base of βω \ω. If P ⊆ B

∗ is atree π-base of βω \ω, then the height of an element A∗ ∈ P , denoted h(A∗), isthe order type of A∗
≤ (well-ordered by �⊇ �), and the height of P is de�ned by

h(P) :=
⋃{

h(A∗) : A∗ ∈ P
}. Now, the Base Matrix Lemma 2.11 of Balar,Pelant, and Simon [2℄ (see Chapter 8 |Related Result 51) shows that h is theminimum height of a tree π-base of βω \ ω, i.e.,

h = min
{
h(P) : P ⊆ B

∗ is a tree π-base of βω \ ω
}
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10Happy Families and their Relatives
A adene is a ertain simultaneous progression ofall the voies in a omposition aompanying a re-pose in the harmony or the ompletion of a mean-ingful segment of the text. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558In this hapter we shall investigate ombinatorial properties of ertainfamilies of in�nite subsets of ω. In order to do so, we shall use many ofthe ombinatorial tools developed in the preeding hapters. The familieswe investigate� partiularly P -families and Ramsey families � will play akey role in understanding the ombinatorial properties of Silver and Mathiasforing notions (see Chapter 22 and Chapter 24 respetively).Happy FamiliesThe P -families and Ramsey families mentioned above are relatives to the so-alled happy families. The name �happy families� omes from a hildren'sard game, where the idea of the game is to ollet the members of �tionalfamilies. The onnetion to families in Set Theory is that a family E ⊆ [ω]ωis happy if for every ountable dereasing sequene y0 ⊇ y1 ⊇ · · · of elementsof E there is a member of E whih selets ertain elements from the sets yi(f. Proposition 10.6.(b)). This explains why happy families are also alledseletive o-ideals�whih is more sober but less amusing.Firstly reall that a family F ⊆ [ω]ω is a �lter if it is losed under supersetsand �nite intersetions, and that the Fréhet �lter is the �lter onsisting ofall o-�nite subsets of ω (i.e., all x ∈ [ω]ω suh that ω \ x is �nite). To keepthe notation short, for x ⊆ ω de�ne x := ω \ x. For a �lter F ⊆ [ω]ω, F+



226 10 Happy Families and their Relativesdenotes the olletion of all sets x ⊆ ω suh that ω \ x does not belong to F ,i.e.,
F

+ =
{
x ⊆ ω : x /∈ F

}
.An equivalent de�nition of F+ is given by the followingFat 10.1. For any �lter F ⊆ [ω]ω, x ∈ F+ if and only if x∩z is non-emptywhenever z ∈ F .Proof. On the one hand, if, for some z ∈ F , x ∩ z = ∅, then x ⊇ z, whihimplies that x ∈ F and therefore x /∈ F+. On the other hand, if, for some

x ⊆ ω, x ∈ F , then we obviously have x ∩ x = ∅, thus, x does not meetevery member of F . ⊣If U is an ultra�lter and x ∪ y ∈ U , then at least one of x and y belongsto U . In general, this is not the ase for �lters F , but it holds for F+.Lemma 10.2. Let F ⊆ [ω]ω be a �lter. If F+ ontains x∪y, then it ontainsat least one of x and y.Proof. If neither x nor y belongs to F+, then x, y ∈ F . Hene, (x ∪ y) =
x ∩ y ∈ F , and therefore x ∪ y /∈ F+. ⊣Now, a �lter F ⊆ [ω]ω is alled a free �lter if it ontains the Fréhet�lter. In partiular, every ultra�lter on [ω]ω is free. Notie that for a free �lter
F , F+ =

{
x ⊆ ω : ∀z ∈ F

(
|x ∩ z| = ω

)}, and that a �lter U ⊆ [ω]ω is anultra�lter i� U = U +. Finally, a family E of subsets of ω is alled a freefamily if there is a free �lter F ⊆ [ω]ω suh that E = F+. In partiular, [ω]ωand all ultra�lters on [ω]ω are free families. Notie that a free family does notontain any �nite sets and is losed under supersets. Moreover, a free family
E is losed under �nite intersetions i� E is an ultra�lter on [ω]ω.Reall that fin(ω) denotes the set of all �nite subsets of ω. To keep thenotation short, for s ∈ fin(ω) let s̄ := ⋃

s, and for n ∈ ω let n+ := n + 1 (inother words, n+ is the suessor ardinal of n). In partiular, for non-emptysets s ∈ fin(ω) we have s̄ = max(s) and s̄+ = max(s) + 1.A set x ⊆ ω is said to diagonalise the set {xs : s ∈ fin(ω)
}
⊆ [ω]ω if thefollowing onditions are satis�ed:

• x ⊆ x∅;
• for all s ∈ fin(ω), if s̄ ∈ x then x \ s̄+ ⊆ xs.For A ⊆ [ω]ω we write fil(A ) for the �lter generated by the members of A ,i.e., fil(A ) onsists of all subsets of ω whih are supersets of intersetions of�nitely many members of A .Now, a set E ⊆ [ω]ω is a happy family if E is a free family and whenever
fil
({
xs : s ∈ fin(ω)

})
⊆ E , there is an x ∈ E whih diagonalises the set{

xs : s ∈ fin(ω)
}.Below, we give two examples of happy families; in the �rst the family is aslarge as possible, and in the seond the family is of medium size� in the nextsetion we shall see examples of happy families whih are as small as possible.



Happy families 227Fat 10.3. The family [ω]ω is happy.Proof. Let {xs : s ∈ fin(ω)
}
⊆ [ω]ω be a subfamily of [ω]ω and assume that

fil
({
xs : s ∈ fin(ω)

})
⊆ [ω]ω, i.e., the intersetion of �nitely many elements of{

xs : s ∈ fin(ω)
} is in�nite. Let n0 :=

⋂
x∅ and for k ∈ ω hoose nk+1 > nksuh that

nk+1 ∈
⋂{

xs : s̄
+ ≤ nk + 1

}
.By our assumption, those hoies are possible. Let x = {nk : k ∈ ω}; then

x ⊆ x∅, and whenever s̄ = nk (i.e., s̄+ ≤ nk + 1), we get
x \ s̄+ ⊆

⋂{
xs : s̄

+ ≤ nk + 1
}
.In partiular, x \ s̄+ ⊆ xs, as required. ⊣In order to onstrut non-trivial examples of happy families, we have tointrodue �rst the following notion: For a mad family A ⊆ [ω]ω, let FA bethe olletion of all subsets of ω whih are almost ontained in supersets ofomplements of �nite unions of members of A .The goal is to show that F

+
A

is a happy family whenever A ⊆ [ω]ω is amad family, but for this we have to prove �rst that FA is a free �lter.Proposition 10.4. If A ⊆ [ω]ω is a mad family, then FA is a free �lter butnot an ultra�lter.Proof. Let A ⊆ [ω]ω be a mad family and let
FA =

{
y ∈ [ω]ω : ∃x0 . . . xn ∈ A

(
(x0 ∪ . . . ∪ xn) ⊆∗ y

)}
.Firstly, FA is a free �lter: By de�nition, FA is losed under supersets andontains all o-�nite sets, and sine A is mad, no o-�nite set is the unionof �nitely many members of A , hene, FA does not ontain any �nite set.Further, for any y, y′ ∈ FA there are x0, . . . , xn and x′0, . . . , x

′
m in A suhthat ( ⋃

i∈n

xi

)
⊆∗ y and ( ⋃

j∈m

x′j

)
⊆∗ y′ ,whih shows that

( ⋃

i∈n

xi ∪
⋃

j∈m

x′j

)
⊆∗ y ∩ y′ ∈ FA .Seondly, FA is not an ultra�lter: We have to �nd a set z ∈ [ω]ω suh thatneither z nor z belongs to FA . Let {xi : i ∈ ω} be distint elements of A .Notie that it is enough to onstrut a set z ∈ [ω]ω suh that both z and

z have in�nite intersetion with eah xi. To onstrut suh a set z, take astritly inreasing sequene n0 < . . . < nk < . . . of natural numbers suh thatfor eah k ∈ ω, if k = 2l(2m+1), then both n2k and n2k+1 are in xm and put
z = {n2k : k ∈ ω}. ⊣



228 10 Happy Families and their RelativesNow we are ready to give non-trivial examples of happy families. Even thoughthe proof of the following proposition beomes onsiderably easier by theharaterisation of happy families given by Proposition 10.6.(b), we thinkit makes sense to have some non-trivial examples of happy families � and towork with the original de�nition� before giving an equivalent de�nition ofhappy families.Proposition 10.5. Let A ⊆ [ω]ω be a mad family. Then F
+

A
is a happyfamily.Proof. Given any family {

yt : t ∈ fin(ω)
} with fil

({
xs : s ∈ fin(ω)

})
⊆ F

+
A
.For s ∈ fin(ω), let xs =

⋂{
yt : t̄ ≤ s̄

}. Then for any n ∈ ω, x{n} = xswhenever n = s̄. We shall onstrut an x ∈ F
+

A
whih diagonalises {

yt :

t ∈ fin(ω)
} by showing that for all n ∈ ω, x \ n+ ⊆ x{n}. For this, let

x0 �onstruted as in the proof of Fat 10.3�diagonalise {xs : s ∈ fin(ω)
}.We may not assume that x0 belongs to F

+
A
, i.e., there might be a z ∈ F suhthat x0 ∩ z is �nite. However, sine A is mad, there is a y0 ∈ A suh that

x0∩y0 is in�nite. For eah s ∈ fin(ω) de�ne x1s := xs\y0. Notie that all x1s arein�nite and that fil ({x1s : s ∈ fin(ω)
})

⊆ F
+

A
, as y0 ∈ A . Let x1 diagonalise{

x1s : s ∈ fin(ω)
} and let y1 ∈ A be suh that x1 ∩ y1 is in�nite. Sine

x1 ⊆ x1∅ ⊆ ω \ y0 we get y1 6= y0. Further, notie that x1 also diagonalises{
xs : s ∈ fin(ω)

}. Now, for eah s ∈ fin(ω) de�ne x2s := xs \ (y0 ∪ y1)and proeed as before. After ountably many steps we have onstruted twosequenes of in�nite sets, 〈xi : i ∈ ω〉 and 〈yi : i ∈ ω〉, suh that eah yibelongs to A , yi 6= yj whenever i 6= j, xi ∩ yi is in�nite (for all i ∈ ω), and
xi diagonalises {

xs : s ∈ fin(ω)
}. Construt a stritly inreasing sequene

n0 < . . . < nk < . . . of natural numbers suh that n0 ∈ x∅ and for eah k ∈ ω,if k = 2i(2m+ 1), then
nk ∈ yi ∩ xi ∩ x{nk−1} .Suh a sequene of natural numbers exists beause all su�iently largenumbers in xi belong to x{nk−1} and sine yi ∩ xi is in�nite. Finally, let

x = {nk : k ∈ ω}. Then x diagonalises {
xs : s ∈ fin(ω)

} and it remains toshow that x ∈ F
+

A
, i.e., x has in�nite intersetion with eah member of FA .By onstrution, for eah i ∈ ω, x∩yi is in�nite, and sine A is mad, x\ yi isin�nite as well. Thus, x has in�nite intersetion with the omplement of any�nite union of elements in A , hene, x ∈ F

+
A
. ⊣After having seen that there are non-trivial happy families, let us givenow another haraterisation of happy families whih will be used later inthis hapter.Proposition 10.6. For a free family E , the following statements are equiv-alent:(a) E is happy.



Ramsey ultra�lters 229(b) If y0 ⊇ y1 ⊇ · · · ⊇ yi ⊇ · · · is a ountable dereasing sequene of elementsof E , then there is a funtion f ∈ ωω suh that f [ω] ∈ E , f(0) ∈ y0, and forall n ∈ ω we have f(n+ 1) ∈ yf(n).Proof. (a)⇒(b) Assume that E is happy and let {yi : i ∈ ω} ⊆ E be suhthat for all i ∈ ω, yi+1 ⊆ yi. For eah s ∈ fin(ω) de�ne
xs =

⋂{
yi : i ≤ s̄

}
.Notie that fil ({xs : s ∈ fin(ω)

})
⊆ E . Sine E is assumed to be happy thereis an x whih diagonalises the family {

xs : s ∈ fin(ω)
}. Let f = fx� reallthat fx ∈ ωω is the (unique) stritly inreasing bijetion between ω and x(de�ned in Chapter 8). For an arbitrary n ∈ ω let s := x ∩

(
f(n) + 1

). Then
s̄+ = f(n) + 1 and s̄ ∈ x. As f(n+ 1) ∈ x \ s̄+ and x \ s̄+ ⊆ xs ⊆ yf(n), wehave f(n+1) ∈ yf(n), and sine n was arbitrary, f has the required properties.(b)⇒(a) Assume now that E has property (b) and let {xs : s ∈ fin(ω)

}
⊆ Ebe suh that fil

({
xs : s ∈ fin(ω)

})
⊆ E . We have to �nd an x ∈ E whihdiagonalises {xs : s ∈ fin(ω)

}. For eah i ∈ ω de�ne
yi =

⋂{
xs : s̄ ≤ i

}
.Obviously, for eah i ∈ ω we have yi ∈ E and yi+1 ⊆ yi. By (b) there is afuntion f ∈ ωω suh that f [ω] ∈ E and for all n ∈ ω we have f(n+1) ∈ yf(n).Let x := f [ω] and let s ∈ fin(ω) be suh that s̄ ∈ x. Then there exists an n ∈ ωsuh that f(n) = s̄, and for every k ∈ x \ s̄+ we have k = f(m) for some

m > n, hene, k ∈ yf(n). Now, s̄+ = f(n) + 1, and sine yf(n) ⊆ xs we get
k ∈ xs. Hene, for all s ∈ fin(ω) with s̄ ∈ x we have x \ s̄+ ⊆ xs, whih showsthat x diagonalises {xs : s ∈ fin(ω)

}. ⊣We leave it as an exerise to the reader to �nd an easier proof of Proposi-tion 10.5 by using the haraterisation of happy families given by Proposi-tion 10.6.(b).Ramsey Ultra�ltersSo far we have seen two examples of happy families. In the �rst example(Fat 10.3), the happy family was as large as possible, and in the seondexample (Proposition 10.5), the happy families were of medium size. Below,we onsider happy families whih are as small as possible, i.e., happy familieswhih are ultra�lters.A free ultra�lter U ⊆ [ω]ω is a Ramsey ultra�lter if for every olouring
π : [ω]2 → 2 there exists an x ∈ U whih is homogeneous for π, i.e., π|[x]2 isonstant.



230 10 Happy Families and their RelativesThe following result gives two alternative haraterisations of Ramsey ul-tra�lter. The �rst haraterisation of Ramsey ultra�lters is related to P -pointsand Q-points (introdued below), and the seond haraterisation show thata Ramsey ultra�lter is an ultra�lter that is also a happy family.Proposition 10.7. For every free ultra�lter U , the following onditions areequivalent:(a) U is a Ramsey ultra�lter.(b) Let {ui ⊆ ω : i ∈ ω} be a partial partition of ω, i.e., ⋃{ui : i ∈ ω} ⊆ ωand for any distint i, j ∈ ω we have ui ∩ uj = ∅. Then either ui ∈ U for a(unique) i ∈ ω, or there exists an x ∈ U suh that for eah i ∈ ω, |x∩ui| ≤ 1.() U is happy.Proof. (a)⇒(b) Let {ui : i ∈ ω} be a partition of ω. With respet to {ui :
i ∈ ω} de�ne the olouring π : [ω]2 → 2 as follows:

π
(
{n,m}

)
=

{
0 if there is an i ∈ ω suh that {n,m} ⊆ ui,

1 otherwise.By (a) there is an x ∈ U suh that π|[x]2 is onstant. Now, if π|[x]2 is onstantlyzero, then there exists an i ∈ ω suh that x ⊆ ui, hene, ui ∈ U . On the otherhand, if π|[x]2 is onstantly one, then for any distint n,m ∈ x and any i ∈ ωwe get that {n,m}∩ ui has at most one element, hene, for eah i ∈ ω, x∩uihas at most one element.(b)⇒() By Proposition 10.6 it is enough to show that for every ountabledereasing sequene y0 ⊇ y1 ⊇ . . . ⊇ yn ⊇ . . . of elements of U there is afuntion f ∈ ωω suh that f [ω] ∈ U , f(0) ∈ y0, and for all k ∈ ω we have
f(k + 1) ∈ yf(k). If y =

⋂
n∈ω yn ∈ U , then the funtion fy ∈ ωω has therequired properties. So, let us assume that ⋂n∈ω yn /∈ U and without loss ofgenerality let us further assume that for all n ∈ ω, yn \ yn+1 6= ∅. Considerthe partition {

y0 ∪⋂
n∈ω yn

}
∪ {yn \ yn+1 : n ∈ ω} and notie that none ofthe piees are in U . By (b), there exists a set x = {an : n ∈ ω} ∈ U suhthat for all n ∈ ω, x ∩ (yn \ yn+1) = {an}, in partiular, x ∩ ⋂

n∈ω yn = ∅.Let g ∈ ωω be a stritly inreasing funtion suh that g(0) > 0, g[ω] ⊆ x,and for all n ∈ ω, x \ g(n) ⊆ yn. For k ∈ ω let gk+1(0) := g
(
gk(0)

), where
g0(0) := 0. Further, for k ∈ ω let xk := x ∩

[
g2k(0), g2k+1(0)

)� reall that
[a, b) = {i ∈ ω : a ≤ i < b}. Now, by (b) and sine U is an ultra�lter,there exists a set z = {ck : k ∈ ω} ⊆ x suh that z ∈ U and for all k ∈ ω,
z∩xk = {ck}. Notie that by onstrution, for eah k ∈ ω we have ck+2 > g(ck)and ck+2 ∈ yck . Finally, sine U is an ultra�lter and {ck : k ∈ ω} ∈ U , either
{c2k : k ∈ ω} or {c2k+1 : k ∈ ω} belongs to U . In the former ase de�ne
f ∈ ωω by stipulating f(k) := c2k, otherwise de�ne f(k) := c2k+1. Then fhas the required properties.()⇒(a) Let U be an ultra�lter that is also a happy family, and further let
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π : [ω]2 → 2 be an arbitrary but �xed olouring. We have to �nd a y ∈ U suhthat π|[y]2 is onstant. The proof is similar to the proof of Proposition 2.2.First we onstrut a family {

xs : s ∈ fin(ω)
}
⊆ U . Let x∅ = ω, and let x{0} ∈

U be suh that x{0} ⊆ ω \ {0} and for all k, k′ ∈ x{0} we have π({0, k}) =

π
(
{0, k′}

). Notie that sine U is an ultra�lter, x{0} exists. In general, if xsis de�ned and n > s̄, then let xs∪{n} ∈ U be suh that xs∪{n} ⊆ xs \ n+ andfor all k, k′ ∈ xs∪{n} we have π({n, k}) = π
(
{n, k′}

). Sine U is happy, thereis a y ∈ U whih diagonalises the family {
xs : s ∈ fin(ω)

}. By onstrution,for eah n ∈ y and for all k, k′ ∈ y \ n+ we have π({n, k}) = π
(
{n, k′}

) andwe an de�ne the olouring τ : x→ 2 by stipulating
τ(n) =

{
0 if there is a k ∈ x \ n+ suh that π({n, k}) = 0,

1 otherwise.Sine U is an ultra�lter, there exists a x ∈ U suh that x ⊆ y and τ |x isonstant, hene, π|[x]2 is onstant. ⊣At a �rst glane, ondition (a) is just related to Proposition 2.2 and not toRamsey's Theorem. However, the following fat shows that this is not thease. Moreover, even Proposition 2.8 is related to Ramsey ultra�lters (theproofs are left to the reader).Fat 10.8. For every free ultra�lter U , the following onditions are equiva-lent:(a) U is a Ramsey ultra�lter, i.e., for every olouring π : [ω]2 → 2 thereexists an x ∈ U whih is homogeneous for π.(b) For any n ∈ ω, for any positive integer r ∈ ω, and for every olouring
π : [ω]n → r, there exists an x ∈ U whih is homogeneous for π.() Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly �nite) sets of positiveintegers, and for eah k ∈ ω let πk : [ω]nk → rk be a olouring. Then thereexists an x ∈ U whih is almost homogeneous for eah πk.It is time now to address the problem of the existene of Ramsey ultra�l-ters. On the one hand, it an be shown that there are models of ZFC in whihno Ramsey ultra�lters exist (see Proposition 25.11). Thus, the existene ofRamsey ultra�lters is not provable in ZFC. On the other hand, if we assume forexample CH (or just p = c), then we an easily onstrut a Ramsey ultra�lter.Proposition 10.9. If p = c, then there exists a Ramsey ultra�lter.Proof. Let {πα : α ∈ c} be an enumeration of the set of all 2-olourings of
[ω]2, i.e., for every olouring π : [ω]2 → 2 there exists an α ∈ c suh that
π = πα. By trans�nite indution we �rst onstrut a sequene 〈xα : α ∈ c〉 ⊆
[ω]ω suh that {xα : α ∈ c} has the �nite intersetion property and for all
α ∈ c, πα|[xα+1]2 is onstant. Let x0 := ω and assume that for some α ∈ c we



232 10 Happy Families and their Relativeshave already onstruted xβ (β ∈ α) suh that {xβ : β ∈ α} has the �niteintersetion property and for all γ+1 ∈ α we have πγ |[xγ+1]2 is onstant. If α isa suessor ordinal, say α = β0+1, then let xα ∈ [xβ0 ]
ω be suh that πβ0 |[xα]2is onstant (notie that by Ramsey's Theorem 2.1, xα+1 exists). If α is alimit ordinal, then let xα be a pseudo-intersetion of {xβ : β ∈ α} (notie thatsine |α| < p, xα+1 exists). In either ase, the family {xβ : β ∈ α} has therequired properties. In partiular, the family E = {xα : α ∈ c} has the �niteintersetion property and for eah olouring π : [ω]2 → 2 there is an x ∈ Esuh that π|[x]2 is onstant. Finally, extend the family E to an ultra�lter U .Then U is a Ramsey ultra�lter. ⊣

P -points and Q-pointsBelow, we onsider ultra�lters whih are weaker than Ramsey ultra�lters, butwhih share with them some ombinatorial properties.A free ultra�lter U is a P -point if for eah partition {un ⊆ ω : n ∈ ω}of ω, either un ∈ U for a (unique) n ∈ ω, or there exists an x ∈ U suh thatfor eah n ∈ ω, x ∩ un is �nite.Furthermore, a free ultra�lter U is a Q-point if for eah partition of ωinto �nite piees {In ⊆ ω : n ∈ ω}, (i.e., for eah n ∈ ω, In is �nite), thereexists an x ∈ U suh that for eah n ∈ ω, x ∩ In has at most one element.Comparing these de�nitions of P -points and Q-points with Proposi-tion 10.7.(b), it is evident that a Ramsey ultra�lter is both, a P -point aswell as a Q-point; but also the onverse is true:Fat 10.10. U is a Ramsey ultra�lter if and only if U is a P -point and a
Q-point.Proof. (⇒) This follows immediately from Proposition 10.7.(b) and the def-initions of P -points and Q-points.(⇐) Let U be a P -point and a Q-point and let {un ⊆ ω : n ∈ ω} be a partitionof ω. We have to show that either un ∈ U for a (unique) n ∈ ω, or there existsan x ∈ U suh that for eah n ∈ ω, x∩un has at most one element. If there isa un ∈ U , then we are done. So, assume that for all n ∈ ω, un /∈ U . Sine Uis a P -point, there exists a y0 ∈ U suh that for eah n ∈ ω, y0 ∩ un is �nite.For n ∈ ω let I2n := y0∩un. Further, let {ai : i ∈ ω} = ω \⋃n∈ω{I2n : n ∈ ω}and for n ∈ ω let I2n+1 := {an}. Then {In : n ∈ ω} is a partition of ω into�nite piees. Sine U is a Q-point, there exists a y1 ∈ U suh that for eah
n ∈ ω, y1 ∩ In has at most one element. Now, let x = y0 ∩ y1. Then x ∈ Uand for eah n ∈ ω, x ∩ un has at most one element. ⊣Below, we give a few other haraterisations of P -points and Q-points.The proofs are straightforward and are left to the reader.Fat 10.11. For every free ultra�lter U , the following onditions are equiv-alent:



P -points and Q-points 233(a) U is a P -point.(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U suh that for all
n ∈ ω, x ⊆∗ xn (i.e., x \ xn is �nite).() For every family {xn : n ∈ ω} ⊆ U there is a funtion f ∈ ωω and a set
x ∈ U suh that for all n ∈ ω, x \ f(n) ⊆ xn.Fat 10.12. For every free ultra�lter U , the following onditions are equiv-alent:(a) U is a Q-point.(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U suh that for all
n ∈ ω, x ∩ (ω \ xn) is �nite.There are also haraterisations of P -points whih are not so obvious:Proposition 10.13. For a free ultra�lter U , the following onditions areequivalent:(a) U is a P -point.(b) For every family {xn : n ∈ ω} ⊆ U there is an x ∈ U suh that forin�nitely many n ∈ ω, x \ n ⊆ xn.Proof. Sine (b)⇒(a) is obvious, we just prove (a)⇒(b) : Sine U is a P -point, by Fat 10.11.() there exists a funtion f ∈ ωω and a set y ∈ U suhthat for all n ∈ ω, y \ f(n) ∈ xn. Hene, there exists also a funtion g ∈ ωωsuh that g(0) = 0 and for all k ∈ ω we have y\g(k+1) ⊆ xg(k). Sine U is anultra�lter, either y0 =

⋃
k∈ω

[
g(2k+1), g(2k+2)

) or y1 =
⋃
k∈ω

[
g(2k), g(2k+

1)
) belongs to U . Let x = y ∩ yε, where ε ∈ {0, 1} is suh that yε ∈ U . Thenfor every k ∈ ω we have x \ g(2k + ε) = x \ g(2k + ε+ 1) ⊆ x2k+ε. ⊣

P -points and Q-points, and onsequently Ramsey ultra�lters, an also beharaterised in terms of funtions, but before we have to introdue the notionof �nite-to-one funtions: A funtion f ∈ ωω is �nite-to-one if for every
k ∈ ω, the set {n ∈ ω : f(n) = k

} is �nite.Proposition 10.14. Let U be a free ultra�lter.(a) U is a P -point if and only if for every funtion f ∈ ωω there exists an
x ∈ U suh that f |x is onstant or �nite-to-one.(b) U is a Q-point if and only if for every �nite-to-one funtion f ∈ ωω thereexists an x ∈ U suh that f |x is one-to-one.() U is a Ramsey ultra�lter if and only if for every funtion f ∈ ωω thereexists an x ∈ U suh that f |x is onstant or one-to-one.Proof. Let f ∈ ωω be an arbitrary but �xed funtion. For k ∈ ω de�ne
uk :=

{
n ∈ ω : f(n) = k

}. Then {uk : k ∈ ω} is a partition of ω. The proofnow follows from Fat 10.10 and the following observations (the details areleft to the reader):
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• For any x ∈ [ω]ω, f |x is onstant i� there is a k ∈ ω suh that x ⊆ uk.
• For any x ∈ [ω]ω, f |x is �nite-to-one i� for all k ∈ ω we have x ∩ uk is�nite.
• The funtion f is �nite-to-one i� eah uk is �nite.
• For any x ∈ [ω]ω, f |x is one-to-one i� for all k ∈ ω, x ∩ uk has at mostone element. ⊣The next result shows that ultra�lters, and espeially Q-points, must on-tain quite �sparse� sets.Proposition 10.15. For free families U ⊆ [ω]ω we have:(a) If U is a free ultra�lter, then the family {fx ∈ ωω : x ∈ U } is unbounded.(b) If U is a Q-point, then the family {fx ∈ ωω : x ∈ U } is dominating.Proof. (a) Let f ∈ ωω be arbitrary. De�ne g(0) = max

{
f(0), 1

} and for
k ∈ ω de�ne g(k + 1) := g(k) + f

(
g(k)

). Further, let x0 =
[
0, g(0)

), and ingeneral, for n ∈ ω let xn =
[
g(2n), g(2n+1)

) and yn =
[
g(2n+1), g(2n+2)

).Finally, let x =
⋃
n∈ω xn and y =

⋃
n∈ω yn. We leave it as an exerise to thereader to verify that fx �∗ f and fy �∗ f . Hene, f dominates neither fx nor

fy. Now, sine U is an ultra�lter, either x or y belongs to U . Hene, f doesnot dominate the family B = {fx ∈ ωω : x ∈ U }, and sine f was arbitrary,
B is unbounded.(b) Let g ∈ ωω be arbitrary. Without loss of generality we may assume that gis stritly inreasing. For n ∈ ω let In =

[
g(2n), g(2n+2)

). Then {In : n ∈ ω}is a partition of ω into �nite piees. Sine U is a Q-point, there exists an
x ∈ U suh that for eah n ∈ ω, x∩In has at most one element whih impliesthat g <∗ fx. Hene, fx dominates g, and sine g was arbitrary, the family
{fx ∈ ωω : x ∈ U } is dominating. ⊣As we have seen above (Proposition 10.9), p = c implies the existene ofa Ramsey ultra�lter. On the other hand, one an show that d = c is not suf-�ient to prove the existene of Ramsey ultra�lters (see Proposition 25.11).However, as a onsequene of the next result, we get that d = c is su�ientto prove the existene of P -points� whih shows that P -points are easier toget than Ramsey ultra�lters (f. Related Results 66& 67).Theorem 10.16. d = c if and only if every free �lter over a ountable setwhih is generated by less than c sets an be extended to a P -point. In par-tiular, d = c implies the existene of P -points.Proof. (⇐) Suppose that E ⊆ ωω is a family of ardinality less than c. For
f ∈ E and n ∈ ω de�ne
xf =

{
〈n, k〉 ∈ ω × ω : f(n) < k

} and xn =
{
〈m, k〉 ∈ ω × ω : n ≤ m

}
,and let
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C =

{
xf : f ∈ E

}
∪
{
xn : n ∈ ω

}
∪
{
z ⊆ ω × ω : (ω × ω) \ z is �nite} .Notie that |C | < c and that eah set in C is an in�nite subsets of theountable set ω×ω. Moreover, for any �nitely many members y0, . . . , yn ∈ Cwe have y0 ∩ · · · ∩ yn is in�nite. Now, the family C generates a free �lter over

ω × ω, whih, by assumption, an be extended to a P -point U ⊆ [ω × ω]ω.Consider the partition {un : n ∈ ω} of ω×ω, where for n ∈ ω, un := {n}×ω.Notie that no un (for n ∈ ω) belongs to U . Sine U is a P -point, there existsa y ∈ U suh that for all n ∈ ω, y ∩ un is �nite. Let us de�ne the funtion
g ∈ ωω by stipulating g(n) = ⋃{

k ∈ ω : 〈n, k〉 ∈ y∩un
}. Sine y ∈ U , for all

f ∈ E we have y ∩ xf is in�nite. Hene, for every f ∈ E there are in�nitelymany n ∈ ω suh that g(n) > f(n). In other words, g is not dominated byany funtion f ∈ E , whih shows that no family of ardinality less than c isdominating.(⇒) The proof is by indution using the followingClaim. Suppose that the free �lter F ⊆ [ω]ω is generated by less than d setsand let {xn : n ∈ ω} ⊆ F . Then there exists x ∈ [ω]ω suh that for all n ∈ ω,
x ⊆∗ xn, and for all y ∈ F , x ∩ y is in�nite.Proof of Claim. Without loss of generality we may assume that for all n ∈ ω,
xn+1 ⊆ xn. For y ∈ F de�ne gy ∈ ωω by stipulating gy(n) =

⋂
(y ∩ xn).Notie that the set y∩xn is non-empty, and that if y ⊆ y′, then for all n ∈ ω,

gy′(n) ≤ gy(n). Now, sine F is generated by less than d sets, and sine everyfree ultra�lter generated by less than d sets has a basis of less than d sets,there exists a funtion f ∈ ωω suh that for all y ∈ F we have f �∗ gy.Finally let
x =

⋃

n∈ω

(
xn ∩ f(n)

)
.We leave it to the reader to verify that x has the required properties. ⊣ClaimBy the laim and the assumption that d = c we indutively onstrut a P -point as follows: Let {Xα ⊆ [ω]ω : |Xα| ≤ ω ∧α ∈ c} be an enumeration of allountable subsets of [ω]ω. Let F0 be any free �lter whih is generated by lessthan d sets and assume that we have already onstruted Fα for some α ∈ c. If

Xα ∪Fα has the �nite intersetion property, then we use the laim to obtaina set xα+1 suh that {xα+1} ∪ Fα has the �nite intersetion property and
xα+1 is a pseudo-intersetion of Xα; and let Fα+1 be the �lter generated by
Fα and xα+1. If Xα ∪Fα does not have the �nite intersetion property, thenlet Fα+1 = Fα. Further, if α ∈ c is a limit ordinal and for all β ∈ α we havealready onstruted Fβ , then let Fα =

⋃
β∈αFβ . Finally, let F =

⋃
α∈c Fα.Then F is a P -point: Firstly, by onstrution, F is a �lter, and sine the free�lter F0 is ontained in F , F is even a free �lter. Seondly, for any x ∈ [ω]ωthere exists a β ∈ c suh that Xβ = {x}. Thus, either x ∈ Fβ+1 or there isa y ∈ Fβ suh that x ∩ y is �nite, whih implies that x ∈ Fβ . Hene, Fis a free ultra�lter. Finally, for every set {xn : n ∈ ω} ⊆ F there exists a
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γ ∈ c suh that Xγ = {xn : n ∈ ω}. Sine Xγ ∪ Fγ has the �nite intersetionproperty, there is an xγ+1 ∈ Fγ+1 suh that for all n ∈ ω, xγ+1 ⊆∗ xn. ⊣Ramsey families and P -familiesBelow, we give haraterisations of Ramsey ultra�lters and P -points in termsof games, whih lead to so-alled Ramsey families and P -families respetively.The two games we shall onsider are in�nite and played between two play-ers. Now, a run of an in�nite two-player game onsists of an in�nite sequene
〈x0, y0, x1, y1, . . .〉 whih is onstruted alternately by the two players. Morepreisely, the �rst player starts the game with x0 and the seond player re-sponds with y0, then the �rst player plays x1 and the seond player respondswith y1, and so on. Of ourse, in order to get a proper game we have to in-trodue also some rules de�ning legal moves and telling whih player wins apartiular run of the game.Before we introdue some further game-theoretial notions, let us illustratethe notion of rules by the following in�nite two-player game, played betweenDeath and the Maiden.Let E be an arbitrary free family. Assoiated with E we de�ne two quitesimilar games, denoted G

E
and G∗

E
, between two players, say Death and theMaiden.In the game G

E
, the Maiden always plays members of E and then Deathresponds with an element of Maiden's move. Thus, a run of G

E
an be illus-trated as follows:Maiden x0

∋

��=
==

==
==

= ⊇ x1
∋

��=
==

==
==

= ⊇ x2
∋

��=
==

==
==

= ⊇

G
E
: . . .Death a0

@@��������
< a1

@@��������
< a2

���
<More formally, the rules for G

E
are as follows: For eah i ∈ ω, xi ∈ E and

ai ∈ xi. Furthermore, we require that for eah i ∈ ω, xi+1 ⊆ xi and ai < ai+1.Finally, Death wins the game G
E
if and only if {ai : i ∈ ω} belongs to thefamily E .In the game G∗

E
, Death has slightly more freedom, sine he an play now�nite sequenes instead of just singletons. A run of G∗

E
an be illustrated asfollows: Maiden x0

)

��=
==

==
==

⊇ x1
)

��=
==

==
==

⊇ x2
)

��=
==

==
==

⊇

G∗
E
: . . .Death s0

@@�������
s1

@@�������
s2

���Again, the sets xi played by the Maiden must belong to the free family Eand eah �nite set si played by Death must be a subset of the orresponding
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xi. Furthermore, for eah i ∈ ω we require that xi+1 ⊆

(
xi \

⋃
j≤i sj

). Notiethat the �nite sets si may be empty. Finally, Death wins the game G∗
E
if andonly if ⋃{si : i ∈ ω} belongs to the family E .Now we de�ne the notion of a strategy for theMaiden. Roughly speaking,a strategy for the Maiden is a �rule� that tells her how to play, for eah

n ∈ ω, her nth move xn, given Death' previous moves m0, . . . ,mn. In fat, astrategy for theMaiden in the game G
E
is a ertain mapping from seq(E ∪ω)to E . Intuitively, with respet to G

E
, a strategy σ for the Maiden worksas follows: The Maiden starts playing x0 ∈ E , where x0 = σ(∅) and thenDeath responds by playing an element a0 ∈ x0. Then the Maiden plays

x1 = σ(x0, a0), whih� by the rules of the game� is a set in E and a subsetof x0, and Death responds with an element a1 ∈ x1 where a1 > a0. Ingeneral, for positive integers n, xn = σ(x0, a0, . . . , xn−1, an−1), where xn ∈ E ,
xn ⊆ xn−1, a0, . . . , an−1 are the moves of Death, and x0, . . . , xn−1 are theprevious moves of the Maiden.A strategy σ for the Maiden is a winning strategy if, whenever theMaiden follows the strategy σ, she wins the game� no matter how sophisti-ated Death plays. For example, σ is a winning strategy for the Maiden inthe game G

E
, if whenever {an : n ∈ ω} ⊆ ω is suh that a0 ∈ σ(∅) and for all

n ∈ ω, an < an+1 and an+1 ∈ σ(x0, a0, . . . , xn+1), then {an : n ∈ ω} /∈ E .Now, a free family E is alled a Ramsey family if the Maiden has nowinning strategy in the game G
E
. In other words, no matter how sophistiatedher strategy is, if E is a Ramsey family, then Death an win the game.Ramsey families will play an important role in the investigation of Mathiasforing notions (see Chapter 24).Furthermore, a free family E is alled a P -family if the Maiden has nowinning strategy in the game G∗
E
. P -families will play an important role inthe investigation of restrited Silver foring. In fat, in Chapter 22 it will beshown that Silver foring restrited to a P -family (alled Silver-like foring)has the same ombinatorial properties as unrestrited Silver foring and asGrigorie� foring, whih is Silver foring restrited to a P -point.Obviously, the family [ω]ω is a Ramsey family and every Ramsey family isalso a P -family. Now, the reader might guess that [ω]ω is not the only exampleand that there must be some relation between Ramsey families and Ramseyultra�lters, as well as between P -families and P -points; this is indeed the ase:Theorem 10.17. For free ultra�lters U ⊆ [ω]ω we have:(a) U is a Ramsey ultra�lter if and only if U is a Ramsey family.(b) U is a P -point if and only if U is a P -family.Proof. (a) We have to show that U ⊆ [ω]ω is a Ramsey ultra�lter i� wheneverthe Maiden plays the game G

U
by following a strategy, Death an win.

(⇐) Under the assumption that the free ultra�lter U is not Ramsey weonstrut a winning strategy for the Maiden in the game G
E
. If U is not aRamsey ultra�lter, then, by Proposition 10.6, there exists a set {xn : n ∈
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ω} ⊆ U suh that for eah funtion f ∈ ωω with f(0) ∈ x and f(n+1) ∈ xf(n)we have f [ω] /∈ U . Let σ(∅) := x0, and for n ∈ ω let σ(x0, a0, . . . , xn, an) :=
xan . By the rules of G

U
, an+1 ∈ xan . De�ne f ∈ ωω by stipulating f(n) = an.Then f(0) ∈ x0 and for all n ∈ ω we have f(n + 1) ∈ xf(n), and therefore{

f(n) : n ∈ ω
}
/∈ U . Thus, {an : n ∈ ω} /∈ U , whih shows that Death losesthe game (i.e., σ is a winning strategy for the Maiden), and onsequently, Uis not a Ramsey family.

(⇒) Under the assumption that the free ultra�lter U is Ramsey we showthat no strategy for the Maiden is a winning strategy. Let σ be any strategyfor the Maiden, let x∅ := σ(∅), and for s = {c0, . . . , cn} ∈ fin(ω) let
xs =

{
σ(x0, c0, . . . , xn, cn) if ∀k ≤ n(ck ∈ xk),
ω otherwise.Notie that in the �rst ase, σ(x0, c0, . . . , xn, cn) = xn+1. If U is a Ramseyultra�lter, then U is happy. Thus, there exists an x ∈ U suh that x ⊆ x∅and x \ s̄+ ⊆ xs whenever s̄ ∈ x. In partiular, if x = {an : n ∈ ω} with

an < an+1 (for all n ∈ ω), then a0 ∈ x0 and for all n ∈ ω, x \ {a0, . . . , an} =
{an+1, an+2, . . .} ⊆ x{a0,...,an} = xn+1. Hene, for all n ∈ ω we have an ∈ xn.In partiular, whenever the Maiden follows the strategy σ, Death wins thegame by playing the sequene 〈an : n ∈ ω〉. So, σ is not a winning strategy forthe Maiden, and sine σ was arbitrary, the Maiden does not have a winningstrategy.(b) The proof is similar to that of (a), i.e., we show that the Maiden has awinning strategy in the game G∗

U
i� the free ultra�lter U is not a P -point.

(⇐) Suppose that U is not a P -point. Then, by Fat 10.11.(b), there existsa set {yn : n ∈ ω} ⊆ U suh that whenever y ∈ [ω]ω has the property that forall n ∈ ω, y\yn is �nite, then y /∈ U . Let σ(∅) := y0 (i.e., x0 = y0), and for any
k ∈ ω and {s0, . . . , sk} ⊆ fin(ω) let σ(x0, s0, . . . , xk, sk) := ⋂

i≤k yi\
⋃
i≤k si. Ifthe Maiden follows that strategy σ and the sequene 〈sk : k ∈ ω〉 representsthe moves of Death, then for all n ∈ ω we have (⋃

k∈ω sk
)
\ xn is �nite.Hene, ⋃k∈ω sk /∈ U , whih shows that Death loses the game, or in otherwords, σ is a winning strategy for the Maiden.

(⇒) Under the assumption that U is a P -point we show that no strategyfor the Maiden is a winning strategy. Let σ be any strategy for the Maiden.We have to show that Death an win. De�ne Xn as the family of sets playedby the Maiden in her �rst n + 1 moves, assuming that she is following thestrategy σ and Death plays in his �rst n moves only sets sk ⊆ n (for k < n).More formally, x0 = σ(∅), and for positive integers k ≤ n, xk ∈ Xn i� thereare s0, . . . , sk−1 ⊆ n suh that for all i < k, si ⊆ xi ∩ n+, where xi+1 =
σ(x0, s0, . . . , xi, si). Clearly, for every n ∈ ω, Xn is �nite, and sine U is anultra�lter, yn :=

⋂
Xn belongs to U . Moreover, sine U is a P -point, byFat 10.11.() there is a set y ∈ U and a stritly inreasing funtion f ∈ ωωsuh that for all n ∈ ω, y \ f(n) ⊆ yn. Let k0 := f(0), and in general, for

n ∈ ω let kn+1 := f(kn). Sine U is an ultra�lter, either
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y0 =

⋃

n∈ω

[
k2n, k2n+1

) or y1 = ω \ y0belongs to U . Without loss of generality we may assume that y1 ∈ U , inpartiular, y1 ∩ y ∈ U . Consider the run
〈x0, s0, x1, s1, . . .〉of the game G∗

U
, where the Maiden plays aording to the strategy σ andDeath plays

sn =

{[
k2j+1, k2j+2

)
∩ y if n = k2j (for some j ∈ ω),

∅ otherwise.It is lear that the Maiden loses the game (i.e., ⋃n∈ω sn ∈ U ). It remains tohek that the moves of Death are legal (i.e., satisfy the rules of the game
G∗

U
). Firstly notie that for all positive integers j, sk2j−2 ⊆ k2j . Thus, if

n = k2j , then for all k < n we have sk ⊆ n. Now, if n = k2j for some j ∈ ω,then sn = sk2j =
[
k2j+1, k2j+2

)
∩ y. Further, we have

y \ k2j+1 = y \ f(k2j) ⊆ yk2j =
⋂{

x0, . . . , xk2j
}
,and in partiular, for n = k2j we get sn = sk2j ⊆ xk2j = xn. Hene, for all

n ∈ ω, sn ⊆ xn. ⊣Roughly speaking, Ramsey families are a kind of generalised Ramsey ul-tra�lters and P -families are a kind of generalised P -points.Let us turn bak to happy families and let us ompare them with Ram-sey families. At a �rst glane, happy families and Ramsey families look verysimilar. However, it turns out that the onditions for a Ramsey family areslightly stronger than for a happy family. This is beause in the de�nitionof happy families we require that they ontain sets whih diagonalise ertainsubfamilies having the �nite intersetion property. On the other hand, a strat-egy of the Maiden in the game G
E
an be quite arbitrary: Even though thesets played by her in a run of G

E
form a dereasing sequene, the family ofpossible moves of theMaiden does not neessarily have the �nite intersetionproperty. Of ourse, by restriting the set of strategies theMaiden an hoosefrom, we ould make sure that all happy families are Ramsey. In fat we justhave to require that all the moves of the Maiden�no matter what Deathis playing� belong to some family whih has the �nite intersetion property.However, the de�nition of Ramsey families given above has the advantagethat the Maiden is able � by a winning strategy� to defeat Death in thegame G

E
even in some ases when E is happy (see Proposition 10.19).Below, we show �rst that every Ramsey family is happy, and then we showthat there are happy families whih are not even P -families. Thus, Ramseyfamilies are smaller �lans� (i.e., families who originate from the same familyand have the same name) than happy families.



240 10 Happy Families and their RelativesFat 10.18. Every Ramsey family is happy.Proof. Let E be a free family whih is not happy. Thus, there is exists aset C =
{
ys : s ∈ fin(ω)

}
⊆ E suh that fil(C ) ⊆ E but no y ∈ E diago-nalises A . Let σ(∅) := x∅ and for n ∈ ω and s = {a0, . . . , an} ∈ fin(ω) let

σ(x0, a0, . . . , xn, an) :=
⋂
s′⊆s ys. It is not hard to verify that in the game G

E
,

σ is a winning strategy for the Maiden. ⊣By Proposition 10.5 we know that every mad family indues a happyfamily. This type of happy families provides examples of happy families whihare not Ramsey families, in fat, whih are not even P -families.Proposition 10.19. Not every happy family is Ramsey; moreover, not everyhappy family is a P -family.Proof. It is enough to onstrut a happy family whih is not a P -family: Let
{tk : k ∈ ω} be an enumeration of ⋃n∈ω

nω suh that for all i, j ∈ ω, ti ⊆ tjimplies i ≤ j, in partiular, t0 = ∅. For funtions f ∈ ωω de�ne the set
xf ∈ [ω]ω by stipulating
xf :=

{
k ∈ ω : ∃n, i, j ∈ ω

(
f |n = ti ∧ f |n+1 = tj ∧ i ≤ k < j ∧ ti ⊆ tk

)}
.Obviously, for any distint funtions f, g ∈ ωω, xf ∩xg is �nite (ompare withthe sets onstruted in the proof of Proposition 8.6). Now, let A0 := {xf :

f ∈ ωω}. Then A0 ⊆ [ω]ω is a set of pairwise almost disjoint sets whih anbe extended to a mad family, say A . Reall that by Proposition 10.5, F
+

Ais a happy family.We show that F
+

A
is not a P -family: Let k0 := 0 and let x0 := ω bethe �rst move of the Maiden, and let s0 be Death' response. In general,if sn is the nth move of Death, then the Maiden hooses kn+1 suh that

kn+1 ≥ max(sn), |tkn+1 | = n+ 1, and tkn ⊆ tkn+1 , and then she plays
xn+1 =

{
i ∈ ω : tkn+1 ⊆ si

}
.Obviously, for every n ∈ ω we have xn+1  xn. Moreover, all moves of theMaiden are legal:Claim. For every n ∈ ω, xn ∈ F

+
A
.Proof of Claim. Firstly, for every n ∈ ω, xn has in�nite intersetion within�nitely many members of A0. Indeed, xn∩xf is in�nite whenever f |n = tkn .Seondly, for every z ∈ FA there are �nitely many y0, . . . , yk ∈ A suh that

(y0 ∪ . . .∪ yk) ⊆∗ z. Now, for xn let xf ∈ A0 \ {y0, . . . , yk} suh that xf ∩ xnis in�nite. Then, sine xf ∩ (y0 ∪ . . . ∪ yk) is �nite, xf ⊆∗ z. Hene, xn ∩ z isin�nite whih shows that xn ∈∈ F
+

A
. ⊣ClaimBy theMaiden's strategy, ⋃n∈ω tkn = f for some partiular funtion f ∈ ωω.Moreover, ⋃n∈ω sn ⊆ xf ∈ A0, and sine subsets of members of A0 do notbelong to F

+
A
, ⋃n∈ω sn /∈ F

+
A
. Hene, Death loses the game, no matter whathe is playing, whih shows that the Maiden has a winning strategy in thegame G∗

F
+

A

. In other words, the happy family F
+

A
is not a P -family. ⊣



Related Results 241NotesHappy families and Ramsey ultra�lters. Happy families were introdued byMathias [8℄ in order to investigate the Ramsey property as well as Ramsey ultra-�lters. Furthermore, happy families are losely related to Mathias foring �alsointrodued in [8℄ �whih will be disussed in Chapter 24. Fat 10.3 and Propo-sition 10.5 are taken from Mathias [8, p. 61 �.℄. Proposition 10.6 is due to Math-ias [8, Proposition 0.8℄ and the haraterisation of Ramsey ultra�lters (i.e., Propo-sition 10.7 and Fat 10.8) is taken from Bartoszy«ski and Judah [1, Theorem 4.5.2℄and Booth [3, Theorem 4.9℄ (aording to Booth [3, p. 19℄, most of [3, Theorem 4.9℄is due to Kunen).On P -points. A point x of a topologial spae X is alled a P -point if every in-tersetion of ountably many open sets ontaining x, ontains an open set ontaining
x. Now, the ultra�lters we alled P -points are in fat the P -points of the topologialspae βω \ ω (de�ned on page 222). The existene of P -points of the spae βω \ ωannot be shown in ZFC (see Related Result 68). However, by Theorem 10.16,whih is due to Ketonen [6℄ (see also Bartoszy«ski and Judah [1, Theorem 4.4.5℄), itfollows that P -points exist if we assume CH�whih was �rst proved by Rudin [10℄.Ramsey families and P -families. Ramsey families and P -families were �rstintrodued and studied by La�amme in [7℄, where the �lters assoiated to a Ramseyfamily are alled +-Ramsey �lters, and the �lters assoiated to a P -family are alled
P+-�lters. However, Theorem 10.17 is due to Galvin and Shelah (see Bartoszy«skiand Judah [1, Theorems 4.5.3 &4.4.4℄), and Proposition 10.19 is a generalisationof Halbeisen [4, Proposition 6.2℄.Related Results64. On the existene of Ramsey ultra�lters. Mathias showed that under CH, everyhappy family ontains a Ramsey ultra�lter (see Mathias [8, Proposition 0.11℄).In partiular, this shows that Ramsey ultra�lters exist if we assume CH (aord-ing to Booth [3, p. 23℄, this was �rst shown by Galvin). However, by Proposi-tion 10.9 we know that p = c is su�ient for the existene of Ramsey ultra�lters.With Martin's Axiom in plae of p = c, this result is due to Booth [3, Theo-rem 4.14℄. Furthermore, Keisler showed that if we assume CH, then there are 2cmutually non-isomorphi Ramsey ultra�lters (see Blass [2, p. 148℄). Finally, byombining the proofs of Keisler and Booth, Blass [2, Theorem 2℄ showed that

t = c (for t see Chapter 8 |Related Result 52) is enough to get 2c mutuallynon-isomorphi Ramsey ultra�lters (see Proposition 13.9 for a slightly moregeneral result). On the other hand, we shall see in Chapter 25 that the existeneof Ramsey ultra�lters is independent of ZFC (see also Chapter 21 |Related Re-sult 114).65. There may exist a unique Ramsey ultra�lter. We have seen above that we anhave in�nitely many Ramsey ultra�lters or none. So, it is natural to ask whetherit is also onsistent with ZFC that there exists, up to permutations of ω, a uniqueRamsey ultra�lter. Now, Shelah [12, VI �5℄ proved that this is indeed the ase.



242 10 Happy Families and their RelativesMoreover, it is even onsistent with ZFC that there are, up to permutations of
ω, exatly two Ramsey ultra�lters (see Shelah [12, p. 335℄).66. There may be P -points whih are not Ramsey. Booth [3, Theorem 4.12℄ showedthat if we assume CH (or Martin's Axiom), there are P -points whih are notRamsey (i.e., whih are not Q-points). For examples of P -points whih are not
Q-points see Proposition 25.11.67. On the existene of Q-points. Mathias [Proposition 10℄[9℄ showed that d =
ω1 implies the existene of Q-points. Reall that by Proposition 10.9, p = cimplies the existene of Ramsey ultra�lters; in partiular the existene of P -points and Q-points. Thus, the existene of Q-points is onsistent with d > ω1.However, if there are just P -points but no Q-points, then we must have d > ω1.68. On the existene of P -points. P -points were studied by Rudin [10℄, who proved,assuming CH, that they exist and that any of them an be mapped to any otherby a homeomorphism of βω\ω onto itself. In partiular, CH implies the existeneof P -points. Of ourse, this follows from the fat that CH implies the existeneof Ramsey ultra�lters, and Ramsey ultra�lters are P -points. However, as wehave seen above, the onverse is not true (and there are models of ZFC in whihthere are P -points but no Ramsey ultra�lters). Now, it is natural to ask whetherthere are models of ZFC in whih there are no P -points. Let us onsider howmodels of ZFC are onstruted in whih there are no Ramsey ultra�lters. Inorder to onstrut a model of ZFC in whih there are no Ramsey ultra�lters,one usually makes sure that the model does not ontain any Q-points (see forexample the proof of Proposition 25.11). To some extent, P -points are weakerthan Q-points and therefore it is more di�ult to onstrut a model in whihthere are no P -points. However, Shelah onstruted suh a model in [11℄ (seealso Shelah [12, VI �4℄, Wimmers [14℄, or Bartoszy«ski and Judah [1, 4.4.7℄).Moreover, like for Ramsey ultra�lters, it is onsistent with ZFC that, up to uppermutations of ω, there exists a single P -point (see Shelah [12, XVIII �4℄).69. Simple Pκ-points. For any regular unountable ardinal κ, a free ultra�lter
U ⊆ [ω]ω is alled a simple Pκ-point if U is generated by an almost dereasing(i.e., modulo �nite) κ-sequene of in�nite subsets of ω. Clearly, every simple Pκ-point is a P -point. It is onjetured that the existene of both, a simple Pω1-pointand a Pω2-point, is onsistent with ZFC. (For weak P -points and other pointsin βω \ ω see for example van Mill [13, Setion 4℄.)70. Rapid and unbounded �lters. A free �lter F ⊆ [ω]ω is alled a rapid �lter iffor eah f ∈ ωω there exists an x ∈ F suh that for all n ∈ ω, ∣∣x ∩ f(n)

∣∣ ≤ n.By de�nition, if F is rapid �lter, then {fx : x ∈ F} is a dominating family. Itis not hard to verify that all Q-points are rapid (see Fat 25.10), but the on-verse does not hold (see for example Bartoszy«ski and Judah [1, Lemma 4.6.3℄and in partiular the remark after the proof of that lemma). However, like for
P -points or Q-points, the existene of rapid �lter is independent of ZFC (seeProposition 25.11). A weaker notion than that of rapid �lters is the notionof unbounded �lters, where a free �lter F ⊆ [ω]ω is alled unbounded ifthe family {fx : x ∈ F} is unbounded. Sine every free ultra�lter indues anunbounded family (f. Proposition 10.15.(a)), unbounded �lters always exist.Furthermore, one an show that every unbounded �lter indues a set whih does



Referenes 243not have the Ramsey property (for a slightly more general result see Judah [5,Fat 8℄).71. Another haraterisation of Ramsey ultra�lters. Let U ⊆ [ω]ω be an ultra�lter.The game G′
U is de�ned as follows.Maiden (a0, x0)

��=
==

==
==

(a1, x1)

��=
==

==
==

(a2, x2)

��=
==

==
==

G′
U : . . .Death y0

@@�������
y1

@@�������
y2

			The sets yi and xi played byDeath and theMaiden respetively must belong tothe ultra�lter U , and for eah i ∈ ω, ai+1 must be a member of yi. Furthermore,for eah i ∈ ω we require that xi+1 ⊆ yi ⊆ xi and that ai < min(xi). Finally,the Maiden wins the game G′
U if and only if {ai : i ∈ ω} does not belong tothe ultra�lter U .In 2002, Claude La�amme showed me that U is a Ramsey ultra�lter if and onlyif the Maiden has no winning strategy in the game G′

U .72. On strongly maximal almost disjoint families∗. A mad family A is alledstrongly maximal almost disjoint if given ountably many members of F
+

A
,then there is a member of A that meets eah of them in an in�nite set.For a free family E , onsider the following game: The moves of the Maiden aremembers of E and Death responses like in the game G

E
. Furthermore, Deathwins if and only if the set of integers played by Death belongs to A , but hasin�nite intersetion with eah set played by the Maiden.If A is a mad family, then obviously, in the game desribed above, the Maidenhas a winning strategy if and only if A is not strongly maximal almost disjoint,whih motivates the following question: Is it the ase that for a mad family A ,

F
+

A
is Ramsey if and only if A is strongly maximal almost disjoint?Referenes1. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the struture ofthe real line, A.K.Peters, Wellesley, 1995.2. Andreas Blass, The Rudin-Keisler ordering of p-points, Transations ofthe Amerian Mathematial Soiety, vol. 179 (1973), 145�166.3. David Booth, Ultra�lters on a ountable set , Annals of MathematialLogi, vol. 2 (1970), 1�24.4. Lorenz Halbeisen, A playful approah to Silver and Mathias forings, inFoundations of the Formal Sienes V: In�nite Games (Stefan Bold,Benedikt Löwe, Thoralf Räsh, and Johan van Benthem, eds.), Papers of a Con-ferene held in Bonn, November 26�29, 2004, [Studies in Logi, vol. 11], CollegePubliations, London, 2007, pp. 123�142.5. Jaime I. Ihoda, Unbounded �lters on ω, in Logi Colloquium '87, Pro-eedings of the Colloquium held in Granada, Spain, July 20�25, 1987(H.-D. Ebbinghaus, J. Fernandez-Prida, M. Garrido, D. Lasar, and M. Ro-driguez Artalejo, eds.), [Studies in Logi and the Foundations of Mathemat-is 129], North-Holland, Amsterdam, 1989, pp. 105�115.
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11Coda: A Dual Form of Ramsey's Theorem
Musiians wanted ompositions to end on a perfetonsonane, beause they orretly say that the per-fetion of anything depends upon and is judged byits end. Sine they found that among onsonanesno greater perfetion ould be found than in theotave, they made it a �xed rule that eah om-position should terminate on the otave or unisonand no other interval. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558In this hapter we shall present some results in dual Ramsey Theory, i.e.,Ramsey type results dealing with partitions of ω. The word �dual� is motivatedby the following fat: Eah in�nite subset of ω orresponds to the imageof an injetive funtion from ω into ω, whereas eah in�nite partition of ωorresponds to the set of pre-images of elements of ω of a surjetive funtionfrom ω onto ω. Similarly, n-element subsets of ω orrespond to images ofinjetive funtions from n into ω, whereas n-blok partitions of ω orrespondto pre-images of surjetive funtions from ω onto n. Thus, to some extent,subsets of ω and partitions of ω are dual to eah other.The Hales-Jewett TheoremSine we introduedRamsey's Theorem in Chapter 2, we have used di�erentforms of this powerful ombinatorial tool in various appliations. However,Ramsey's Theorem is neither the only nor the earliest Ramsey-type result.In fat, the following theorem is one of the earliest results in Ramsey Theory.



246 11 A Dual Form of Ramsey's TheoremTheorem 11.1 (van der Waerden). For any positive integers r and n,there is a positive integer N suh that for every r-olouring of the set
{0, 1, . . . , N} we �nd always a monohromati (non-onstant) arithmeti pro-gression of length n.Instead of a proof, let us onsider van der Waerden's Theorem from amore ombinatorial point of view: Firstly, for some positive integer l, identifythe integers a ∈ [0, nl) with the l-tuples 〈a0 . . . al−1〉 formed from the base-nrepresentation of a, i.e., a =

∑
i∈l ain

i and for all i ∈ l, 0 ≤ ai < n. Conerningarithmeti progressions, notie that for example the l-tuples
〈a0 . . . ai−1 0 ai+1 . . . aj−1 0 aj+1 . . . al−1〉
〈a0 . . . ai−1 1 ai+1 . . . aj−1 1 aj+1 . . . al−1〉
〈a0 . . . ai−1 2 ai+1 . . . aj−1 2 aj+1 . . . al−1〉... ... ... ... ...
〈a0 . . . ai−1 n− 2 ai+1 . . . aj−1 n− 2 aj+1 . . . al−1〉
〈a0 . . . ai−1 n− 1 ai+1 . . . aj−1 n− 1 aj+1 . . . al−1〉orrespond to an arithmeti progression of length n with ommon di�erene

ni + nj. Let us all for the moment arithmeti progressions of length n ofthat type speial arithmeti progressions. Notie that not every arithmetiprogression of length n is speial. However, if we ould show that for allpositive integers n and r there exists a positive integer l suh that for every
r-olouring of [0, nl) we �nd a monohromati speial arithmeti progression,then this would obviously prove van der Waerden's Theorem.Now, identify the set of l-tuples 〈a0 . . . al−1〉 with the set of funtions ffrom l to n, denoted ln, by stipulating f(k) = ak (for all k ∈ l). Consequently,we an identify every r-olouring of [0, nl) with an r-olouring of ln. Notiethat for a non-empty set s ⊆ l and a funtion g : l \ s → r, the set {f ∈ ln :

f |l\s = g∧f |s is onstant} orresponds to a speial arithmeti progression. Inthe example of a speial arithmeti progression given above we have s = {i, j}and g(m) = am (for allm ∈ l\s). Hene, in terms of funtions from l to n, vander Waerden's Theorem is just a orollary of the following Ramsey-typetheorem.Theorem 11.2 (Hales-Jewett Theorem). For all positive integers n, r ∈
ω there exists a positive integer l ∈ ω suh that for any r-olouring of lnthere is always a non-empty set s ⊆ l and a funtion g : l \ s → n suh that{
f ∈ ln : f |l\s = g ∧ f |s is onstant} is monohromati.For given positive integers n, r ∈ ω, theHales-Jewett funtion HJ(n, r)denotes the smallest suh integer l. In partiular, for all positive integers r,
HJ(1, r) = 1.Hales and Jewett proved their theorem almost 40 years after van der Waer-den proved his. In the original proof, they used� like van der Waerden� a



The Hales-Jewett Theorem 247double indution whih led to an extremely fast growing upper bound for theHales-Jewett funtion HJ(n, r). The proof of the Hales-Jewett Theoremgiven here� whih is due to Shelah and modi�ed by Matet involving the Fi-nite Ramsey Theorem�uses just simple indution on n and provides amuh better bound for the assoiated funtion HJ(n, r).Before we an give a proof of the Hales-Jewett Theorem, inludingthe bounds for HJ(n, r), we have to introdue a kind of Ramsey number(f. Chapter 2 |Related Result 1): By the Finite Ramsey Theorem 2.3we know that for any positive integers r, p, and q, where q ≤ p, there existsa positive integer m suh that for every r-olouring π : [m]q → r we �nd a
p-element set t ∈ [m]p suh that π|[t]q is onstant; let Rqr(p) denote the leastsuh m.Theorem 11.3. For positive integers n and r let l = HJ(n, r), a = (n+1)l−
nl, k = ra, and m = R2l−1

k (2l). Then HJ(n+ 1, r) < m.Proof. Let F be the set of all non-dereasing funtions f ∈ 2lm (i.e., f(0) ≤
f(1) ≤ . . . ≤ f(2l − 1)) suh that 2l − 1 ≤

∣∣f [2l]
∣∣ (i.e., f(i) = f(i + 1) for atmost one i ≤ 2l − 2). Let F0 =

{
f ∈ F :

∣∣f [2l]
∣∣ = 2l

} and let F1 = F \ F0).Notie that for eah f ∈ F1 there exists a unique i ≤ 2l − 2 suh that
f(i) = f(i + 1). So, for every i ≤ 2l − 2 let Fi = {

f ∈ F1 : f(i) = f(i + 1)
}.Then F1 =

⋃
0≤i≤2l−2 Fi.For f ∈ F and i ∈ [1, 2l−1] let Ifi =

[
f(i−1), f(i)

), and let If0 =
[
0, f(0)

)and If2l = [
f(2l− 1),m

). Notie, if f(0) = 0 then If0 = ∅, if f(2l− 1) = m− 1then If2l = {m}, and if f ∈ Fi, for some i ≤ 2l − 2, then Ifi+1 = ∅. De�ne
g : l(n+ 1)× F → m−1n+ 1 suh that for eah j ≤ 2l, g(h, f)|

I
f
j

is onstant,where
g(h, f)|

I
f
j

is onstantlyn− 1 if j ≡ 0 mod 4,
n if j ≡ 2 mod 4,
h
(
(j − 1)/2

) otherwise.For h ∈ l(n+ 1) and f ∈ F , g(h, f) is visualised by the following �gure:
0

f(0) f(1) f(2) f(3) f(2l− 2) f(2l− 1)
m− 1

I
f
0 I

f
1 I

f
2 I

f
3

I
f

2l−1 I
f
2l

n− 1 h(0) n h(1) h(l− 1) n or n − 1Notie that for f ∈ F2i and h ∈ H we have the following situation.
g(h, t) :

f(2i) = f(2i + 1)I
f
2i

I
f
2i+2

n or n− 1 n− 1 or nFor i ∈ l, let Hi ⊆ l(n+ 1) be the set of all funtions h : l → (n+ 1) suhthat h(i) = n and for all j < n, h(j) < n. Let H =
⋃
i∈lHi. Notie that H



248 11 A Dual Form of Ramsey's Theoremis the set of all funtions h ∈ l(n+ 1) suh that h(i) = n for some i ∈ l. Foreah i ∈ l de�ne a funtion gi : Hi × [m]2l−1 → m−1(n+ 1) by stipulating
gi(h, s) = g(h, fs,i) ,where fs,i ∈ F2i is suh that fs,i[2l] = s.Fix a olouring π : (m−1)(n+ 1) → r. Notie that we an apply π to

g(h, f) (where h ∈ l(n+ 1) and f ∈ F) as well as to gi(h, s) (where h ∈ Hiand s ∈ [m]2l−1). Reall that we want to show HJ(n+ 1, r) ≤ m − 1, where
m = R2l−1

k (2l). By de�nition of m, for every olouring τ : [m]2l−1 → k we�nd a 2l-element set t ∈ [m]2l suh that τ |[t]2l−1 is onstant. In order to applythe properties of m, we have to �nd a suitable k-olouring of [m]2l−1. Firstly,reall that k = ra, where a = (n+1)l−nl. Now, |l(n+ 1)\H| = nl, and sine
|l(n+ 1)| = (n+ 1)l we get |H| = (n+ 1)l − nl. Thus, a = |H|, and therefore
k = |Hr|. Now, de�ne the olouring τ : [m]2l−1 → Hr by stipulating

τ(s)(h) = π
(
gi(h, s)

) whenever h ∈ Hi for some i ∈ l .By de�nition of m, there exists a 2l-element set t ∈ [m]2l suh that τ |[t]2l−1 isonstant. In partiular, for any s0, s1 ∈ [t]2l−1 and any h ∈ Hi we have
π
(
gi(h, s0)

)
= π

(
gi(h, s1)

)
. (∗)Let ft ∈ F0 be suh that ft[2l] = t and de�ne the olouring π′ : ln → r bystipulating π′(h) := π

(
g(h, ft)

). Sine l = HJ(n, r), there exists a non-emptyset u0 ⊆ l and a funtion h̃ : l \ u0 → n suh that
Ĥ =

{
h ∈ ln : h|l\u0

= h̃ ∧ h|u0
is onstant}is monohromati. Notie that Ĥ ⊆ ln ⊆ l(n+ 1) and that π|{g(h,ft):h∈Ĥ} isonstant. Let h0 ∈ l(n+ 1) be suh that h0|l\u0
= h̃ and h0|u0

is onstantly
n. If we an show that {g(h, ft) : h ∈ Ĥ ∨h = h0} is monohromati, then weare done. In fat, it is enough to show that π(g(h0, ft)) = π

(
g(ĥ0, ft)

), where
ĥ0 ∈ Ĥ is suh that for all i ∈ l, ĥ0(i) := min

{
h0(i), n− 1

}. This is done byindution on the size of u0, but �rst we have to do some preliminary work:For i ∈ l and h ∈ Hi de�ne h′ ∈ l(n+ 1) by stipulating
h′(j) =

{
n− 1 if j = i,
h(j) otherwise.Notie that either h′ ∈ Hi′ for some i′ > i, or h′ ∈ ln. We show now that forevery h ∈ Hi, π(g(h, ft)) = π

(
g(h′, ft)

). We onsider the ases i odd and ieven separately.For i odd and h ∈ Hi we have the following situation:
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g
(
h, ft

)
:

ft(2i) ft(2i+ 1)

n h(i) = n n− 1

gi
(
h, t \ {ft(2i)}

)
:

ft(2i) ft(2i+ 1)

n n n− 1

gi
(
h, t \ {ft(2i+ 1)}

)
:

ft(2i) ft(2i+ 1)

n n− 1 n− 1

g
(
h′, ft

)
:

ft(2i) ft(2i+ 1)

n h′(i) = n− 1 n− 1Similarly, for i even and h ∈ Hi we get:
g
(
h, ft

)
:

ft(2i) ft(2i+ 1)

n− 1 h(i) = n n

gi
(
h, t \ {ft(2i+ 1)}

)
:

ft(2i) ft(2i+ 1)

n− 1 n n

gi
(
h, t \ {ft(2i)}

)
:

ft(2i) ft(2i+ 1)

n− 1 n− 1 n

g
(
h′, ft

)
:

ft(2i) ft(2i+ 1)

n− 1 h′(i) = n− 1 nBy (∗) we have π(gi(h, t \ {ft(2i)})) = π
(
gi(h, t \ {ft(2i+1)})

), and sine weobviously have
g(h, ft) = gi

(
h, t \ {ft(2i)}

)

g(h′, ft) = gi
(
h, t \ {ft(2i+ 1)}

)




 if i is odd,and
g(h, ft) = gi

(
h, t \ {ft(2i+ 1)}

)

g(h′, ft) = gi
(
h, t \ {ft(2i)}

)



 if i is even,we get

π
(
g(h, ft)

)
= π

(
g(h′, ft)

)
.Now we are ready to show that π(g(h0, ft)) = π

(
g(ĥ0, ft)

): For j < |u0| let
hj+1 := h′j. Then, by the preeding fat we have

π
(
g(h0, ft)

)
= π

(
g(h1, ft)

)
= . . . = π

(
g(h|u|, ft)

)
,and sine h|u| = ĥ0, we �nally get π(g(h0, ft)) = π

(
g(ĥ0, ft)

), whih ompletesthe proof of Theorem 11.3 as well as of the Hales-Jewett Theorem. ⊣



250 11 A Dual Form of Ramsey's TheoremThe Hales-Jewett Theorem will be used to start the indution in theproof of Carlson's Lemma (see Claim 2), where Carlson's Lemma is theruial part in the proof of a generalisation of Ramsey's Theorem in termsof partitions� the main result of this hapter whih will be alled PartitionRamsey Theorem.The Partition Ramsey Theorem is a very strong ombinatorial resultwhih implies the Hales-Jewett Theorem as well as some other Ramsey-type results like the Weak Halpern-Läuhli Theorem 11.6. However, be-fore we an formulate and prove the Partition Ramsey Theorem, we haveto introdue �rst the orresponding terminology.Families of PartitionsEven though partitions have already been used in Chapter 10, let us introduethe notion of partition in a more formal way.A set P ⊆ P(S) is a partition of the set S, if ∅ /∈ P , ⋃P = S, and for alldistint p1, p2 ∈ P we have p1 ∩ p2 = ∅. A member of a partition P is alled ablok of P and Dom(P ) :=
⋃
P is alled the domain of P . A partition P isalled in�nite, if |P | is in�nite (where |P | denotes the ardinality of the set

P ); otherwise, the partition P is alled �nite.If P and Q are two partitions with the same domain, then P is oarserthan Q, or equivalently Q is �ner than P , if eah blok of P is the unionof bloks of Q. Notie that the relation �oarser� is a partial ordering on theset of partitions with a given domain, and that there are unique �nest andoarsest partitions. For example with respet to partitions of ω, the �nestpartition is {{n} : n ∈ ω
} and the oarsest partition is {ω}.Below, we are mainly interested in in�nite partitions of ω, denote by apitalletters like X,Y, Z, . . ., as well as in (�nite) partitions of natural numbers,usually denoted by apital letters like S, T, U, . . . . So, let (ω)ω denote the setof all in�nite partitions of ω and let (N) denote the set of all (�nite) partitions

S with Dom(S) ∈ ω. Notie that S ∈ (N) i� S is a partition of some naturalnumber n ∈ ω.The following notation allows us to ompare partitions with di�erent do-mains: For partitions P and Q (e.g., P ∈ (N) and Q ∈ (ω)ω) we write
P ⊑ Q if for all bloks p ∈ P the set p ∩ Dom(Q) is the union of somesets qi ∩ Dom(P ), where eah qi is a blok of Q. Notie that in general,
P ⊑ Q ⊑ P does not imply P = Q, exept when Dom(P ) = Dom(Q). Fur-thermore, let P ⊓ Q (P ⊔ Q) denote the �nest (oarsest) partition R suhthat Dom(R) = Dom(P )∪Dom(Q) and R is oarser (�ner) than P and Q. Inpartiular, if Dom(P ) ⊆ Dom(Q) then P ⊓Q ⊑ Q ⊑ P ⊔Q.Let S ∈ (N) and X ∈ (ω)ω . If for eah s ∈ S there exists an x ∈ Xsuh that x ∩ Dom(S) = s, we write S 4 X . Similarly, for S, T ∈ (N), where
Dom(S) ⊆ Dom(T ), we write S 4 T if for eah s ∈ S there exists a t ∈ Tsuh that t∩Dom(S) = s. Roughly speaking, P 4 Q is the same as saying �Q



Families of partitions 251restrited to Dom(P ) is equal to P �. Notie that for S ⊑ X , where S ∈ (N)and X ∈ (ω)ω, we have S 4 (S ⊓X) ⊑ X .At a �rst glane, the set of partitions of ω, with the partitions {ω} and{
{n} : n ∈ ω

} and the operations �⊔� and �⊓�, looks similar to the Booleanalgebra (P(ω),∪,∩,−, ∅, ω
). However, partitions of ω behave di�erently thansubsets of ω. The main di�erene between partitions and subsets is that par-titions do not have proper omplements. For example if x, y, z ∈ [ω]ω are suhthat x ∪ y = x ∪ z = ω and x ∩ y = x ∩ z = ∅, then y = z. This is not thease for partitions: It is not hard to �nd partitions X,Y, Z ∈ (ω)ω suh that

X ⊔Y = X ⊔Z = Y ⊔Z =
{
{n} : n ∈ ω

} and X⊓Y = X ⊓Z = Y ⊓Z = {ω},e.g., letX =
{
{3i, 3i+1} : i ∈ ω

}
∪
{
{3i+2} : i ∈ ω

}, Y =
{
{3i+1, 3i+2} : i ∈

ω
}
∪
{
{3i} : i ∈ ω

}, and Z =
{
{3i, 3i+2} : i ∈ ω

}
∪
{
{3i+1} : i ∈ ω

}. We leaveit as an exerise to the reader to onstrut in�nite partitions X,Y, Z ∈ (ω)ωwith the same property but suh that all bloks of X , Y , and Z, are in�nite.Now, let us de�ne a topology on (ω)ω whih is similar to the Ellentuktopology on [ω]ω (de�ned on page 216): For S ∈ (N) and X ∈ (ω)ω with
S ⊑ X , let

(S,X)ω =
{
Y ∈ (ω)ω : S 4 Y ⊑ X

}
.A set (S,X)ω, where S andX are as above, is usually alled a dual Ellentukneighbourhood. We leave it as an exerise to the reader to show that theintersetion of �nitely many dual Ellentuk neighbourhoods is either emptyor a dual Ellentuk neighbourhood. The topology on (ω)ω generated by thedual Ellentuk neighbourhoods is alled dual Ellentuk topology.The usual trik to get subsets of ω from partitions is as follows: For apartition P of a subset of ω, e.g., P ∈ (ω)ω or P ∈ (N), let

Min(P ) =
{
min(p) : p ∈ P

}
.Obviously, if X ∈ (ω)ω then Min(X) ∈ [ω]ω and if S ∈ (N) then Min(S) ∈

fin(ω). Further we have that for any X,Y ∈ (ω)ω, X ⊑ Y implies Min(X) ⊆
Min(Y ).A non-empty family C ⊆ (ω)ω is alled free, if for every X ∈ C there isa Y ∈ C suh that Y ⊑ X , but for all S ∈ (N), (S ⊓X) 6⊑ Y .A family C ⊆ (ω)ω is losed under re�nement if X ⊑ Y and X ∈ Cimplies Y ∈ C , and it is losed under �nite oarsening if S ∈ (N) and
X ∈ C implies (S ⊓ X) ∈ C . Notie that a family C ⊆ (ω)ω is losed underre�nement and �nite oarsening i� for all S ∈ (N) and Y ∈ (ω)ω, X ⊑ (S⊓Y )and X ∈ C implies Y ∈ C .A family C ⊆ (ω)ω is alled omplete, if C is free and losed underre�nement and �nite oarsening.In order to de�ne the game whih plays a key role in the proof of thePartition Ramsey Theorem, we have to introdue the following nota-tion. For S ∈ (N), let S∗ denote the partition S ∪

{
{Dom(S)}

}. Notiethat |S∗| = |S| + 1. Further, notie that whenever (S∗, X)ω is a dual El-



252 11 A Dual Form of Ramsey's Theoremlentuk neighbourhood, then every Y ∈ (S∗, X)ω has a blok y suh that
y ∩Dom(S) = ∅ and y ∩Dom(S∗) =

{
Dom(S)

}.With respet to a omplete family C ⊆ (ω)ω we de�ne the in�nite two-player game G
C

as follows.Maiden (S0, X0)

  @
@@

@@
@@

(S1, X1)

  @
@@

@@
@@

(S2, X2)

  @
@@

@@
@@

G
C

: . . .Death Y0

>>~~~~~~~
Y1

>>~~~~~~~
Y2

��We require that the �rst move (S0, X0) of the Maiden is suh that X0 ∈ Cand that (S∗
0 , X0)

ω is a dual Ellentuk neighbourhood. Further, we requirethat for eah n ∈ ω, the nth move of Death Yn is suh that Yn ∈ (S∗
n, Xn)

ωand Yn ∈ C , and that the Maiden plays (Sn+1, Xn+1) suh that
• S∗

n 4 Sn+1, |Sn+1| = |Sn|+ 1, S∗
n+1 ⊑ Yn, and

• Xn+1 ∈ (S∗
n+1, Yn)

ω ∩ C .Finally, theMaiden wins the game G
C
if and only if ⋂n∈ω(Sn, Xn)

ω∩C = ∅,i.e., the (unique) in�nite partition X ∈ (ω)ω suh that Sn ≺ X (for all n ∈ ω)does not belong to the family C .Now, a omplete family C ⊆ (ω)ω is alled a Ramsey partition-familyif the Maiden has no winning strategy in the game G
C

(ompare with thegame introdued in Chapter 10 |Related Result 71).Obviously, the set (ω)ω is an example for a Ramsey partition-family andit is not hard to onstrut Ramsey partition-families whih are proper subsetsof (ω)ω, e.g., for any partition X ∈ (ω)ω, (X)ω is a Ramsey partition-family.For a non-trivial example of a Ramsey partition-family take a Ramsey ultra-�lter F ⊆ [ω]ω and let C =
{
X ∈ (ω)ω : Min(X) ∈ F

}. Then, by Chap-ter 10 |Related Result 71, we get that C is a Ramsey partition-family (forother non-trivial examples of Ramsey partition-families see Chapter 26).It turns out that Ramsey partition-families have very strong ombinatorialproperties, and to some extent, they are proper generalisations of Ramsey fam-ilies (see also Chapter 26). The ombinatorial strength of Ramsey partition-families is used for example in the proof of Carlson's Lemma, whih is� asmentioned above� the ruial part in the proof of the Partition RamseyTheorem.Carlson's Lemma and the Partition Ramsey TheoremBefore we formulate and prove the Partition Ramsey Theorem, let us �rstonsider a few possible generalisations ofRamsey's Theorem in terms of par-titions: Ramsey's Theorem states that whenever we olour [ω]n (i.e., the
n-element subsets of ω) with �nitely many olours, then we �nd an x ∈ [ω]ω(i.e., an in�nite subsets of ω) suh that [x]n is monohromati (i.e., all whose
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n-element subsets have the same olour). If we try to formulate Ramsey'sTheorem in terms of partitions, we �rst have to deide whih partitions orre-spond to the �n-element subsets of ω� and �in�nite subsets of ω� respetively.It seems natural that in�nite subsets of ω orrespond to in�nite partitionsof ω, i.e., x ∈ [ω]ω is replaed by X ∈ (ω)ω. Similarly, we ould say that
n-element subsets of ω orrespond to n-blok partitions of ω, and thereforewe would replae [ω]n by (ω)n :=

{
X ∈ (ω)ω : |X | = n

}. This leads to thefollowing �rst attempt of a generalisation of Ramsey's Theorem in termsof partitions:Generalisation 1. For every olouring of (ω)n with �nitely many olours,there exists an in�nite partition X ∈ (ω)ω suh that (X)n is monohromati,where (X)n :=
{
Y ∈ (ω)n : Y ⊑ X ∧ |Y | = n

}.Unfortunately, this generalisation of Ramsey's Theorem fails. In fat,by trans�nite indution we an onstrut a ounterexample even for the asewhen n = 2: Firstly notie that for eah X ∈ (ω)ω, |(X)2| = |(ω)ω| = c. Let
{Xα : α ∈ c} be an enumeration of (ω)ω . For eah α ∈ c hoose two distintpartitions

Y 0
α , Y

1
α ∈

(
(Xα)

2 \
{
Y 0
β , Y

1
β : β ∈ α

})
.Finally, de�ne π : (ω)2 → {0, 1} by stipulating π(Y ) = 0 i� there is an α ∈ csuh that Y = Y 0

α . By onstrution, for every X ∈ (ω)ω we �nd Y 0 and Y 1in (X)2 suh that π(Y 0) = 0 and π(Y 1) = 1. Thus, for every X ∈ (ω)ω , (X)nis dihromati.One might ask why is it not possible to onstrut a similar ounterexamplefor Ramsey's Theorem? The reason is simple: For any partition X ∈ (ω)ω ,
(X)2 is of ardinality c, whereas for any x ∈ [ω]ω and n ∈ ω, the set [x]n isountable.Now, one might ask why are n-element subsets of ω so di�erent from n-blok partitions? A reason is that n-element subsets of ω are proper �nitaryobjets, whereas an n-blok partition Y ∈ (ω)n neessarily ontains in�nitesets. Furthermore, every n-element subset of ω is a subset of some k ∈ ω,whih is not the ase for partitions Y ∈ (ω)n. However, it is true for partitions
S ∈ (N). So, let us replae now [ω]n and [x]n by (ω)(n) and (X)(n) respetively,where

(ω)(n) =
{
S ∈ (N) : |S| = n

}
,and for X ∈ (ω)ω ,

(X)(n) =
{
S ∈ (ω)(n) : S ⊑ X

}
.Generalisation 2. For every olouring of (ω)(n) with �nitely many olours,there exists an in�nite partition X ∈ (ω)ω suh that (X)(n) is monohromati.Unfortunately, this generalisation fails as well. Again, we an onstrut aounterexample even for the ase when n = 2: For this, onsider the olouring

π : (ω)(2) → {0, 1} de�ned by stipulating
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π
(
{s0, s1}

)
= 0 ⇐⇒ 0 ∈ s0 ∧max(s0) < max(s1) .We leave it as an exerise to the reader to show that for every X ∈ (ω)ω ,

(X)(n) is dihromati.After these two failures, let us now formulate Ramsey's Theorem di-retly in terms of partitions of subsets of ω: A partition P of a subset of ωis segmented if for any distint p0, p1 ∈ P , either max(p0) < min(p1) or
max(p1) < min(p0). Let 〈ω〉ω denote the set of all segmented partitions of
ω. Notie that if P ∈ 〈ω〉ω, then all bloks P are �nite. For the moment let
ω̇ := ω \ {0}. For an in�nite set of positive integers x = {ki : i ∈ ω̇} ∈ [ω̇]ω ,where ki < ki+1 for all i ∈ ω̇, we de�ne Px ∈ 〈ω〉ω by stipulating

Px =
{
[ki, ki+1) : i ∈ ω

}
,where k0 := 0. Notie that 〈ω〉ω =

{
Px : x ∈ [ω̇]ω

}. Similarly, for an n-elementset s = {k1, . . . , kn} ∈ [ω̇]n, where ki < ki+1 for 1 ≤ i ≤ n, we de�ne
Qs =

{
[ki, ki+1) : i ∈ n

}
,where again k0 = 0. Notie that for all s ∈ fin(ω̇), Qs is a segmented partitionwith Dom(Qs) = max(s). Now, let 〈ω〉(n) = {

Qs : s ∈ [ω̇]n
} and for P ∈ 〈ω〉ωlet

〈P 〉(n)∗ =
{
Q ∈ 〈ω〉(n) : Q∗ ⊑ P

}
.Reall that for s ∈ fin(ω̇), Q∗

s = Qs ∪
{
Dom(Qs)

}
= Qs ∪

{
max(s)

}, andnotie that for all x ∈ [ω̇]ω, 〈Px〉(n)∗ = {
Q∗
s : s ∈ [x]n

}.Now we are ready to formulateRamsey's Theorem in terms of segmentedpartitions� we leave it as an exerise to the reader to show that Ramsey'sTheorem is indeed equivalent to the following statement.Ramsey's Theorem. For every olouring of 〈ω〉(n) with �nitely manyolours, there exists an in�nite segmented partition P ∈ 〈ω〉ω suh that 〈P 〉(n)∗is monohromati.So, we �nally found a formulation of Ramsey's Theorem in terms ofsegmented partitions. The next step is to �nd a general formulation whihworks for all, and not just for segmented partitions. For this, we only haveto replae the angle brakets by round brakets and de�ne the meaning of
(X)(n)

∗: For n ∈ ω and X ∈ (ω)ω let
(X)(n)

∗

=
{
S ∈ (ω)(n) : S∗ ⊑ X

}
.Similarly, for a dual Ellentuk neighbourhood (S,X)ω, where |S| ≤ n, let

(S,X)(n)
∗

=
{
U ∈ (ω)(n) : S 4 U ∧ U∗ ⊑ X

}
.Now we are ready to state the sought partition form of Ramsey's Theorem:



Carlson's Lemma and the Partition Ramsey Theorem 255Theorem 11.4 (Partition Ramsey Theorem). For any Ramsey partition-family C ⊆ (ω)ω and for any olouring of (ω)(n) with r olours, where r and
n are positive integers, there is an X ∈ C suh that (X)(n)

∗ is monohromati.The Partition Ramsey Theorem will follow from Carlson's Lemma.With respet to Ramsey partition-families, Carlson's Lemma states as fol-lows:Lemma 11.5 (Carlson's Lemma). Let C ⊆ (ω)ω be an arbitrary but �xedRamsey partition-family. For any olouring π : (ω)(n) → r, where r and n arepositive integers, and for any dual Ellentuk neighbourhood (S0, X0)
ω, where

|S0| = n and X ∈ C , there is a X̄ ∈ (S0, X0)
ω whih belongs to C suh that

(S0, X̄)(n)
∗ is monohromati.Proof. Before we begin with the proof, let us �rst introdue the followingnotion: For a dual Ellentuk neighbourhood (S,X)ω and for a positive integer

m ∈ ω, a set D ⊆ (ω)(m) is alled C -dense in (S,X)(m)∗ if for all Y ∈
(S,X)ω∩C , (S, Y )(m)∗∩D 6= ∅. Notie that for every olouring π : (ω)(n) → r,there exists a olour c ∈ r and a partition X ′

0 ∈ (S0, X0)
ω ∩ C suh thatthe set Dc :=

{
S ∈ (ω)(n) : π(S) = c

} is C -dense in (S0, X
′
0)

(n)∗. Indeed,if D0 is C -dense in (S0, X0)
(n)∗ then we are done. Otherwise, there existsan X1 ∈ (S0, X0)

ω ∩ C suh that (S0, X1)
(n)∗ ∩ D0 = ∅. Now, either D1is C -dense in (S0, X1)

(n)∗, or there exists an X2 ∈ (S0, X1)
ω ∩ C suh that

(S0, X2)
(n)∗ ∩ D1 = ∅. Proeeding this way, we �nally �nd a c ∈ r suh thatfor all Y ∈ (S0, Xc)

ω ∩ C , (S0, Y )(n)
∗∩Dc 6= ∅ ; let X ′

0 = Xc.After this preliminary remark, we an now begin with the proof: With-out loss of generality we may assume that the dual Ellentuk neighbourhood
(S0, X0)

ω is suh that D0 is C -dense in (S0, X0)
(n)∗.The proof is now given in several steps. Firstly we show that there existsan S̃ ∈ (N) with S0 4 S̃ ⊑ X0, suh that for all T ∈ (N) with S̃ 4 T ⊑ X0,there is a T ′ ⊑ T suh that Dom(T ′) = Dom(T ), |T ′| = n, S0 4 T ′, and

T ′ ∈ D0. To state this in a more formal way, we introdue the following twonotations: For S, T ∈ (N), where S 4 T and |S| ≤ m, let
(S, T )m =

{
U ∈ (N) : Dom(U) = Dom(T ) ∧ S 4 U ⊑ T ∧ |U | = m

}
,and for a dual Ellentuk neighbourhood (U,Z)ω, let

(U,Z)(<ω)
∗

=
⋃

k∈ω

(U,Z)(k)
∗

.In other words, (U,Z)(<ω)∗ = {
S ∈ (N) : U 4 S∗ ⊑ Z

} and (S, T )m is the setof all m-blok partitions of Dom(T ) whih ontain S as a �sub-partition� andare oarser than T .Claim 1. There is a Z0 ∈ (S0, X0)
ω ∩ C and an S̃ ∈ (S0, Z0)

(<ω)∗ suh thatfor all S ∈ (S̃, Z0)
(<ω)∗, (S0, S)

n ∩D0 6= ∅.



256 11 A Dual Form of Ramsey's TheoremProof of Claim 1. If the laim fails, then for every Y ∈ (S0, X0)
ω∩C and eah

T ∈ (S0, Y )(<ω)
∗ there is an S ∈ (T, Y )(<ω)

∗ suh that (S0, S)
n ∩D0 = ∅ ; inpartiular, there is an S′ ∈ (T, Y )(|T |)∗ suh that (S0, S

′)n∩D0 = ∅. We de�nea strategy for the Maiden in the game G
C
. The Maiden starts the gamewith (S0, X0) and replies the ith move Yi of Death with (Si+1, Xi+1), where

Xi+1 = Yi and Si+1 is onstruted as follows: Take any Ti+1 ∈ (S∗
i , Yi)

(n+i+1)∗and let Si+1 ∈ (Ti+1, Yi)
(n+i+1)∗ be suh that (S0, Si+1)

n ∩ D0 = ∅. As C isa Ramsey-partition family, �x a play where the Maiden follows this strategybut Death wins. Let Z ∈ (ω)ω be the unique in�nite partition suh that forall i ∈ ω we have Si ≺ Z. Sine C is a Ramsey partition-family, the partition
Z belongs to C . By onstrution, S0 ≺ Z and (S0, Z)

(n)∗∩D0 = ∅. Thus, D0is not C -dense in (S0, X0)
(n)∗, a ontradition. ⊣Claim 1The next step is where the Hales-Jewett Theorem omes in:Claim 2. Let Z0 ∈ (S0, X0)

ω ∩ C be as in Claim 1. Then there is a Ũ ∈
(S0, Z0)

(n+1)∗ suh that (S0, Ũ)n ⊆ D0.Proof of Claim 2. Let S̃ ∈ (S0, Z0)
(<ω)∗ be as in Claim 1, i.e., for all W ∈

(S̃, Z0)
(<ω)∗ there is a W ′ ∈ (S0,W )n suh that W ′ ∈ D0. Let m = |S̃|,

r0 =
∣∣(S0, S̃)

n
∣∣, and let {Uk : k ∈ r0} be an enumeration of (S0, S̃)

n. By theHales-Jewett Theorem 11.2, or more preisely by a partition form of it,there is a positive integer l = HJ(m, r0) suh that for any T ∈ (S̃, Z0)
(m+l)∗and any r0-olouring of (S̃, T )m there is aW0 ∈ (S̃, T )m+1 suh that (S̃,W0)

mis monohromati (the details are left to the reader). Fix an arbitrary T̃ ∈
(S̃, Z0)

(m+l)∗. Then, by the hoie of S̃, for all W ∈ (S̃, T̃ )m there is a U ∈
(S0,W )n suh that U ∈ D0. Moreover, there is a k ∈ r0 suh that Uk ≺ U ,and sine |Uk| = |U | = n we have U = Uk ⊓W . Hene, for everyW ∈ (S̃, T̃ )mthere is a k ∈ r0 suh that Uk ⊓W ∈ D0. Now, for eah W ∈ (S̃, T̃ )m let

τ(W ) = min{k ∈ r0 : Uk ⊓W ∈ D0} .Then τ is an r0-olouring of (S̃, T̃ )m. Sine T̃ ∈ (S̃, Z0)
(m+l)∗ there is a W0 ∈

(S̃, T̃ )m+1 suh that (S̃,W0)
m. is monohromati, say of olour k0. Thus,for all W ∈ (S̃,W0)

m, Uk0 ⊓ W ∈ D0. Finally, let Ũ = Uk0 ⊓ W0. Then
Ũ ∈ (S0,W0)

n+1, hene Ũ ∈ (S0, Z0)
(n+1)∗, and (S0, Ũ)n ⊆ D0 as required.

⊣Claim 2As an obvious generalisation of Claim 2 we getClaim 2∗. For eah X ∈ (S0, X0)
ω ∩C there is a U ∈ (S0, X)(n+1)∗ suh that

(S0, U)n ⊆ D0.The next step is ruial in the onstrution of X̄:Claim 3. Let Z0 ∈ (S0, X0)
ω ∩ C be as in Claim 1. Then there are S ∈

(S0, Z0)
(n+1)∗ and X ∈ (S,Z0)

ω ∩ C suh that the set
{
T ∈ (S,X)(n+1)∗ : (S0, T )

n ⊆ D0

}is C -dense in (S,X)(n+1)∗.



Carlson's Lemma and the Partition Ramsey Theorem 257Proof of Claim 3. Assume towards a ontradition that the laim fails. Then,for any S ∈ (S0, Z0)
(n+1)∗ and eah Y ∈ (S,X0)

ω ∩ C there exists a Z ∈
(S, Y )ω ∩ C , suh that for all T ∈ (S,Z)(n+1)∗ we have (S0, T )

n * D0. Wede�ne a strategy for the Maiden in the game G
C
. The Maiden starts thegame with (S0, Z0) and replies the ith move Yi of Death with (Si+1, Zi+1),where Zi+1 ∈ (S∗

i , Yi)
ω ∩ C and Si+1 ∈ (S∗

i , Zi+1)
(n+i+1)∗ are suh that forall S ∈ (S0, Si+1)

n+1 and all T ∈ (S,Zi+1)
(n+1)∗ we have (S0, T )

n * D0 : For
i = 0, let S1 ∈ (S0, Y0)

(n+1)∗ be arbitrary and let Z1 ∈ (S∗
1 , Y0)

ω ∩ C be suhthat for all T ∈ (S1, Z1)
(n+1)∗ we have (S0, T )

n * D0. For i > 0, we onstrut
Si+1 and Zi+1 as follows. Firstly, let {Ti,k : k ∈ hi} be an enumeration of
(S0, Si)

n+1. Seondly, let Zi,0 = Yi and for k ∈ hi let Zi,k+1 ∈ (Si, Zi,k)
ω ∩ Cbe suh that for all T ∈ (Ti,k, Zi,k+1)

(<ω)∗ we have (S0, T )
n * D0. Finally, let

Zi+1 = Zi,hi
and let Si+1 ∈ (S∗

i , Zi+1)
(n+i+1)∗. Fix a play where the Maidenfollows this strategy but Death wins. Sine C is a Ramsey partition-family,the unique in�nite partition Z ∈ (ω)ω suh that for all i ∈ ω we have Si ≺ Zbelongs to C . Now, by onstrution, for any U ∈ (S0, Z)

(n+1)∗ we �nd apositive integer i ∈ ω as well as a k ∈ hi suh that U ∈ (Ti,k, Zi+1)
(n+1)∗.Thus, for all U ∈ (S0, Z)

(n+1)∗ we have (S0, U)n * D0, but sine (S0, Z)
ω ⊆

(S0, Z0)
ω , this ontradits Claim 2∗. ⊣Claim 3The following laim is just a generalisation of Claim 3:Claim 3∗. Let (T0, Y0)

ω ⊆ (S0, X0)
ω be a dual Ellentuk neighbourhood,where Y0 ∈ C and |T0| = m. If E ⊆ (ω)(m) is C -dense in (T0, Y0)

(m)∗,then there exist S ∈ (T0, Y0)
(m+1)∗ and X ∈ (S, Y0)

ω ∩ C suh that the set{
T ∈ (S, Y0)

(m+1)∗ : (T0, T )
m ⊆ E

} is C -dense in (S,X)(m+1)∗.Proof of Claim 3 ∗. In the proofs of the preeding laims, just replae S0 by
T0, X0 by Y0, and D0 by E. ⊣Claim 3∗Now we onstrut the �rst piee of the sought partition X̄:Claim 4. There is a U0 ∈ (S0, X0)

(n)∗ suh that π(U0) = 0, i.e., U0 ∈ D0, andin addition there is an X ∈ (U∗
0 , X0)

ω ∩ C suh that the set
{
T ∈ (U0, X)(n+1)∗ : (S0, T )

n ⊆ D0

}is C -dense in (U0, X)(n+1)∗.Proof of Claim 4. We de�ne a strategy for the Maiden in the game G
C
. TheMaiden starts the game with (S0, X0) and replies the ith move Yi of Deathwith (Si+1, Xi+1), where Si+1 and Xi+1 are onstruted as follows: For i = 0,let S1 ∈ (S0, Y0)

(n+1)∗ and X1 ∈ (S1, Y0)
ω ∩ C be suh that the set

E1 =
{
T ∈ (S1, X1)

(n+1)∗ : (S0, T )
n ⊆ D0

}is C -dense in (S1, X1)
(n+1)∗. Notie that by Claim 3∗, S1 and X1 exist. Simi-larly, for i > 0 let Si+1 ∈ (Si, Yi)

(n+1)∗ and Xi+1 ∈ (Si, Yi)
ω ∩ C be suh thatthe set

Ei+1 =
{
T ∈ (Si+1, Xi+1)

(n+i+1)∗ : (Si, T )
n+i ⊆ Ei

}



258 11 A Dual Form of Ramsey's Theoremis C -dense in (Si+1, Xi+1)
(n+i+1)∗. By indution on i one veri�es that for all

i ∈ ω we have
Ei+1 ⊆

{
T ∈ (Si+1, Xi+1)

(n+i+1)∗ : (S0, T )
n ⊆ D0

}
,where E0 := D0 (the details are left to the reader). Finally, �x a play wherethe Maiden follows this strategy but Death wins, and let X ∈ (ω)ω bethe unique in�nite partition suh that for all i ∈ ω we have Si ≺ X . Sine

C is a Ramsey partition-family, X belongs to C . Now, sine D0 is C -densein (S0, X0)
ω and X ∈ (S0, X0)

ω ∩ C , there is a U0 ∈ (S0, X)(n)
∗ suh that

U0 ∈ D0. Choose i0 ∈ ω large enough suh that there is an S ∈ (S0, Si0)
n+1for whih we have U∗

0 4 S. Sine (S0, S)
n ⊆ (S0, Si0)

n we get that {
T ∈

(S,Xi0)
(n+1)∗ : (S0, T )

n ⊆ D0

} is C -dense in (S,Xi0)
(n+1)∗. In partiular, theset {T ∈ (S,X)(n+1)∗ : (S0, T )

n ⊆ D0

} is C -dense in (S,X)(n+1)∗, and sine
π(U0) = 0 and U∗

0 4 S, U0 has the required properties. ⊣Claim 4We leave it as an exerise to the reader to prove the following generalisationof Claim 4:Claim 4∗. If Ui ∈ (S0, X0)
(n+i)∗ is suh that (S0, Ui)

n ⊆ D0 and Y ∈
(U∗

i , X0)
ω∩C is suh that {T ∈ (Ui, Y )(n+i+1)∗ : (S0, T )

n ⊆ D0

} is C -dense in
(Ui, Y )(n+1)∗, then there are Ui+1 ∈ (U∗

i , Y )(n+i+1)∗ and X ∈ (U∗
i+1, Y )ω ∩ Csuh that {

T ∈ (Ui+1, X)(n+i+2)∗ : (S0, T )
n ⊆ D0

}is C -dense in (Ui+1, X)(n+1)∗ and (S0, Ui+1)
n ⊆ D0.Now we are ready to onstrut an in�nite partition X̄ ∈ (S0, X0)

ω ∩ C suhthat for every U ∈ (S0, X̄)(n)
∗ we have π(U) = 0, i.e., (S0, X̄)(n)

∗ ⊆ D0 :Indeed, by de�ning a suitable strategy for the Maiden in the game G
C

(ap-plying Claim 4∗), we an onstrut partitions Ui ∈ (S0, X0)
(<ω)∗ suh thatfor all i ∈ ω we have

|Ui| = n+ i , U∗
i 4 Ui+1 , (S0, Ui)

n ⊆ D0 , (❦)and the unique partition X̄ ∈ (ω)ω suh that Ui ≺ X̄ (for all i ∈ ω) belongsto the Ramsey partition-family C . By (❦), for all U ∈ (S0, X̄)(n)
∗ we have

(S0, U)n ⊆ D0, i.e., (S0, X̄)(n)
∗ is monohromati, whih ompletes the proofof Carlson's Lemma. ⊣Having Carlson's Lemma at hand, we are now able to prove the main resultof this hapter:Proof of the Partition Ramsey Theorem. The proof is by indution on n.For n = 1, the Partition Ramsey Theorem follows immediately by thePigeon-Hole Priniple. So, let n, r ∈ ω be given, where r is positive and n > 1,and assume that the Partition Ramsey Theorem is already proved for allpositive integers n′ < n.



A weak form of the Halpern-Läuhli Theorem 259Fix an arbitrary olouring π : (ω)n → r. Take an arbitrary partition
X0 ∈ C and let S0 ∈ (N) be suh that |S0| = n− 1 and S∗

0 ≺ X0.We de�ne a strategy for the Maiden in the game G
C

and as byprodutwe get a partial mapping τ from (ω)n−1 to r. The Maiden starts the gamewith (S0, X0) and replies the ith move Yi of Death with (Si+1, Xi+1), where
Si+1 and Xi+1 are onstruted as follows: Let {

Tk ∈ (N) : k ∈ hi
} be anenumeration of all T ⊑ Si with Dom(T ) = Dom(Si) and |T | = n−1. Let Z0 :=

Yi, and for eah k ∈ hi, let Zk+1 ∈ (S∗
i , Zk)

ω ∩ C be suh that π|(T∗
k
,Zk+1)(n)∗is onstant and de�ne

τ(Tk) = π(U) for some U ∈ (T ∗
k , Zk+1)

(n)∗.Now, the partition Zk+1 ∈ C we onstrut by applying �rst Carlson'sLemma 11.5 with respet to the dual Ellentuk neighbourhood (T ∗
k , Zk)

ω andthen by re�ning the resulting partition suh that it belongs to the dual Ellen-tuk neighbourhood (S∗
i , Zk)

ω. Let Xi+1 := Zhi
and let Si+1 ∈ (N) be suhthat S∗

i+1 ≺ Xi+1 and |Si+1| = (n− 1) + (i+ 1). Finally, �x a play where theMaiden follows this strategy but Death wins, and let Z ∈ (ω)ω be the uniquein�nite partition suh that for all i ∈ ω we have Si ≺ Z. Sine C is a Ramseypartition-family, the partition Z belongs to C . For eah T ∈ (Z)(n−1)∗ thereexist unique numbers i, k ∈ ω suh that k ∈ hi and T = Tk. Thus, τ is an
r-olouring of (Z)(n−1)∗. By the indution hypothesis we �nd an X ∈ (Z)ω∩Csuh that τ |(X)(n−1)∗ is onstant, say τ(T ) = j for all T ∈ (X)(n−1)∗. Now,take any S ∈ (X)(n)

∗ and let S̃∗ ≺ S be suh that |S̃| = n− 1. Notie that thedomain of S̃ is equal to Dom(Si) for some i ∈ ω. Consider the partition Xi+1.By the onstrution of Xi+1 we know that (T ∗, Xi+1)
(n)∗ is monohromatiwhenever T ⊑ Si with |T | = n − 1 and Dom(T ) = Dom(Si), and by theonstrution of the partition X , π|(T∗,Xi+1)(n)∗ is onstantly j. In partiular,

π(U) = j whenever U ∈ (S̃∗, Xi+1)
(n)∗, and sine S ∈ (S̃∗, Xi+1)

(n)∗, we get
π(S) = j, whih ompletes the proof. ⊣A Weak Form of the Halpern-Läuhli TheoremOne an show that for example the Hales-Jewett Theorem, a weakenedform of the Halpern-Läuhli Theorem, Ramsey's Theorem, as well asthe Finite Ramsey Theorem and a partition form of it, are all derivablefrom the Partition Ramsey Theorem. Below, we just give the proof oftheWeak Halpern-Läuhli Theorem (for the other results see RelatedResult 75).To state this weakened form of theHalpern-Läuhli Theorem, we haveto give �rst some notations: A set T ⊆ seq(2), where seq(2) =

⋃
n∈ω

n2, is atree if for every s ∈ T and k ∈ dom(s) we have s|k ∈ T . In partiular, seq(2)is a tree. For a tree T ⊆ seq(2) and l ∈ ω let
T (l) = {s ∈ T : dom(s) = l} .



260 11 A Dual Form of Ramsey's TheoremFor a �nite produt of trees T = T0 × . . . × Td−1 ⊆
(
seq(2)

)d (i.e., for all
k ∈ d, where d ∈ ω, Tk ⊆ seq(2) is a tree), and for l ∈ ω, let

T (l) =
{
s ∈ T : s ∈ T0(l)× . . .× Td−1(l)

}
.A tree T ⊆ seq(2) is perfet if for eah s ∈ T there is an n > dom(s) andtwo distint funtions t0, t1 ∈ n2 ∩ T suh that t0|dom(s) = t1|dom(s) = s. Inother words, for eah s ∈ T there are t0, t1 ∈ T and k ∈ dom(t0) ∩ dom(t1)suh that t0|dom(s) = t1|dom(s) = s and t0(k) = 1− t1(k).Now we are ready to state and proof the following result.Theorem 11.6 (Weak Halpern-Läuhli Theorem). For every positive

d ∈ ω and for every olouring of ⋃
l∈ω(

l2)d with �nitely many olours, thereexists a produt of perfet trees T = T0× . . .×Td−1 and an in�nite set H ⊆ ωsuh that ⋃l∈H T (l) is monohromati.Proof. Let d be a �xed positive integer and let n := 2d. Beause |d2| = 2d,there exists a one-to-one orrespondene ζ between n and d2. For any l ∈ ω, anelement 〈s0, . . . , sd−1〉 ∈ (l2)d is a sequene of length d of funtions si : l → 2.For any l ∈ ω, de�ne the funtion ξ : (l2)d → (d2)l by stipulating
ξ(〈s0, . . . , sd−1〉) = 〈t0, . . . , tl−1〉 where tj(i) := si(j) ,in other words, for any funtion s : d→ l2, ξ(s)(j)(i) = s(i)(j). Notie that foreah l ∈ ω, the funtion ξ is a one-to-one funtion from (l2)d onto (d2)l. Let

S = {uk : k ∈ n} ∈ (ω)n be suh that min(u0) < min(u1) < . . .min(un−1).For j ∈ uk let tSj (i) := ξ(k)(i). Now, de�ne the funtion η : (ω)n →
(
seq(2)

)dby stipulating
η(S) = ξ−1

(
〈tS0 , . . . , tSDom(S)−1〉

)
.Notie that for S ∈ (ω)n with Dom(S) = l, η(S) ∈ (l2)d. Finally, for anyolouring π :

⋃
l∈ω(

l2)d → r, where r is a positive integer, we de�ne theolouring τ : (ω)n → r by stipulating τ(S) := π
(
η(S)

). Let X ∈ (ω)ω be asin the onlusion of the Partition Ramsey Theorem 11.4 (with respet tothe olouring τ). Let S∗
0 ≺ X be suh that |S0| = n and let H := Min(X) \

Min(S0). Further, let
S =

{
S ∈ (ω)n : S 4 S0 ∨ S0 4 S ⊑ X

}and de�ne
T =

{
s ∈

(
seq(2)

)d
: ∃S ∈ S

(
s = η(S)

)}
.We leave it as an exerise to the reader to hek that T and H are as desiredand that they have the desired properties. ⊣For the full version of the Halpern-Läuhli Theorem see RelatedResult 77. However, in many appliations the Weak Halpern-Läuhli



Notes 261Theorem is strong enough. For example theWeak Halpern-Läuhli The-orem is su�ient to prove that a �nite produt of Saks foring does not addsplitting reals (see Chapter 22 |Related Result 121).NotesVan der Waerden's Theorem. The theorem of van der Waerden an be onsid-ered as the beginning of Ramsey Theory and it was �rst proved by van der Waerdenin [34℄. For a short but not easy proof of van der Waerden's Theorem see Gra-ham and Rothshild [8℄, and for a ombinatorial proof of a slightly more generalresult see Pin [22, Chapter 3℄.For a desription of how van der Waerden found hisproof we refer the reader to [35℄.The Hales-Jewett Theorem. In Graham, Rothshild, and Spener [9, p. 35 �.℄ wean read the following remark: Van der Waerden's Theorem should be regarded,not as a result dealing with integers, but rather as a theorem about �nite sequenesformed from �nite sets. The Hales-Jewett Theorem strips van der Waer-den's Theorem of its unessential elements and reveals the heart of Ramsey theory.As mentioned above, the original proof of Hales and Jewett [13℄ (f. Prömel andVoigt [28, p. 117 f.℄) uses a double indution whih leads to an extremely fast grow-ing upper bound for the Hales-Jewett funtion HJ(n, r). In 1987, Shelah [30℄ founda fundamentally new proof of the Hales-Jewett Theorem whih just uses simpleindution on n and provides a muh better bound for HJ(n, r). The proof of theHales-Jewett Theorem (i.e., of Theorem 11.3) presented here is Shelah's proofmodi�ed by Matet [23℄, who replaed what is sometimes alled �Shelah's pigeonholelemma� by the Finite Ramsey Theorem. For the Hales-Jewett Theorem, andin partiular for Shelah's proof, see also Graham, Rothshild, and Spener [9, Chap-ter 2℄, Nilli [25℄, Prömel and Voigt [28, p. 119 �.℄, and Jukna [19, Chapter 29℄.Carlson's Lemma and the Partition Ramsey Theorem. Aording to Carl-son and Simpson [4, p. 268℄, Carlson proved Lemma 2.4 of [4℄ in 1982. In fat, heproved a stronger result involving so-alled �speial partitions�, whih are essentiallysegmented partitions where �nitely many bloks may be in�nite; and in the proof ofLemma 11.5 we essentially followed Carlson's proof of that stronger result, whih isTheorem 6.3 of [4℄. Carlson's Lemma, or more preisely Lemma 2.4 of [4℄, plays akey role in the proof of the Dual Ramsey Theorem, whih is the main result ofCarlson and Simpson [4℄. The Dual Ramsey Theorem orresponds to our Gen-eralisation 1 �where the set (ω)n is oloured with �nitely many olours � exeptthat the set of admissible olours of (ω)n is restrited to Borel olourings. Thus, theDual Ramsey Theorem is in a ertain sense the dual of Ramsey's Theorem.However, it was natural to seek a partition form (i.e., dual form) ofRamsey's Theo-rem whih works for arbitrary olourings. Suh a result we found in the PartitionRamsey Theorem (see also Related Result 75). The proof of the PartitionRamsey Theorem 11.4 is taken from Halbeisen [10, Chapter IV.2℄ (for the relationbetween the Partition Ramsey Theorem and other Ramsey-type results we referthe reader to Halbeisen [10, Chapter IV.4℄)..The Halpern-Läuhli Theorem. What we stated as Weak Halpern-LäuhliTheorem 11.6 is just a onsequene of the Halpern-Läuhli Theorem (see Re-lated Result 77), whih was �rst proved by Halpern and Läuhli in [15℄ and later



262 11 A Dual Form of Ramsey's Theoremby Halpern in [14℄ (see also Argyros, Felouzis and Kanellopoulos [1℄, Todor£evi¢ [32,Chapter 3℄, or Todor£evi¢ and Farah [33℄). Aording to Pinus and Halpern [26,p. 549℄ (f. [16, p. 97℄) the original purpose of the Halpern-Läuhli Theorem wasto show that in ZF, the Prime Ideal Theorem does not imply the Axiom of Choie,whih was proved by Halpern and Lévy in [16℄ (f. Theorem 7.16, where it is shownthat in ZFA, PIT does not imply AC). As mentioned above, in many appliations,a weak form or a partiular ase of the Halpern-Läuhli Theorem is su�ient(e.g., Halpern and Lévy [16, p. 97℄). The version of theHalpern-Läuhli Theoremgiven above� as well as the idea of proof � is taken from Carlson and Simpson [4,p. 272℄. For some appliations and other weak forms of the Halpern-Läuhli The-orem see Related Result 77.Related Results73. Van der Waerden numbers. For positive integers r and l1, l2, . . . , lr, the vander Waerden number w(l1, l2, . . . , lr; r) is the least positive integer N suh thatfor every r-olouring of set {1, 2, . . . , N}, there is a monohromati arithmetiprogression of length li of olour i for some i. In [3℄, Brown, Landman, andRobertson gave asymptoti lower bounds for w(l,m; 2) for �xed m, as well asfor w(4, 4, . . . , 4; r).74. Non-repetitive sequenes and van der Waerden's Theorem∗. A �nite set of oneor more onseutive terms in a sequene is alled a segment of the sequene. Asequene on a �nite set of symbols is alled non-repetitive if no two adjaentsegments are idential, where adjaent means abutting but not overlapping.It is known that there are in�nite non-repetitive sequenes on three symbols(see Pleasants [27℄), and on the other hand, it is obvious that a non-repetitivesequene on two symbols is at most of length 3. Erd®s has raised in [6℄ thequestion of the maximum length of a sequene on k symbols, suh that no twoadjaent segments are permutations of eah other. Suh a sequene is alledstrongly non-repetitive. Keränen [20℄ has shown that four symbols are enoughto onstrut an in�nite strongly non-repetitive sequene.Now, replaing the �nite set of symbols of an in�nite strongly non-repetitivesequene by di�erent prime numbers, one gets an in�nite sequene on a �niteset of integers suh that no two adjaent segments have the same produt. Itis natural to ask whether one an replae in the statement above �produt�by �sum�, whih leads to the following question: Is it possible to onstrut anin�nite sequene on a �nite set of integers suh that no two adjaent segmentshave the same sum? By an appliation of van der Waerden's Theorem, itis not hard to show that the answer to this question is negative. Moreover, inany in�nite sequene on a �nite set of integers we always �nd arbitrary large�nite sets of adjaent segments suh that all these segments have the samesum (see Hungerbühler and Halbeisen [11℄). However, it is still open whetherthere exists an in�nite sequene on a �nite set of integers suh that no twoadjaent segments of the same length have the same sum. It seems that vander Waerden's Theorem alone is not strong enough to solve this problem.75. Corollaries of the Partition Ramsey Theorem. Below, we present a few orollar-ies of the Partition Ramsey Theorem. We would like to mention that these



Related Results 263orollaries � like for example the Weak Halpern-Läuhli Theorem�alsofollow from the so-alled Dual Ramsey Theorem, whih is due to Carlsonand Simpson [4℄.Firstly we derive Ramsey's Theorem from the Partition Ramsey Theo-rem: To every r-olouring π : [ω]n → r of the n-element subsets of ω we anassign an r-olouring τ : (ω)n → r by stipulating τ (S) := π
(
Min(S∗) \ {0}

).Now, if (X)(n)
∗ is monohromati for τ for some X ∈ (ω)ω, then Min(X) \ {0}is monohromati for π, and sine Min(X) ∈ [ω]ω, this shows that Ramsey'sTheorem 2.1 is just a speial ase of the Partition Ramsey Theorem. Sim-ilarly, the Finite Ramsey Theorem 2.3 as well as the Hales-Jewett The-orem 11.2 follows from the following �nite version of the Partition RamseyTheorem whih is originally due to Graham and Rothshild [7, Corollary 10℄.Graham-Rothshild Result: For all m,n, r ∈ ω, where r ≥ 1 and n ≤ m,there exists an N ∈ ω, where N ≥ m, suh that for every r-olouring of (N)nthere exists a partition H ∈ (N)m, all of whose n-blok oarsenings have thesame olour.The relation between these results is illustrated by the following �gure.Partition Ramsey Theorem //

��

Ramsey's Theorem
��Graham-Rothshild Result //

��

Finite Ramsey TheoremHales-Jewett TheoremAs a matter of fat we would like to remind the reader that we used the Fi-nite Ramsey Theorem to prove the Hales-Jewett Theorem, that we usedthe Hales-Jewett Theorem to start the indution in the proof of Carl-son's Lemma 11.5, and that Carlson's Lemma was ruial in the proof of thePartition Ramsey Theorem.76. A generalisation of the Partition Ramsey Theorem. By ombining Carlson'sLemma with the Graham-Rothshild Result, Halbeisen and Matet [12℄proved a result whih is even stronger than the Partition Ramsey Theo-rem.77. The Halpern-Läuhli Theorem. Before we an state the full Halpern-LäuhliTheorem of Halpern and Läuhli [15℄, we have to introdue some terminology.A set T ⊆ <ωω, where <ωω =
⋃
n∈ω

nω, is a �nitely branhing tree if T is a tree(i.e., for every s ∈ T and k ∈ dom(s), s|k ∈ T ) suh that for all s ∈ T , the set{
t ∈ T : s ⊆ t ∧ |t| = |s|+ 1

} is �nite. An element s ∈ T of a tree T ⊆ <ωω isa leaf if {t ∈ T : s  t} = ∅}. If A and B are subsets of a tree T ⊆ <ωω, thenwe say that A supports (dominates) B if for all t ∈ B there exists an s ∈ Asuh that s ⊆ t (t ⊆ s). A subset D of a tree T ⊆ <ωω is said to be (h, k)-denseif there is an s ∈ T with |s| = h suh that {
t ∈ T : s ⊆ t ∧ |t| = h + k

} isdominated by D. Let ∏i∈d Ti = T0× . . .×Td−1 be a produt of trees Ti ⊆ <ωω.



264 11 A Dual Form of Ramsey's TheoremA produt ∏
i∈dAi ⊆

∏
i∈d Ti, where eah Ai is (h, k)-dense in Ti, is alled a

(h, k)-matrix. Now we an state Theorem 1 of Halpern and Läuhli [15℄.Halpern-Läuhli Theorem: Let ∏
i∈d Ti be a �nite produt of �nitelybranhing trees Ti ⊆ <ωω without leaves, and let Q ⊆ ∏

i∈d Ti. Then either(a) for eah k, Q ontains a (0, k)-matrix, or(b) there exists h suh that for eah k, (∏i∈d Ti
)
\Q ontains an (h, k)-matrix.There exist many reformulations, weakenings, and generalised forms of theHalpern-Läuhli Theorem. For example Hans Läuhli proved in a studentseminar at the ETH Zürih a weak form of the Halpern-Läuhli Theoremin whih the trees T ⊆ <ωω were replaed by ⋃
n∈ω

{
[ k
2n
, k+1

2n
) : k ∈ 2n

},and in whih the set [0, 1)2 was oloured with two olours. The Halpern-Läuhli Theorem is a very strong ombinatorial statement and even weakforms of it have interesting appliations (see for example Chapter 22 |RelatedResult 121, Blass [2, Polarized Theorem℄, or Milliken [24℄). However, there arealso some generalisations of the Halpern-Läuhli Theorem: For exampleLaver [21℄ generalised the perfet tree version of the Halpern-Läuhli The-orem to in�nite produts (see also Ramovi¢ [29℄), and Shelah [31℄ replaed thetrees T ⊆ <ωω of height ω by trees of unountable height (see also Dºamonja,Larson, and Mithell [5℄).78. Partition regularity. A �nite or in�nite matrix A with rational entries in whihthere are only a �nite number of non-zero entries in eah row is alled parti-tion regular if, whenever the natural numbers are �nitely oloured, there is amonohromati vetor x (i.e., all entries of x have the same olour) with Ax = 0.Many of the lassial theorems of Ramsey Theory may naturally be interpretedas assertions that partiular matries are partition regular. For example, Shur'sTheorem (i.e., Corollary 2.5) is the assertion that the 1×3-matrix (1, 1,−1) ispartition regular; or van der Waerden's Theorem is (with the strengtheningthat we may also hoose the ommon di�erene of the arithmeti progression tohave the same olour) exatly the statement that a ertain (m− 1)× (m+ 1)-matrix is partition regular (see Hindman, Leader, and Strauss [18℄). While inthe �nite ase partition regularity is well understood, very little is known inthe in�nite ase. For a survey of results on partition regularity of matries seeHindman [17℄. Referenes1. Spiros A. Argyros, Vaggelis Felouzis, and Vassilis Kanellopoulos, Aproof of Halpern-Läuhli partition theorem, European Journal of Combina-toris, vol. 23 (2002), 1�10.2. Andreas Blass, A partition theorem for perfet sets, Proeedings of theAmerian Mathematial Soiety, vol. 82 (1981), 271�277.3. Tom Brown, Brue M. Landman, and Aaron Robertson, Bounds onsome van der Waerden numbers, Journal of Combinatorial Theory (A),vol. 115 (2008), 1304�1309.4. Timothy J. Carlson and Steve G. Simpson, A dual form of Ramsey'sTheorem, Advanes in Mathematis, vol. 53 (1984), 265�290.



Referenes 2655. Mirna Dºamonja, Jean A. Larson, and William J. Mithell, A parti-tion theorem for a large dense linear order , Israel Journal of Mathematis,vol. 171 (2009), 237�284.6. Paul Erd®s, Some unsolved problems, Magyar Tudomanyos AkademiaMatematikai Kutató Intezetenek Közlemenyei, vol. 6 (1961), 221�254.7. Ronald L. Graham and Brue L. Rothshild, Ramsey's Theorem for n-parameter sets, Transations of the Amerian Mathematial Soiety,vol. 159 (1971), 257�292.8. , A short proof of van der Waerden's Theorem on arithmeti progressions,Proeedings of the Amerian Mathematial Soiety, vol. 42 (1974), 385�386.9. Ronald L. Graham, Brue L. Rothshild, and Joel H. Spener, Ram-sey Theory, 2nd ed., J.Wiley & Sons, New York, 1980.10. Lorenz Halbeisen, Combinatorial properties of sets of partitions, Habilita-tionsshrift (2003/2009), University of Bern/Zürih (Switzerland).11. Lorenz Halbeisen and Norbert Hungerbühler, An appliation of van derWaerden's theorem in additive number theory , Integers. Eletroni Journalof Combinatorial Number Theory, vol. 0 (2000), #A07, 5 pp. (eletroni).12. Lorenz Halbeisen and Pierre Matet, A result in dual Ramsey theory ,Journal of Combinatorial Theory (A), vol. 100 (2002), 394�398.13. Alfred W. Hales and Robert I. Jewett, Regularity and positional games,Transations of the Amerian Mathematial Soiety, vol. 106 (1963),222�229.14. James D. Halpern, Nonstandard ombinatoris, Proeedings of the Lon-don Mathematial Soiety, Ser. III, vol. 30 (1975), 40�54.15. James D. Halpern and Hans Läuhli, A partition theorem, Transationsof the Amerian Mathematial Soiety, vol. 124 (1966), 360�367.16. James D. Halpern and Azriel Lévy, The Boolean prime ideal theorem doesnot imply the axiom of hoie, in Axiomati Set Theory (Dana S. Sott, ed.),
[Proeedings of Symposia in Pure Mathematis, Vol. XIII, Part I], AmerianMathematial Soiety, Providene, Rhode Island, 1971, pp. 83�134.17. Neil Hindman, Partition regularity of matries, in Combinatorial NumberTheory (Brue Landman, Melvyn B. Nathanson, Jaroslav Ne²et°il, Rihard J.Nowakowski, and Carl Pomerane, eds.), Proeedings of the `Integers Confer-ene 2005' in Celebration of the 70th Birthday of Ronald Graham. Carrollton,Georgia, USA, Otober 27�30, 2005, Walter de Gruyter, Berlin, 2007, pp. 265�298.18. Neil Hindman, Imre Leader, and Dona Strauss, Open problems in parti-tion regularity ,Combinatoris, Probability and Computing, vol. 12 (2003),571�583.19. Stasys Jukna, Extremal ombinatoris. With appliations in omputersiene, [Texts in Theoretial Computer Siene], Springer-Verlag, Berlin, 2001.20. Veikko Keränen, Abelian squares are avoidable on 4 letters, in Automata,languages and programming (Vienna, 1992) (A.R.D. Mathias, ed.),
[Leture Notes in Computer Siene 623], Springer-Verlag, Berlin, 1992, pp. 41�52.21. Rihard Laver, Produts of in�nitely many perfet trees, Journal of theLondon Mathematial Soiety (2), vol. 29 (1984), 385�396.



266 11 A Dual Form of Ramsey's Theorem22. M. Lothaire, Combinatoris on Words, [Cambridge Mathematial Libra-ry], Cambridge University Press, Cambridge, 1997, With a foreword by RogerLyndon and a prefae by Dominique Perrin, Correted reprint of the 1983 orig-inal, with a new prefae by Perrin.23. Pierre Matet, Shelah's proof of the Hales-Jewett theorem revisited , EuropeanJournal of Combinatoris, vol. 28 (2007), 1742�1745.24. Keith R. Milliken, A Ramsey theorem for trees, Journal of CombinatorialTheory (A), vol. 26 (1979), 215�237.25. Alon Nilli, Shelah's proof of the Hales-Jewett theorem, in Mathematis ofRamsey Theory (J. Ne²et°il and V. Rödl, eds.), [Algorithms and Combina-toris 5], Springer-Verlag, Berlin, 1990, pp. 150�151.26. David Pinus and James D. Halpern, Partitions of produts, Transationsof the Amerian Mathematial Soiety, vol. 267 (1981), 549�568.27. Peter A. B. Pleasants, Non-repetitive sequenes, Proeedings of theCambridge Philosophial Soiety, vol. 68 (1970), 267�274.28. Hans J. Prömel and Bernd Voigt, Graham-Rothshild parameter sets, inMathematis of Ramsey Theory (J. Ne²et°il and V. Rödl, eds.), Springer-Verlag, Berlin, 1990, pp. 113�149.29. Goran Ramovi¢, Halpern-Läuhli theorem on the produt of in�nitely manytrees in the version of strongly embedded trees,Univerzitet u Beogradu. Pub-likaije Elektrotehni£kog Fakulteta. Serija Matematika, vol. 7 (1996),18�24.30. Saharon Shelah, Primitive reursive bounds for the van der Waerden num-bers, Journal of the Amerian Mathematial Soiety, vol. 1 (1988),683�697.31. , Strong partition relations below the power set: onsisteny; was Sier-pi«ski right? II., in Sets, Graphs and Numbers (Budapest, 1991) (G. Ha-lasz, Laszlo Lovasz, D. Miklos, and T. Szonyi, eds.), Colloquia MathematiaSoietatis János Bolyai, vol. 60, North-Holland, Amsterdam, 1992, pp. 637�668.32. Stevo Todor£evi¢, Introdution to Ramsey Spaes, [Annals of Mathe-matis Studies 174], Prineton University Press, Prineton (New Jersey), 2010.33. Stevo Todor£evi¢ and Ilijas Farah, Some appliations of the methodof foring, [Yenisei Series in Pure and Applied Mathematis], Yenisei,Mosow,1995.34. Bartel L. van der Waerden, Beweis einer Baudetshen Vermutung , NieuwArhief voor Wiskunde, vol. 15 (1927), 212�216.35. ,Wie der Beweis der Vermutung von Baudet gefunden wurde, Elementeder Mathematik, vol. 53 (1998), 139�148.



Part II
From Martin's Axiom to Cohen's Foring





...hanges of genus are brought about not by theintrodution of major or minor thirds, divided orundivided, but by a melodi progression through in-tervals proper to ertain genera. It remains to benoted that the hange from one genus to anotheris also aompanied by a hange in melodi style....a di�erene of genus may be assumed when anotable divergene in melodi style is heard, withrhythm and words suitably aommodated to it.Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558





12The Idea of Foring
Foring is a tehnique� invented by Cohen in the early 1960s� for provingthe independene, or at least the onsisteny, of ertain statements relative toZFC. In fat, starting from a model of ZFC, Cohen onstruted in 1962 modelsof ZF in whih the Axiom of Choie fails as well as models of ZFC in whih theContinuum Hypothesis fails. On the other hand, starting from a model of ZF,Gödel onstruted a model of ZFC in whih the Continuum Hypothesis holds(f. Chapter 5). By ombining these results we get that the Axiom of Choie isindependent of ZF and that the Continuum Hypothesis is independent of ZFC.Before we disuss Cohen's foring tehnique, let us brie�y reall what itmeans for a sentene ϕ to be independent of ZFC: From a syntatial pointof view it means that neither ϕ nor its negation is provable from ZFC. Froma semantial point of view it means that there are models of ZFC in whih ϕholds and some in whih ϕ fails. Equivalently we an say that ϕ is independentof ZFC i� ϕ as well as its negation is onsistent with ZFC (i.e., ZFC + ϕ aswell as ZFC+ ¬ϕ has a model).Now, in order to proof that a given sentene ϕ is onsistent with ZFC, wehave to show that ZFC + ϕ is onsistent� taitly assuming the onsistenyof ZFC. This an be done in di�erent ways: For example one ould apply theCompatness Theorem 3.7 and show that whenever ZFC∗ ⊆ ZFC is a �niteset of axioms, then ZFC∗ + ϕ has a model (i.e., ZFC∗ + ϕ is onsistent); or,starting from a model of ZFC, one ould onstrut diretly a model of ZFC+ϕ.These two approahes orrespond to two di�erent ways to look at foring:In the latter point of view we onsider foring as a tehnique for extendingmodels of ZFC in suh a way that ϕ holds in the extended model. Exept forChapter 16, we will mainly take this approah whih will be demonstrated inChapter 14. Before we disuss the former approah, let us give two exampleshow a model of a given theory an be extended.An example from Group Theory : Consider the group G = (Q+, · ) (i.e.,
G � GT, the domain of G is the set of all positive rational numbers with



272multipliation as operation), and let ϕ be the statement ∃x (x · x = 2). Obvi-ously we have G 2 ϕ.Now, extend the domain of G by elements of the form qX , where q ∈ Q+,and for all p, q ∈ Q+ de�ne:
• p ∗ q := p · q
• p ∗ qX := (p · q)X
• pX ∗ q := (p · q)X
• pX ∗ qX := 2 · p · q
• (pX)−1 :=

(
1
2 · p−1

)
XLet Q+[X ] = Q+∪{pX : p ∈ Q+} and G[X ] = (Q+[X ], ∗ ). We leave it as anexerise to the reader to show that G[X ] � GT. Now, G[X ] � 1X ∗ 1X = 2,and therefore, G[X ] � ϕ. Thus, the extended model G[X ] is a model of GTand the statement ϕ, whih failed in G, holds in G[X ]. So, by extending anexisting model we were able to �fore� that a given statement beame true.An example from Peano Arithmeti: Assume that PA is onsistent and let

N = (N, 0, s,+, · )�where for n ∈ N, s(n) := n + 1�be a model of PA.Let ψ be the statement ∃x (x + x = 1), where 1 := s(0). Obviously we have
N 2 ψ. Now, let us try the same trik as above: So, extend the domain of Nby elements of the form n +X , where n ∈ N, and extend the operation �+�by stipulating X + X := 1. Now, the orresponding model N[X ] is surely amodel of ψ, but do we also have N[X ] � PA?By setting ϕ(x) ≡ (x = 0)∨∃y (x = s(y)) in PA7, we get that eah numberis either equal to 0 or a suessor. Now, sine X 6= 0, it must be a suessor.Thus, there is a y suh that X = y + 1, and sine X 6= 1, by PA2 we get
y 6= 0. Similarly we an show that there is a z suh that y = z + 1, andonsequently X = (z + 1) + 1. Now, 1 = X +X = X +

(
(z + 1) + 1

) and byPA4 we get X+
(
(z+1)+1

)
=

(
X+(z+1)

)
+1, whih implies (by PA2) that

X + (z + 1) = 0. Applying again PA4 we �nally get (X + z) + 1 = 0, whihontradits PA1. Thus, N[X ] is not a model of PA.This example shows that just extending an existing model of a theory Tin order to �fore� that a given statement beomes true may result in a modelwhih is no longer a model of T.Let us now disuss the other approah to foring (demonstrated in Chap-ter 16), where one shows that whenever ZFC∗ is a �nite set of axioms of ZFC,then ZFC∗ + ϕ is onsistent (as always, we taitly assume the onsisteny ofZFC): Let ZFC∗ be an arbitrary �nite set of axioms of ZFC and let V be amodel of ZFC (e.g.,V = L). The so-alledRefletion Priniple (disussedin Chapter 15) tells us that for every �nite fragment ZFC∗ of ZFC (i.e., forevery �nite set of axioms of ZFC) there is a set model M suh that M � ZFC∗where the domain of M is a set M in the model V. The goal is now to showthat for any �nite set Φ of axioms of ZFC, there is a �nite fragment ZFC∗of ZFC suh that it is possible to extend any set model M of ZFC∗ to a setmodel M[X ] of Φ + ϕ (i.e., we �fore� that ϕ as well as the formulae in Φ



273beome true in M[X ]). Then, sine Φ was arbitrary, by the CompatnessTheorem 3.7 we get the onsisteny of ZFC+ ϕ.The advantage of this approah is that the entire foring onstrution anbe arried out in the model V: Beause M , the domain of M, is a set in themodel V (but not in the model M), we an extend the model M within Vto the desired model M[X ], suh that the domain of M[X ] is still a set in V.So, all takes plae within the model V.To illustrate this approah let us onsider again the group-theoreti examplefrom above: Let us work with the group G = (R+, · ), where R+ is the set ofpositive real numbers. Now, the group G = (Q+, · ) is just a subgroup of Gand in G we an extend G to the group G[
√
2] with domain Q+ ∪

{
p ·

√
2 :

p ∈ Q+
}, whih is still a subgroup of G.A di�erene to the other approah is that we look now at the modelG fromthe larger model G (i.e., from �outside�), and extend G within this model.Another di�erene is that in the former example, the symbol X�at least forpeople living in G� is just a symbol with some spei�ed properties, whereasin the latter example, √2�at least for people living in G� is a proper realnumber. Of ourse, for people living in G, √2 is also just a symbol and is notmore real than any other symbol. On the other hand, in the latter examplethe people living in G know already that √

2 exists, whereas in the formerexample there are no suh people, sine our universe is just G.Before the notion of foring is introdued in Chapter 14, we present in thenext hapter the so-alled Martin's Axiom. We do so beause on the one hand,Martin's Axiom is a statement losely related to foring, involving also partiallyordered sets and ertain generi �lters, but on the other hand, unlike foring,it does not involve any model-theoreti or even metamathematial arguments.Furthermore, Martin's Axiom is a proper set-theoretial axiom whih is widelyused in other branhes of Mathematis, espeially in Topology.





13Martin's Axiom
In this hapter, we shall introdue a set-theoreti axiom, known as Martin'sAxiom, whih is independent of ZFC. In the presene of the Continuum Hy-pothesis,Martin's Axiom beomes trivial, but if the Continuum Hypothesis fails,then Martin's Axiom beomes an interesting ombinatorial statement as wellas an important tool in Combinatoris. Furthermore, Martin's Axiom providesa good introdution to the foring tehnique whih will be introdued in thenext hapter.Filters on Partially Ordered SetsBelow, we introdue (and reall respetively) some properties of partially or-dered sets, whih will play an important role in the development and investi-gation of foring onstrutions.Let P = (P,≤) be a partially ordered set. The elements of P are usuallyalled onditions, sine in the ontext of foring, elements of partially or-dered sets are onditions for sentenes to be true in generi extensions. Twoonditions p1 and p2 of P are alled ompatible, denoted p1 | p2, if there ex-ists a q ∈ P suh that p1 ≤ q ≥ p2; otherwise they are alled inompatible,denoted p1 ⊥ p2.A typial example of a partially ordered set is the set of �nite partialfuntions with inlusion as partial ordering: Let I and J be arbitrary sets.Then Fn(I, J) is the set of all funtions p suh that
• dom(p) ∈ fin(I), i.e., dom(p) is a �nite subset of I, and
• ran(p) ⊆ J .For p, q ∈ Fn(I, J) de�ne:

p ≤ q ⇐⇒ dom(p) ⊆ dom(q) ∧ q|dom(p) ≡ pIf we onsider funtions as sets of ordered pairs, as we usually do, then p ≤ q isjust p ⊆ q. We leave it as an exerise to the reader to verify that (Fn(I, J),⊆)is indeed a partially ordered set.



276 13 Martin's AxiomLet P = (P,≤) be a partially ordered set, and for the moment let C ⊆ P .Then C is alled direted if for any p1, p2 ∈ C there is a q ∈ C suh that
p1 ≤ q ≥ p2, C is alled open if p ∈ C and q ≥ p implies q ∈ C, and C isalled downwards losed if p ∈ C and q ≤ p implies q ∈ C. Furthermore,
C is alled dense if for every ondition p ∈ P there is a q ∈ C suh that
q ≥ p. For example with respet to (

Fn(I, J),⊆
), for every x ∈ I the set{

p ∈ Fn(I, J) : x ∈ dom(p)
} is open and dense. Finally, a non-empty set

F ⊆ P is a �lter (on P ) if it is direted and downwards losed. Notie thatthis de�nition of ��lter� reverses the ordering from the de�nition given inChapter 5. Let D ⊆ P(P ) be a set of open dense subsets of P . A �lter G ⊆ Pis a D-generi �lter on P if G ∩ D 6= ∅ for every open dense set D ∈ D .As an example onsider again (
Fn(I, J),⊆

): If F is a �lter on Fn(I, J), then⋃
F : X → J is a funtion, where X is some (possibly in�nite) subset of I.Proposition 13.1. If (P,≤) is a partially ordered set and D is a ountableset of open dense subsets of P , then there exists a D-generi �lter on P .Moreover, for every p ∈ P there exists a D-generi �lter G on P whihontains p.Proof. For D = {Dn : n ∈ ω} and p−1 := p, hoose for eah n ∈ ω a pn ∈ Dnsuh that pn ≥ pn−1, whih is possible sine Dn is dense. Then the set

G =
{
q ∈ P : ∃n ∈ ω (q ≤ pn)

}is a D-generi �lter on P and p ∈ G. ⊣A set A ⊆ P is an anti-hain in P if any two distint elements of Aare inompatible. As mentioned in Chapter 5, this de�nition of �anti-hain� isdi�erent from the one used in Order Theory. A partially ordered set P = (P,≤)satis�es the ountable hain ondition, denoted , if every anti-hain in
P is at most ountable (i.e., �nite or ountably in�nite).As a onsequene of the following lemma we get that Fn(I, J) satis�es whenever J is ountable.Lemma 13.2 (∆-System Lemma). Let E be an unountable family of �nitesets. Then there exist an unountable family C ⊆ E and a �nite set ∆ suhthat for any distint elements x, y ∈ C : x ∩ y = ∆.Proof. We shall onsider two ases.Case 1 : There exists an unountable E ′ ⊆ E suh that for every a ∈ ⋃

E ′,
{x ∈ E ′ : a ∈ x} is ountable. Firstly notie that for suh a set E ′, ⋃E ′ isunountable, and that for any ountable set C ⊆ ⋃

E ′, also the set {x ∈ E ′ :
x ∩ C = ∅} must be unountable. By trans�nite indution we onstrut anunountable family {xα : α ∈ ω1} ⊆ E ′ of pairwise disjoint sets as follows: Let
x0 be any member of E ′. If we have already onstruted a set Cα = {xξ : ξ ∈
α ∈ ω1} ⊆ E ′ of pairwise disjoint sets, let xα ∈ E ′ be suh that xα∩⋃Cα = ∅.Then C = {xα : α ∈ ω1} and ∆ = ∅ are as required.



Filters on partially ordered sets 277Case 2 : For every unountable E ′ ⊆ E there exists an a ∈ ⋃
E ′ suh that

{x ∈ E ′ : a ∈ x} is unountable. In this ase, onsider the funtion ν : E → ω,where for all x ∈ E , ν(x) := |x|. Sine E is unountable, there is an n ∈ ωand an unountable set E ′ ⊆ E suh that ν|E ′ ≡ n, i.e., for all x ∈ E ′ we have
ν(x) = n.The proof is now by indution on n: If n = 1, then for any two distintelements x, y ∈ E ′ we have x ∩ y = ∅, thus, ∆ = ∅ and in this ase C = E ′.Now, let us assume that ν|E ′ ≡ n + 1 for some n ≥ 1 and that thelemma holds for n. Sine we are in Case 2, there is an a ∈ ⋃

E ′ suh that
{x ∈ E ′ : a ∈ x} is unountable. Thus, we an apply the indution hypothesisto the family E ′

a :=
{
x \ {a} : x ∈ E ′ ∧ a ∈ x

} and obtain an unountablefamily Ca ⊆ E ′
a and a �nite set∆a suh that for any distint elements x, y ∈ Cawe have x∩ y = ∆a. Then C :=

{
x∪ {a} : x ∈ Ca

} and ∆ := ∆a ∪ {a} are asrequired. ⊣Corollary 13.3. If I is arbitrary and J is ountable, then Fn(I, J) satis�esthe ountable hain ondition.Proof. Let F ⊆ Fn(I, J) be an unountable family of partial funtions. Wehave to show that F is not an anti-hain, i.e., we have to �nd at least twodistint onditions in F whih are ompatible. Let E :=
{
dom(p) : p ∈ F

}.Then E is obviously a family of �nite sets. Further, sine J is assumed to beountable, for every �nite set K ∈ fin(I) the set {
p ∈ E : dom(p) = K

} isountable, and therefore, sine F is unountable, E is unountable as well.Applying the ∆-System Lemma 13.2 to the family E yields an unount-able family C ⊆ F and a �nite set ∆ ⊆ I, suh that for all distint p, q ∈ C ,
dom(p) ∩ dom(q) = ∆.Sine J is ountable and ∆ is �nite, unountably many onditions of Cmust agree on ∆, i.e., for some p0 ∈ Fn(I, J) with dom(p0) = ∆, the set
C ′ =

{
q ∈ C : q|∆ = p0

} is unountable. So, C ′ is an unountable subsetof F onsisting of pairwise ompatible onditions, hene, F is not an anti-hain. ⊣The following hypothesis an be regarded as a generalisation of Proposi-tion 13.1� for the reason why P must satisfy  see Proposition 13.4.MA(κ): If P = (P,≤) is a partially ordered set whih satis�es , and
D is a set of at most κ open dense subsets of P , then there exists a
D-generi �lter on P .On the one hand, MA(ω) is just Proposition 13.1, and therefore, MA(ω)is provable in ZFC. On the other hand, MA(c) is just false as we will seein Proposition 13.5. However, the following statement an neither be provednor disproved in ZFC and an therefore be onsidered as a proper axiom ofSet Theory (espeially when CH fails):



278 13 Martin's AxiomMartin's Axiom (MA): If P = (P,≤) is a partially ordered set whihsatis�es , and D is a set of less than c open dense subsets of P , thenthere exists a D-generi �lter on P . In other words, MA(κ) holds foreah ardinal κ < c.If we assume CH, then κ < c is the same as saying κ ≤ ω, thus, by Proposi-tion 13.1, CH implies MA. On the other hand, MA an replae the ContinuumHypothesis in many proofs that use CH; whih is important sine MA is on-sistent with ZFC+ ¬CH (see Chapter 19).It might be tempting to generalise Martin's Axiom by weakening itspremise: Firstly, one might try to omit , and seondly, one might try toallow larger families of open dense subsets of P . However, both attempts togeneralise MA fail.Proposition 13.4. There exist a (non ) partially ordered set P = (P,≤)and a set D of ardinality ω1 of open dense subsets of P suh that no �lteron P is D-generi.Proof. Consider the partially ordered set (Fn(ω, ω1),⊆
). For eah α ∈ ω1, theset

Dα =
{
p ∈ Fn(ω, ω1) : α ∈ ran(p)

}is an open dense subset of Fn(ω, ω1): Obviously, Dα is open. To see that Dαis also dense, take any p ∈ Fn(ω, ω1). If α ∈ ran(p), then p ∈ Dα and we aredone. Otherwise, let n ∈ ω be suh that n /∈ dom(p) (notie that suh an nexists sine dom(p) is �nite). Now, let q := p ∪ {〈n, α〉}; then q ∈ Dα and
q ≥ p. Similarly, for eah n ∈ ω, the set En =

{
p ∈ Fn(ω, ω1) : n ∈ dom(p)

}is open dense.Let D = {Dα : α ∈ ω1} ∪ {En : n ∈ ω}; then |D | = ω1. Assume that
G ⊆ Fn(ω, ω1) is a D-generi �lter on Fn(ω, ω1). Sine for eah n ∈ ω, G ∩
En 6= ∅, fG =

⋃
G is a funtion from ω to ω1. Further, sine for eah α ∈ ω1,

G ∩ Dα 6= ∅, the funtion fG : ω → ω1 is even surjetive, whih ontraditsthe de�nition of ω1. ⊣Proposition 13.5. MA(c) is false.Proof. Consider the partially ordered set (
Fn(ω, 2),⊆

). Then Fn(ω, 2) isountable and onsequently satis�es . For eah g ∈ ω2, the set
Dg =

{
p ∈ Fn(ω, 2) : ∃n ∈ ω

(
p(n) = 1− g(n)

)}is an open dense subset of Fn(ω, 2): Obviously, Dg is open, and for p /∈ Dg let
q := p∪ {〈n, 1− g(n)〉} where n /∈ dom(p). Then q ∈ Dg and q ≥ p. Similarly,for eah n ∈ ω, the set Dn =

{
p ∈ Fn(ω, 2) : n ∈ dom(p)

} is open dense.Let D = {Dg : g ∈ ω2} ∪ {Dn : n ∈ ω}. Then |D | = |ω2| = c. Assumethat G ⊆ Fn(ω, 2) is a D-generi �lter on Fn(ω, 2). Sine for eah n ∈ ω,
G ∩ Dn 6= ∅, fG =

⋃
G is a funtion from ω to 2. Further, sine for eah

g ∈ ω2, G∩Dg 6= ∅, fG 6= g. Thus, fG would be a funtion from ω to 2 whihdi�ers from every funtion g ∈ ω2, whih is impossible. ⊣



Some onsequenes of MA(σ-entred) 279Weaker Forms of MABelow, we introdue a few forms of Martin's Axiom whih are in fat properweakenings of MA (f. Related Result 81).Let P = (P,≤) be a partially ordered set. P is said to be ountable ifthe set P is ountable; and P is said to be σ-entred if P is the union of atmost ountably many entred sets, where a set Q ⊆ P is alled entred, ifany �nite set q1, . . . , qn ∈ Q has an upper bound in Q.Let P be any property of partially ordered sets, e.g., P = σ-entred,
P = , or P = ountable. Then MA(P) is the following statement.MA(P): If P = (P,≤) is a partially ordered set having the property P ,and D is a set of less than c open dense subsets of P , then there existsa D-generi �lter on P .Sine every ountable partially ordered set is σ-entred, and every σ-entredpartially ordered set satis�es , we obviously get:MA ⇒ MA(σ-entred) ⇒ MA(ountable)Below, we present some onsequenes of Martin's Axiom for ountable and
σ-entred partially ordered sets.Some onsequenes of MA(σ-entred)Theorem 13.6. MA(σ-entred) implies p = c.Proof. Let κ < c be an in�nite ardinal and let F = {xα : α ∈ κ} ⊆ [ω]ω be afamily with the strong �nite intersetion property (i.e., intersetions of �nitelymany members of F are in�nite) of ardinality κ. Under the assumption ofMA(σ-entred) we onstrut an in�nite pseudo-intersetion of F .Let P be the set of all ordered pairs 〈s, E〉 suh that s ∈ [ω]<ω and
E ∈ fin(κ); and for 〈s, E〉, 〈t, F 〉 ∈ P de�ne

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ⊆
⋂{

xα ∈ F : α ∈ E
}
.For s ∈ [ω]<ω let Ps :=

{
〈s, E〉 ∈ P : E ∈ fin(κ)

}. Then any �nite set
〈s, E1〉, . . . , 〈s, En〉 ∈ Ps has an upper bound, namely 〈

s,
⋃n
i=1Ei

〉, and sine
[ω]<ω is ountable and P =

⋃{
Ps : s ∈ [ω]<ω

}, the partially ordered set
(P,≤) is σ-entred. For eah α ∈ κ and n ∈ ω, the set

Dα,n =
{
〈s, E〉 ∈ P : α ∈ E ∧ |s| > n

}is an open dense subset of P . Let D = {Dα,n : α ∈ κ∧n ∈ ω}. Then |D | = κ,in partiular, |D | < c. So, by MA(σ-entred) there exists a D-generi �lter
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G on P . Let xG :=

⋃{
s ∈ [ω]<ω : ∃E ∈ fin(κ)

(
〈s, E〉 ∈ G

)}. Then, byonstrution, xG is in�nite. Moreover, for every α ∈ κ there is a ondition
〈s, E〉 ∈ G suh that α ∈ E, whih implies that xG \ s ⊆ xα. Hene, for eah
α ∈ κ we have xG ⊆∗ xα, and therefore, xG is an in�nite pseudo-intersetionof F . ⊣The key idea in the proof that MA(σ-entred) =⇒ 2κ = c for all in�niteardinals κ < c is to enode subsets of an almost disjoint family of ardinality
κ < c by subsets of ω. For the premise of the following lemma� in whih the�odes� are onstruted� reall that there is always an almost disjoint familyof ardinality c, and therefore of any ardinality κ ≤ c (f. Proposition 8.6).Lemma 13.7. Let κ < c be an in�nite ardinal and let A = {xα : α ∈ κ} ⊆
[ω]ω be an almost disjoint family of ardinality κ. Furthermore, let B ⊆ Abe any subfamily of A and let C = A \ B. If we assume MA(σ-entred),then there exists a set c ⊆ ω suh that for all x ∈ A :

|c ∩ x| = ω ⇐⇒ x ∈ BProof. Similar as in the proof of Theorem 13.6, let P be the set of all orderedpairs 〈s, E〉 suh that s ∈ [ω]<ω and E ∈ fin(C ); and for 〈s, E〉, 〈t, F 〉 ∈ Pde�ne
〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ∩

⋃
E = ∅ .Similar as above, one shows that the partially ordered set (P,≤) is σ-entred.Now, for eah xγ ∈ C , the set

Dxγ
=

{
〈s, E〉 ∈ P : xγ ∈ E

}is an open dense subset of P ; and for eah xβ ∈ B and eah k ∈ ω, the set
Dxβ,k =

{
〈s, E〉 ∈ P : |s ∩ xβ | ≥ k

}is also an open dense subset of P . Notie that we do not require that C or B isnon-empty. Finally, let D = {Dxγ
: xγ ∈ C }∪{Dxβ,k : xβ ∈ B∧k ∈ ω}. Then

|D | = κ, and sine κ < c we get |D | < c. So, by MA(σ-entred) there exists a
D-generi �lter G on P . Let c = ⋃{

s ∈ [ω]<ω : ∃E ∈ fin(C )
(
〈s, E〉 ∈ G

)}
.Then for any xβ ∈ B, |c∩xβ | = ω; and, like in the proof of Theorem 13.6, forany xγ ∈ C , |c∩xγ | < ω. Thus, the set c ⊆ ω has the required properties. ⊣Now we are ready to prove the following onsequenes of MA(σ-entred):Theorem 13.8. If we assume MA(σ-entred), then for all in�nite ardinals

κ < c we have 2κ = c, and as a onsequene we get that c is regular.



MA(ountable) implies the existene of Ramsey ultra�lters 281Proof. Let κ < c be an in�nite ardinal. We have to show that 2κ = c. For this,�x an almost disjoint family A = {xα : α ∈ κ} ⊆ [ω]ω of ardinality κ, and foreah u ∈ P(κ) let Bu := {xα ∈ A : α ∈ u}. Then, by Lemma 13.7, there is aset cu ⊆ ω suh that for eah x ∈ A we have |cu∩x| = ω ⇐⇒ x ∈ Bu. Notiethat for any distint u, v ∈ P(κ) we have cu 6= cv. Indeed, if u, v ∈ P(κ) aredistint, then without loss of generality we may assume that there exists an
α ∈ κ suh that α ∈ u \ v. So, cu ∩xα is in�nite, whereas cv ∩xα is �nite, andhene, cu 6= cv. Thus, the mapping

P(κ) → P(ω)
u 7→ cuis one-to-one, whih implies that 2κ ≤ c. Now, sine ω ≤ κ, and onsequently

c ≤ 2κ, we �nally get 2κ = c.To see that c is regular assume towards a ontradition that κ = cf(c) < c.Then, by Corollary 5.12, c < cκ, but sine c = 2κ we get that cκ =
(
2κ

)κ
=

2κ = c, a ontradition. ⊣MA(ountable) implies the existene of Ramsey ultra�ltersAs a onsequene of MA(ountable) we get that there are 2c mutuallynon-isomorphi Ramsey ultra�lters. By Chapter 10 |Related Result 64, itwould be enough to show that MA(ountable) implies p = c; however, this isnot the ase (f. Related Results 79�81 and Corollary 21.11).Proposition 13.9. MA(ountable) implies that there exist 2c mutually non-isomorphi Ramsey ultra�lters.Proof. Sine there are just c permutation of ω, in order to get 2c mutuallynon-isomorphi Ramsey ultra�lters it is enough to �nd 2c distint Ramseyultra�lters. The 2c mutually distint Ramsey ultra�lters are onstruted bytrans�nite indution: For every γ : c → 2 and every α ∈ c we onstrut a set
Fγ|α = {xβ,γ(β) : β ∈ α} ⊆ [ω]ω with the �nite intersetion property suh thatthe �lter generated by ⋃

α∈c Fγ|α is a Ramsey ultra�lter. In addition we makesure that for any two distint γ, γ′ ∈ c2, the �lters generated by ⋃
α∈c Fγ|αand ⋃

α∈c Fγ′|α are distint. In order to get Ramsey ultra�lters at the end,by Proposition 10.7.(b) it is enough to make sure that for every partition
{Yn : n ∈ ω} of ω, either there is an n0 ∈ ω suh that Yn0 ∈ ⋃

α∈c Fγ|α , orthere exists an x ∈ ⋃
α∈c Fγ|α suh that for all n ∈ ω, |x ∩ Yn| ≤ 1.Let {Pα : α ∈ c} be the set of all in�nite partitions of ω. Thus, for eah

α ∈ c, Pα = {Y αn : n ∈ ω} is a set of pairwise disjoint subsets of ω suh that⋃
Pα = ω. Further, let x0,0 := {2n : n ∈ ω}, x0,1 := {2n+ 1 : n ∈ ω}, andfor δ ∈ {0, 1} let F{〈0,δ〉} := {x0,δ} ∪

{
x ⊆ ω : |ω \ x| < ω

}. Obviously, bothsets F{〈0,0〉} and F{〈0,1〉} have the �nite intersetion property. Let α ∈ c andassume that for eah η ∈ α2 and eah β ∈ α we already have onstruted aset Fη|β ⊆ [ω]ω with the �nite intersetion property, and suh that for any
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β0 ∈ β1 ∈ α we have Fη|β0

⊆ Fη|β1
. In order to onstrut Fη we have toonsider two ases:

α limit ordinal : If α is a limit ordinal, then let
Fη =

⋃

β∈α

Fη|β .Sine the sets Fη|β are inreasing and eah of these sets has the �nite inter-setion property, Fη has the �nite intersetion property as well.
α suessor ordinal : If α is a suessor ordinal, say α = β0 + 1, then we pro-eed as follows: Consider the partition Pβ0 = {Yn : n ∈ ω} and notie thateither there is an n0 ∈ ω suh that Fη|β0

∪ {Yn0} has the �nite intersetionproperty, or for every n ∈ ω, Yn belongs to the dual ideal of Fη|β0
, i.e., isa subset of the omplement of a �nite intersetion of members of Fη|β0

. Weonsider the two ases separately:Case 1 : Let n0 ∈ ω be suh that Fη|β0
∪ {Yn0} has the �nite intersetionproperty. Let P1 = Fn(Yn0 , 2) and for p, q ∈ P1 let p ≤ q ⇐⇒ p ⊆ q. Then

(P1,≤) is ountable and for every �nite set E ∈ fin(β0), every n ∈ ω and eah
δ ∈ {0, 1}, the set

DE,n,δ =
{
p ∈ P1 :

∣∣p−1(δ) ∩
⋂

ι∈E

xι,η(ι)
∣∣ ≥ n

}is an open dense subset of P1. Now let D =
{
DE,n,δ : E ∈ fin(β0) ∧ n ∈

ω ∧ δ ∈ {0, 1}
}. Then |D | ≤ max{|α|, ω} < c and by MA(ountable) thereexists a D-generi �lter G on P1. For δ ∈ {0, 1}, let

xβ0,δ :=
⋃{

p−1(δ) : p ∈ G
}
.For δ ∈ {0, 1} we get that xβ0,δ ∈ [Yn0 ]

ω and that Fη := Fη|β0
∪ {xβ0,η(β0)}has the �nite intersetion property. Finally, let η, η′ ∈ α2 be suh that η(β0) =

1− η′(β0). Sine xβ0,0 ∩ xβ0,1 = ∅ we obviously have Fη 6= Fη′ . Moreover, byonstrution we get that Fη ∪ Fη′ laks the �nite intersetion property, andtherefore no ultra�lter an extend both Fη and Fη′ .Case 2 : If for eah n ∈ ω, Yn belongs to the dual ideal of Fη|β0
, then eah�nite intersetion of members of Fη|β0

meets in�nitely many sets of Pβ0 . Let
P2 ⊆ Fn(ω, 2) be suh that p ∈ P2 i� for every Y ∈ Pβ0 we have

max
{
|p−1(0) ∩ Y |, |p−1(1) ∩ Y |

}
≤ 1 ,and for p, q ∈ P2 let p ≤ q ⇐⇒ p ⊆ q. Like before, (P2,≤) is ountable andfor every �nite set E ∈ fin(β0), every n ∈ ω and eah δ ∈ {0, 1}, the set

DE,n,δ =
{
p ∈ P2 :

∣∣p−1(δ) ∩
⋂

ι∈E

xι,η(ι)
∣∣ ≥ n

}



Related Results 283is an open dense subset of P2. Let D =
{
DE,n,δ : E ∈ fin(β0) ∧ n ∈ ω ∧

δ ∈ {0, 1}
} and let G be a D-generi �lter on P2. Finally, for δ ∈ {0, 1} let

xβ0,δ :=
⋃{

p−1(δ) : p ∈ G
}. Then Fη := Fη|β0

∪ {xβ0,η(β0)} has the �niteintersetion property, and in addition there exists a set x ∈ Fη suh that forall n ∈ ω, |x ∩ Yn| ≤ 1. Further, for η, η′ ∈ α2 with η(β0) = 1 − η′(β0), noultra�lter an extend both Fη and Fη′ .Finally, for eah γ ∈ c2, let Fγ be the �lter generated by the set ⋃α∈c Fγ|α .By onstrution, for any two distint γ, γ′ ∈ c2, Fγ and Fγ′ are two distintRamsey ultra�lters, and onsequently there exist 2c mutually non-isomorphiRamsey ultra�lters. ⊣NotesMartin's Axiom. MA was �rst disovered by Martin and Solovay [8℄. The paperontains various equivalent formulations ofMA and numerous appliations (inludingTheorem 13.8). They also stress the usefulness of MA as a viable alternative to CHand point out that many of the traditional problems solved using CH an be solvedusing MA. Roughly speaking, this is beause under MA, sets of ardinality less than
c usually behave like ountable sets (but of ourse, there are exeptions).For equivalents of MA, onsequenes, weaker forms, history, et eterawe refer thereader to Kunen [7, Chapter II, �2��5℄, Fremlin [4℄, Weiss [12℄, Rudin [10℄, Blass [2,Setion 7℄, and Jeh [6, Chapter 16℄.MA(ountable) and Ramsey ultra�lters. Proposition 13.9 is due to Canjar [3℄(who atually proved even more), but the proof given above was ommuniatedto me by Mihael Hru²ák (ompare Proposition 13.9 with Chapter 10 |RelatedResult 64).The ∆-System Lemma. This useful ombinatorial result was �rst proved byShanin [11℄ (see Kunen [7, Chapter II, �1℄ for a slightly more general result).Related Results79. MA(σ-entred) ⇐⇒ p = c. As we have seen above in Theorem 13.6,MA(σ-entred) implies p = c. On the other hand, also the onverse is true,i.e., p = c implies MA(σ-entred). This somewhat surprising result was �rstproved by Bell [1℄ (see also Fremlin [4, 14C℄ or the proof of Theorem 19.4).80. MA(ountable) ⇐⇒ ov(M) = c. Fremlin and Shelah showed in [5℄ thatMA(ountable) is equivalent to ov(M) = c, where ov(M) denotes the over-ing number of the meagre ideal (de�ned in Chapter 21). See also Martin andSolovay [8, �4℄, Blass [2, Theorem 7.13℄, and Miller [9℄ for some further resultsonerning ov(M).81. MA(σ-linked). A partially ordered set (P,≤) is said to be σ-linked if we anwrite P =

⋃
n∈ω Pn, where eah set Pn onsists of pairwise ompatible elements.On the one hand, it is easily veri�ed thatMA =⇒ MA(σ-linked) =⇒ MA(σ-entred) =⇒ MA(ountable) ,
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14The Notion of Foring
In this hapter we present a general tehnique, alled foring, for extendingmodels of ZFC. The main ingredients to onstrut suh an extension are amodel V of ZFC (e.g., V = L), a partially ordered set P = (P,≤) ontainedin V, as well as a speial subset G of P whih will not belong to V. Theextended model V[G] will then onsist of all sets whih an be �desribed�or �named� in V, where the �naming� depends on the set G. The main taskwill be to prove that V[G] is a model of ZFC as well as to deide (within V)whether a given statement is true or false in a ertain extension V[G].To get an idea how this is done, think for a moment that there are peopleliving in V. For these people, V is the unique set-theoreti universe whihontains all sets. Now, the key point is that for any statement, these peopleare able to ompute whether the statement is true or false in a partiularextension V[G], even though they have almost no information about the set
G (in fat, they would atually deny the existene of suh a set).The Language of ForingThe notion of foring notion. In fat, a foring notion is just a partiallyordered set P = (P,≤) with a smallest element, i.e.,

∃p ∈ P ∀q ∈ P (p ≤ q) .Notie that this ondition implies that P is non-empty. Further notie thatwe do not require that P is anti-symmetri (i.e., p ≤ q and q ≤ p does notneessarily imply p = q), even though most of the foring notions onsidered inthis book are atually anti-symmetri. In fat, for every foring notion P thereexists an equivalent foring notion P̃ whih is anti-symmetri (see Fat 14.5below).In order to make sure that foring with a foring notion P yields a non-trivial extension, we require that a foring notion P = (P,≤) has the propertythat there are inompatible elements above eah p ∈ P , i.e.,
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∀p ∈ P ∃q1 ∈ P ∃q2 ∈ P

(
p ≤ q1 ∧ p ≤ q2 ∧ q1 ⊥ q2

)
.Notie that this property implies that there is no maximal element in P , i.e.,

∀p ∈ P ∃q ∈ P (p < q). Later on, when we shall be somewhat familiar withforing, the seond ondition will be taitly anelled in order to allow alsotrivial foring notions like for example P =
(
{∅}, ⊆

).Usually, foring notions are named after the person who investigated �rstthe orresponding partially ordered set in the ontext of foring (e.g., the for-ing notion de�ned below is alled Cohen foring). As in the previous hapter,the elements of P are alled �onditions�. Furthermore, if p and q and twoonditions and p ≤ q, then we say that p is weaker than q, or equivalently,that q is stronger than p.Below, we give two quite di�erent examples of foring notions. The �rstone is the foring notion whih is used to prove that ¬CH is onsistent withZFC, and the seond one is a foring notion whih will aompany us� indi�erent forms� throughout this book.1. Reall that Fn(I, J) is the set of all �nite partial funtions from I to J(de�ned in the previous hapter). Now, for ardinal numbers κ > 0 de�nethe partially ordered set
Cκ =

(
Fn(κ× ω, 2), ⊆

)
,i.e., for p, q ∈ Fn(κ×ω, 2), p is stronger than q i� the funtion p extends q.Obviously, the smallest (i.e., weakest) element of Fn(κ×ω, 2) is ∅ (i.e., theempty funtion), thus, Cκ has a smallest element. Furthermore, for eahondition (i.e., funtion) p ∈ Fn(κ×ω, 2) there is an ordered pair 〈α, n〉 ∈

κ × ω whih does not belong to dom(p). Now, let q1 := p ∪
{〈

〈α, n〉, 1
〉}and q2 := p ∪

{〈
〈α, n〉, 0

〉}. Obviously, q1, q2 ∈ Fn(κ × ω, 2), q1 ⊥ q2,and q1 ⊇ p ⊆ q2. This shows that there are inompatible elements aboveeah p ∈ Fn(κ × ω, 2). Hene, Cκ is a foring notion. The foring notion
C1, denoted C, is alled Cohen foring, and Cκ is in fat just a kind ofprodut of κ opies of Cohen foring (f. Chapter 21).2. A natural example of a partially ordered set is the set of in�nite subsets of
ω together with the superset relation. However, let us onsider a slightlydi�erent partially ordered set: De�ne an equivalene relation on [ω]ω bystipulating

x ∼ y ⇐⇒ x△y is �niteand let [ω]ω/ fin :=
{
[x]̃ : x ∈ [ω]ω

}. On [ω]ω/ fin we de�ne a partialordering �≤ � by stipulating
[x]̃ ≤ [y]̃ ⇐⇒ y ⊆∗ x ,i.e., [x]̃ ≤ [y]̃ i� y \ x is �nite, and let
U =

(
[ω]ω/ fin,≤

)
.



The language of foring 287Then U is a partially ordered. Moreover, U is a foring notion: Obviously,the weakest element of U is [ω]̃ (the set of all o-�nite subsets of ω), thus,
U has a smallest element. Furthermore, for eah x ∈ [ω]ω one easily �ndsdisjoint sets y1 and y2 in [x]ω. This shows that there are inompatibleelements above any ondition [x]̃ . This foring notion�whih does nothave an established name�we shall all ultra�lter foring (the nameis motivated by Proposition 14.18).Making names for sets. Let V be a model of ZFC and let P = (P,≤) bea foring notion whih belongs to V, i.e., the set P as well as the relation �≤�(whih is a subset of P ×P ) belongs to the model V. The goal is to extend theso-alled ground model V, by adding a ertain subset G ⊆ P to V, and thenonstrut a model V[G] of ZFC whih ontains V. In order to get a properextension of V, the set G�even though it is a subset of P �must not belongto V. However, this seemingly paradoxial property of G does not a�et theonstrution of the model V[G].Roughly speaking, V[G] onsists of all sets whih an be onstruted from

G by applying set-theoreti proesses de�nable in V. In fat eah set in theextension will have a name in V, whih tells how it has been onstruted from
G. We use symbols like x

˜
, y
˜
, f
˜
, X
˜
, et etera for ordinary names, but also x

˙
,

y
˙
, c
˙
, G
˙
, et etera for some speial names (e.g., names for sets in V).Informally, a name, or more preisely a P-name, is a possibly empty setof ordered pairs of the form 〈x

˜
, p〉, where x

˜
is a P-name and p ∈ P . The lassof all P-names is denoted by VP.Formally, VP is de�ned by trans�nite indution (similar to the umulativehierarhy of sets de�ned in Chapter 3):

VP0 = ∅

VPα =
⋃
β∈αV

P
β if α is a limit ordinal

VPα+1 = P
(
VPα ×P

)and let
VP =

⋃

α∈Ω

VPα .Notie that VP is a proper sublass of V. The formal de�nition of VP allowsto de�ne a rank-funtion on the lass of names: For P-names x
˜
∈ VP let

rk(x
˜
) :=

⋃{
rk(y

˜
) + 1 : ∃p ∈ P

(
〈y
˜
, p〉 ∈ x

˜

)}
.Consider for example the three U-onditions u1 = [ω]̃ , u2 = [{2n : n ∈ ω}]̃ ,and u3 = [{3n : n ∈ ω}]̃ , as well as the three U-names x

˜
=

{
〈∅, u2〉, 〈∅, u3〉

},
y
˜
=

{
〈x
˜
, u2〉, 〈∅, u1〉

}, and z
˜
=

{
〈y
˜
, u1〉, 〈x

˜
, u2〉, 〈∅, u2〉, 〈∅, u3〉, 〈y

˜
, u3〉

}. Then
rk(x

˜
) = 1, rk(y

˜
) = 2, and rk(z

˜
) = 3.



288 14 The Notion of ForingMaking sets from names. Names are objets in V intended to designatesets in the extension V[G] (where G is a ertain subset of P ). In other words,names are speial sets in V whih stand for sets in the extension. So, the nextstep in the onstrution of V[G] is to transform the names to the sets theystand for: Let G be a subset of P (later, G will always be a generi �lter).Then by trans�nite reursion on P-names x
˜
we de�ne

x
˜
[G] =

{
y
˜
[G] : ∃q ∈ G (〈y

˜
, q〉 ∈ x

˜
)
}
,and in general let

V[G] =
{
x
˜
[G] : x

˜
∈ VP

}
.Notie that if G = ∅, then V[G] = ∅. For example let us onsider again thethree U-names x

˜
, y
˜
, z
˜
, and the three U-onditions u1, u2, u3, from above andlet G1 = {u1}, G1,2 = {u1, u2}, and G3 = {u3}. Then x

˜
[G1] = 0, x

˜
[G1,2] = 1,

x
˜
[G3] = 1, y

˜
[G1] = 1, y

˜
[G1,2] = 2, y

˜
[G3] = 0, z

˜
[G1] = {1}, z

˜
[G1,2] = 3,

z
˜
[G3] = 2 (reall that 0 = ∅, 1 = {0}, 2 = {0, 1}, et etera).A sauerful of names. Sine V[G] is supposed to be an extension of V, wehave to show that V is in general a sublass of V[G]. Furthermore, G shouldbelong to V[G], no matter whether G belongs to V or not.Firstly, let us show thatV is a sublass ofV[G] wheneverG ⊆ P is non-empty.Below, we always assume that G ontains 0 where 0 denotes the smallestelement of P . For every set x ∈ V there is a anonial name x

˙
∈ V[G] suhthat x

˙
[G] = x: By trans�nite reursion de�ne

x
˙
=

{
〈y
˙
,0〉 : y ∈ x

}
.For example ∅

˙
= ∅, 1

˙
=

{
〈∅
˙
,0〉

}, 2
˙
=

{
〈∅
˙
,0〉, 〈1

˙
,0〉

}, et etera. Notie thatsine 0 ∈ G, for all x ∈ V we have x
˙
[G] =

{
y
˙
[G] : y ∈ x

}. It remains to showthat for eah x ∈ V we have x
˙
[G] = x.Fat 14.1. If G ⊆ P with 0 ∈ G, then for every x ∈ V we have x

˙
[G] = x.Proof. The proof is by trans�nite indution on rk(x

˙
). If rk(x

˙
) = 0, then x

˙
=

∅
˙
= ∅, and

∅
˙
[G] =

{
y
˙
[G] : y ∈ ∅)

}
= ∅ .Now let rk(x

˙
) = α and assume that y

˙
[G] = y for all P-names y

˙
with rk(y

˙
) ∈ α.Then

x
˙
[G] =

{
y
˙
[G] : y ∈ x

}
=

{
y : y ∈ x

}
= xwhih ompletes the proof. ⊣In order to make sure that G belongs to V[G], we need a P-name G

˜
for Gsuh that G

˜
[G] = G. For example de�ne

G
˜
=

{
〈p
˙
, p〉 : p ∈ P

}
.As an immediate onsequene of Fat 14.1 we get the following



The language of foring 289Fat 14.2. For every G ⊆ P whih ontains 0 we have G
˜
[G] = G.Proof. We just have to evaluate the P-name G

˜
:

G
˜
[G] =

{
p
˙
[G] : ∃q ∈ G

(
〈p
˙
, q〉 ∈ G

˜
)}

=
{
p
˙
[G] : p ∈ G

}
=

{
p : p ∈ G

}
= G

⊣Hene, for any subsetG ⊆ P we haveG = G
˜
[G]. Thus, the nameG

˜
, usuallydenoted G

˙
, is the anonial name for G. Furthermore, we see that G ∈ V[G],no matter whether G�belonging to some set-theoreti universe� belongsto V.We an also de�ne names for unordered and ordered pairs of sets: For

P-names x
˜
and y

˜
de�ne

up(x
˜
, y
˜
) =

{
〈x
˜
,0〉, 〈y

˜
,0〉

}and
op(x

˜
, y
˜
) =

{〈
{〈x
˜
,0〉},0

〉
,
〈
{〈x
˜
,0〉, 〈y

˜
,0〉},0

〉}
.We leave it as an exerise to the reader to verify that for every G ⊆ P with

0 ∈ G we have up(x
˜
, y
˜
)[G] =

{
x
˜
[G], y

˜
[G]

} and op(x
˜
, y
˜
)[G] =

〈
x
˜
[G], y

˜
[G]

〉.The foring language. We are now ready to introdue a kind of logial lan-guage, the so-alled foring language. A sentenes ψ of the foring languageis like a �rst-order sentene, exept that the parameters appearing in ψ aresome names in VP, i.e., spei� sets in V. Sentenes of the foring languageuse the names in VP to assert something about V[G] (for ertain G ⊆ P ).The people living in the ground model V may not know whether a givensentene ψ is true in V[G]. The truth or falsity of ψ in V[G] will in generaldepend on the set G ⊆ P . For example onsider the U-name x
˜
=

{
〈∅
˙
, p0〉

}with p0 = [{2n : n ∈ ω}]̃ , and the sentene ψ ≡ ∃y(y ∈ x
˜
) of the foringlanguage whih asserts that x

˜
is non-empty. Now, ψ is true in V[G] if andonly if V[G] � ∃y

(
y ∈ x

˜
[G]

), whih is the ase if and only if p0 ∈ G. Hene,depending on G ⊆ [ω]ω, ψ beomes true or false in V[G].However, even though people living in V do not know whether V[G] � ψ,they know that V[G] � ψ i� p0 ∈ G. Thus, in order to deide whether
V[G] � ψ they just need to know whether G ontains the ondition p0.This leads to one of the key features of foring: By knowing whether aertain ondition p belongs to G ⊆ P , people living in V an �gure outwhether a given sentene of the foring language is true or false in V[G].Moreover, it will turn out that people living in V are able to verify that inertain models V[G] all axioms of ZFC remain true. In the following setionwe shall see how this is done.



290 14 The Notion of ForingGeneri ExtensionsLet again P = (P,≤) be an arbitrary foring notion whih belongs to a model
V of ZFC. Below, we de�ne �rst the notion of a generi �lter (whih is aspeial subset G ⊆ P ) and the orresponding generi model V[G]; then weintrodue the foring relation and show how people in V an deide whethera given sentene is true or false in a partiular generi model. Finally weonstrut a generi model in whih the Continuum Hypothesis fails and disussthe existene of generi �lters.Generi �lters and generi models. Let us brie�y reall some de�nitionsfrom the previous hapter: A set D ⊆ P is open dense if p ∈ D and q ≥ pimplies q ∈ D (open), and if for every p ∈ P there is a q ∈ D suh that q ≥ p(dense). A set A ⊆ P is an anti-hain in P if any two distint elements of
A are inompatible, and it is maximal if it is not properly ontained in anyanti-hain in P . A non-empty set G ⊆ P is a �lter (on P ) if p ∈ G and q ≤ pimplies q ∈ G (downwards losed), and if for any p1, p2 ∈ G there is a q ∈ Gsuh that p1 ≤ q ≥ p2 (direted).Now, a �lter G ⊆ P is said to be P-generi over V if G ∩ D 6= ∅ forevery open dense set D ⊆ P whih belongs to V (ompare with the notionof a D-generi �lter, whih was introdued in the previous hapter). In otherwords, a �lter G on P is P-generi over V if it meets every open dense subsetof P whih belongs to V. The restrition that the open dense subsets haveto belong to V�whih at a �rst glane seems to be super�ial � is in fatruial.Equivalent foring notions. It may happen that two di�erent foring no-tions P = (P,≤P ) and Q = (Q,≤Q) yield the same generi models, in whihase we say that P and Q are equivalent, denoted P ≈ Q.z More preisely,
P ≈ Q if for every G ⊆ P whih is P-generi over V, there exists an H ⊆ Qwhih is Q-generi over V suh that V[G] = V[H ], and vie versa, for every
Q-generi H there is a P-generi G suh that V[H ] = V[G]. Notie that �≈ �is indeed an equivalene relation on the lass of foring notions.In order to prove that two foring notions P = (P,≤P ) and Q = (Q,≤Q)are equivalent, it is su�ient to show the existene of a so-alled dense em-bedding from P to Q (or vie versa), where a funtion h : P → Q is alled adense embedding if it satis�es the following onditions:
• ∀p0, p1 ∈ P

(
p0 ≤P p1 ↔ h(p0) ≤Q h(p1)

)

• ∀q ∈ Q ∃p ∈ P
(
q ≤Q h(p)

)Notie that the funtion h is not neessarily surjetive, in partiular, h is ingeneral not an isomorphism. However, it is not hard to verify that the foringnotions P and Q are equivalent whenever there exists a dense embedding
h : P → Q. The proof of the following fat is left to the reader.



Generi extensions 291Fat 14.3. Let P = (P,≤) and Q = (Q,≤) be any foring notions. If thereexists a dense embedding h : P → Q, then P and Q are equivalent. In fat, if
G ⊆ P is P-generi over V, then the set

H =
{
q ∈ Q : ∃p ∈ G

(
q ≤ h(p)

)}is Q-generi over V and V[G] = V[H ]. Conversely, if a set H ⊆ Q is Q-generiover V, then the set
G =

{
p ∈ P : h(p) ∈ H

}is P-generi over V and V[H ] = V[G].The preeding fat implies that it is enough to onsider foring notions ofthe form (κ,≤, ∅), where κ is a ardinal number, �≤ � is a partial ordering on
κ, and ∅ is the smallest element (with respet to ≤) in κ. More preisely, weget the followingFat 14.4. Every foring notion P = (P,≤,0), where 0 is a smallest elementin P , is equivalent to some foring notion (κ,4, ∅), where κ = |P |. In partiu-lar, we may always identify the smallest element of a foring notion with theempty set.Proof. Let h : P → κ be a bijetion, where h(0) = ∅, and let

h(p) 4 h(q) ⇐⇒ p ≤ q .Then h is obviously a dense embedding. ⊣As another onsequene of Fat 14.3 we get that every foring notion is equiv-alent to some anti-symmetri foring notion.Fat 14.5. Let P = (P,≤) be any foring notion and let P̃ := (P̃ ,≤˜), where
p ∼ q ⇐⇒ p ≤ q ∧ q ≤ p, P̃ =

{
[p]̃ : p ∈ P

}, and [p]̃ ≤˜[q]̃ ⇐⇒ p ≤ q.Then P̃ is anti-symmetri and equivalent to P.Proof. Firstly notie that P̃ is a foring notion. Now de�ne h : P → P̃ bystipulating h(p) := [p]̃ . Then h is obviously a dense embedding and therefore
P ≈ P̃. Finally, if we have [p]̃ ≤˜[q]̃ and [q]̃ ≤˜[p]̃ , then [p]̃ = [q]̃ , whihshows that P̃ is anti-symmetri. ⊣Alternative de�nitions of generi �lters. It is sometimes useful to havea few alternative de�nitions of P-generi �lters at hand whih are sometimeseasier to apply.Fat 14.6. Let P = (P,≤) be a foring notion whih belongs to a model V ofZFC. Then, for a �lter G on P , the following statements are equivalent:(a) G is P-generi over V.(b) G meets every maximal anti-hain in P whih belongs to V.() G meets every dense subset of P whih belongs to V.



292 14 The Notion of ForingProof. (a)⇒(b) Let A ⊆ P be a maximal anti-hain in P whih belongs to
V. Then DA :=

{
p ∈ P : ∃q ∈ A (p ≥ q)

} is open dense in P : DA is obviouslyopen, and sine A is a maximal anti-hain in P , for every p0 ∈ P there is aondition q0 ∈ A suh that p0 and q0 are ompatible, i.e., there is a p ∈ DAsuh that q0 ≤ p ≥ p0, whih implies that DA is dense. Now, if G is P-generiover V, then G meets DA, and sine G is downwards losed, it meets themaximal anti-hain A.(b)⇒() Let D ⊆ P be a dense subset of P whih belongs to V. Then byKurepa's Priniple (introdued in Chapter 5) there is a maximal anti-hain Ain D. Sine D is dense in P , A is also a maximal anti-hain in P (otherwise,there would be a ondition p ∈ P whih is inompatible with all onditionsof D, ontraditing the fat that D is dense in P ). Now, if G meets everymaximal anti-hain in P (whih belongs to V), then G meets A, and sine Ais a subset of D, it meets the dense set D.()⇒(a) If G meets every dense subset of P whih belongs to V, then itobviously meets also every open dense subset of P whih belongs to V. ⊣Let p ∈ P ; then a set D ⊆ P is dense above p if for any p′ ≥ p there isa q ∈ D suh that q ≥ p′. Notie that if D ⊆ P is dense above p (for some
p ∈ P ) and q ≥ p, then D is also dense above q.The proof of the following haraterisation of P-generi �lters is left to thereader.Fat 14.7. Let P = (P,≤) be a foring notion whih belongs to a model Vof ZFC, and let G ⊆ P be a �lter on P whih ontains the ondition p. Then
G is P-generi over V if and only if G meets every set D ⊆ P whih is denseabove p.If the �lter G ⊆ P is P-generi overV, then the lass V[G] is alled a generiextension of V, or just a generi model.ZFC in Generi ModelsIn order to prove that a generi model V[G] is indeed a model of ZFC, we�rst have to develop a tehnique whih allows us to verify within V that allaxioms of ZFC remain true in V[G].The foring relationship. In this setion, we shall de�ne a relationship, de-noted P , between onditions p ∈ P and sentenes ψ of the foring language.Even though the relationship � P � involves formulae and is therefore not ex-pressible in the language of First-Order Logi, we write p P ψ (�p fores ψ�)to mean that if G is P-generi over V and ontains p, then ψ is true in V[G],where we taitly assume that for every p ∈ P there is a P-generi �lter over Vwhih ontains p. Surprisingly, the de�nition of the relationship � P � takesplae in the model V without atually knowing any P-generi �lter.



ZFC in generi models 293Definition 14.8. Let p0 ∈ P be a ondition, let ψ(x1, . . . , xn) be a �rst-orderformula with all free variables shown, and let x
˜
1, . . . , x

˜
n ∈ VP be any P-names.The relationship p0 P ψ(x

˜
1, . . . , x

˜
n) is essentially de�ned by indution onthe omplexity of ψ. However, for atomi formulae ψ we have to use a doubleindution on the ranks of the names that are substituted for the variables in

ψ:(a) p0 P x
˜
1 = x

˜
2 if and only if(α) for all 〈y

˜
1, s1〉 ∈ x

˜
1, the set

{
q ≥ p0 : q ≥ s1 → ∃〈y

˜
2, s2〉 ∈ x

˜
2

(
q ≥ s2 ∧ q P y

˜
1 = y

˜
2

)}is dense above p0, and(β) for all 〈y
˜
2, s2〉 ∈ x

˜
2, the set

{
q ≥ p0 : q ≥ s2 → ∃〈y

˜
1, s1〉 ∈ x

˜
1

(
q ≥ s1 ∧ q P y

˜
1 = y

˜
2

)}is dense above p0.(b) p0 P x
˜
1 ∈ x

˜
2 if and only if the set
{
q ≥ p0 : ∃〈y

˜
, s〉 ∈ x

˜
2

(
q ≥ s ∧ q P y

˜
= x

˜
1

)}is dense above p0.() p0 P ¬ϕ(x
˜
1, . . . , x

˜
n) if and only if for all q ≥ p0 we have

q / P ϕ(x
˜
1, . . . , x

˜
n) ,i.e., for no q ≥ p0 we have q P ϕ(x

˜
1, . . . , x

˜
n).(d) p0 P ϕ1(x

˜
1, . . . , x

˜
n) ∧ ϕ2(x

˜
1, . . . , x

˜
n) if and only if

p0 P ϕ1(x
˜
1, . . . , x

˜
n) and p0 P ϕ2(x

˜
1, . . . , x

˜
n) .(e) p0 P ∃zϕ(z, x

˜
1, . . . , x

˜
n) if and only if the set

{
q ≥ p0 : ∃z

˜
∈ VP

(
q P ϕ(z

˜
, x
˜
1, . . . , x

˜
n)
)}is dense above p0.As an immediate onsequene of Definition 14.8 we get the followingFat 14.9. For any sentene ψ of the foring language we have:(a) If p P ψ and q ≥ p, then q P ψ.(b) The set ∆ψ :=

{
p ∈ P : (p P ψ) ∨ (p P ¬ψ)

} is open dense in P .



294 14 The Notion of ForingProof. Part (a) is obvious. For (b) notie that for every p ∈ P , either there isa q ≥ p suh that q P ψ, or for all q ≥ p we have q / P ψ. In the former ase,
q ∈ ∆ψ, and in the latter ase we get p P ¬ψ and onsequently p ∈ ∆ψ. ⊣Until now, we did not prove that the foring relationship is doing what wewant, e.g., p P ψ should imply p / P ¬ψ. However, this follows impliitly fromthe proof of the Foring Theorem 14.10, whih is the ore result of foring.The Foring Theorem. In order to prove that ZFC holds in every generiextension of any model V of ZFC, we need a tool whih allows us to deidewithinV whether a given �rst-order formula is true or false in a ertain generimodel. The following theorem is the required tool.Theorem 14.10 (Foring Theorem). Let ψ(x1, . . . , xn) be a �rst-orderformula with all free variables shown, i.e., free(ψ) ⊆ {x1, . . . , xn}. Let V bea model of ZFC, let P = (P,≤) be a foring notion whih belongs to V, let
x
˜
1, . . . , x

˜
n ∈ VP be any P-names, and let G ⊆ P be P-generi over V.(1) If p ∈ G and p P ψ(x

˜
1, . . . , x

˜
n), then V[G] � ψ

(
x
˜
1[G], . . . , x

˜
n[G]

).(2) If V[G] � ψ
(
x
˜
1[G], . . . , x

˜
n[G]

), then ∃p ∈ G
(
p P ψ(x

˜
1, . . . , x

˜
n)
).Proof. The proof is by indution on the omplexity of ψ(x

˜
1, . . . , x

˜
n)
). So, we�rst prove (1) and (2) for atomi formulae ψ.

ψ(x
˜
1, x
˜
2) ≡ (x

˜
1 = x

˜
2) : When ψ(x

˜
1, x
˜
2) is x

˜
1 = x

˜
2, the proof is bytrans�nite indution on rk(x

˜
1, x
˜
2) := max{rk(x

˜
1), rk(x

˜
2)}, using lause (a) ofDefinition 14.8: If rk(x

˜
1, x
˜
2) = 0, then x

˜
1 = x

˜
2 = ∅. Now, ∅[G] = ∅, whihimplies (1), and for all p ∈ P we have p P ∅ = ∅, whih implies (2). For

rk(x
˜
1, x
˜
2) > 0 we shall hek (1) and (2) separately.(1) : Assume that p ∈ G and p P x

˜
1 = x

˜
2, and that (1) holds for all names

y
˜
1, y
˜
2 with rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2). We show x

˜
1[G] = x

˜
2[G] by proving that

x
˜
1[G] ⊆ x

˜
2[G] using (α) of Definition 14.8.(a); the proof of x

˜
2[G] ⊆ x

˜
1[G]using (β) is the same. Every element of x

˜
1[G] is of the form y

˜
1[G], where

〈y
˜
1, s1〉 ∈ x

˜
1 for some s1 ∈ G. We must show that y

˜
1[G] ∈ x

˜
2[G]. Sine G isdireted, there is an r ∈ G with s1 ≤ r ≥ p. By Fat 14.9.(a), r P x

˜
1 = x

˜
2,and by Definition 14.8.(a).(α) and Fat 14.7, there is a q ∈ G suh that

q ≥ r (in partiular q ≥ s1) and
∃〈y
˜
2, s2〉 ∈ x

˜
2

(
q ≥ s2 ∧ q P y

˜
1 = y

˜
2

)
. (∃)Fix 〈y

˜
2, s2〉 ∈ x

˜
2 as in (∃), then rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2) and by our assumptionwe get y

˜
1[G] = y

˜
2[G]. Further, sine q ≥ s2 and G is downwards losed we have

s2 ∈ G whih implies y
˜
2[G] ∈ x

˜
2[G], and onsequently we get y

˜
1[G] ∈ x

˜
2[G].(2) : To hek (2), assume x

˜
1[G] = x

˜
2[G], and that (2) holds for all names

y
˜
1, y
˜
2 with rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2). Let Dx

˜
1,x
˜
2 ⊆ P be the set of all onditions

r ∈ P suh that either r P x
˜
1 = x

˜
2, or we are at least in one of the followingtwo ases:



ZFC in generi models 295(α′) there exists a name 〈y
˜
1, s1〉 ∈ x

˜
1 suh that r ≥ s1 and

∀〈y
˜
2, s2〉 ∈ x

˜
2∀q ∈ P

(
(q ≥ s2 ∧ q P y

˜
1 = y

˜
2) → q ⊥ r

)
,(β′) there exists a name 〈y

˜
2, s2〉 ∈ x

˜
2 suh that r ≥ s1 and

∀〈y
˜
1, s1〉 ∈ x

˜
1∀q ∈ P

(
(q ≥ s1 ∧ q P y

˜
1 = y

˜
2) → q ⊥ r

)
.First we show that no ondition r ∈ G an satisfy (α′) or (β′): Indeed, if r ∈ Gand 〈y

˜
1, s1〉 ∈ x

˜
1 as in (α′), then s1 ∈ G and therefore y

˜
1[G] ∈ x

˜
1[G] = x

˜
2[G](by our assumption). Now, �x 〈y

˜
2, s2〉 ∈ x

˜
2 with s2 ∈ G and y

˜
1[G] = y

˜
2[G].Sine rk(y

˜
1, y
˜
2) < rk(x

˜
1, x
˜
2) there is a ondition q0 ∈ G suh that q0 P y

˜
1 =

y
˜
2, and sine G is direted there is a q ∈ G suh that q0 ≤ q ≥ s2. ByFat 14.9.(a) we have q P y

˜
1 = y

˜
2, and hene by (α′) we get q ⊥ r, whihontradits the fat that G is direted.If there is no r ∈ G suh that r P x
˜
1 = x

˜
2, then Dx

˜
1,x
˜
2 ∩ G = ∅. We wouldbe done if we ould show that Dx

˜
1,x
˜
2 is dense in P sine this would ontraditthe fat that G meets every dense set in V: Fix an arbitrary ondition p ∈ P .Either p P x

˜
1 = x

˜
2, or otherwise, (α) or (β) of Definition 14.8.(a) fails.If (α) fails, then there are 〈y

˜
1, s1〉 ∈ x

˜
1 and r ≥ p suh that r ≥ s1 and for all

q ≥ r we have:
∀〈y
˜
2, s2〉 ∈ x

˜
2

(
¬(q P y

˜
1 = y

˜
2) ∧ q ≥ s2

) (∀)If 〈y
˜
2, s2〉 ∈ x

˜
2, q ≥ s2, and q P x

˜
1 = x

˜
2, then q ⊥ r, sine a ommonextension q′ of q and r would ontradit (∀). Thus, r ≥ p and r satis�es (α′),in partiular r ∈ Dx

˜
1,x
˜
2 . Likewise, if (β) fails then there is a ondition r ≥ pwhih satis�es (β′).

ψ(x
˜
1, x
˜
2) ≡ (x

˜
1 ∈ x

˜
2) : When ψ(x

˜
1, x
˜
2) is x

˜
1 ∈ x

˜
2 we hek again (1)and (2) separately.(1) : Assume that there is a ondition p ∈ G suh that p P x

˜
1 ∈ x

˜
2. Then,by Definition 14.8.(b), the set

Dp =
{
q ∈ P : ∃〈y

˜
, s〉 ∈ x

˜
2

(
q ≥ s ∧ q P y

˜
= x

˜
1

)}is dense above p. Fix a ondition q ∈ G ∩Dp and a P-name 〈y
˜
, s〉 ∈ x

˜
2 suhthat q ≥ s and q P y

˜
= x

˜
1. Sine s ∈ G and 〈y

˜
, s〉 ∈ x

˜
2 we get y

˜
[G] ∈ x

˜
2[G],and sine q ∈ G and q P y

˜
= x

˜
1, by (1) applied to y

˜
= x

˜
1 we also get

y
˜
[G] = x

˜
1[G]. Thus, we have y

˜
[G] ∈ x

˜
2[G] as well as y

˜
[G] = x

˜
1[G], whihobviously implies that x

˜
1[G] ∈ x

˜
2[G].(2) : Assume now x

˜
1[G] ∈ x

˜
2[G]. By de�nition of x

˜
2[G] there is a name

〈y
˜
, s〉 ∈ x

˜
2 suh that s ∈ G and y

˜
[G] = x

˜
1[G]. By (1) for y

˜
[G] = x

˜
1[G], thereis an r ∈ G suh that

r P y
˜
= x

˜
1 .Finally, let p ∈ G be suh that s ≤ p ≥ r. Then

∀q ≥ p
(
q ≥ s ∧ q P y

˜
∈ x
˜
2

)
,and onsequently p P x

˜
1 ∈ x

˜
2.



296 14 The Notion of ForingThis onludes the proof of (1) and (2) for atomi formulae. The proofsfor non atomi formulae are muh easier than the preeding proofs, but eventhough it is enough to prove (1) and (2) for formulae ψ of the form ¬ϕ, ϕ1∧ϕ2,and ∃xϕ(x), there are still six ases to be heked.
ψ(x

˜
1, . . . , x

˜
n) ≡ ¬ϕ : Let ψ(x

˜
1, . . . , x

˜
n) be a negated formula, i.e., ofthe form ¬ϕ for some formula ϕ.(1) : We assume (2) for ϕ and onlude (1) for ¬ϕ. Assume p ∈ G and

p P ¬ϕ. We have to show that V[G] � ¬ϕ: If V[G] � ϕ, then by (2) for ϕthere is a q ∈ G suh that q P ϕ. Sine G is direted, there is an r ∈ G suhthat q ≤ r ≥ p and by Fat 14.9.(a) we would have r P ϕ, ontraditing thede�nition of p P ¬ϕ.(2) : We assume (1) for ϕ and onlude (2) for ¬ϕ. Assume thatV[G] � ¬ϕ.We have to show that there is a ondition p ∈ G suh that p P ¬ϕ. Considerthe set ∆ϕ :=
{
r ∈ P : (r P ϕ) ∨ (r P ¬ϕ)

}. By Fat 14.9.(b), ∆ϕ is opendense in P and therefore ∆ϕ∩G 6= ∅. Fix a ondition p ∈ ∆ϕ∩G. If p P ¬ϕ,then we are done; and if p P ϕ, then by (1) for ϕ we have V[G] � ϕ, aontradition.
ψ(x

˜
1, . . . , x

˜
n) ≡ ϕ1 ∧ ϕ2 : Let ψ(x

˜
1, . . . , x

˜
n) be of the form ϕ1∧ϕ2 forsome formulae ϕ1 and ϕ2.(1) : We assume (1) for ϕ1 and ϕ2 and onlude (1) for ϕ1 ∧ ϕ2. Assume

p ∈ G and p P ϕ1 ∧ϕ2. Then p P ϕ1 and p P ϕ2, hene, by (1) for ϕ1 and
ϕ2 we have V[G] � ϕ1 and V[G] � ϕ2 whih implies V[G] � ϕ1 ∧ ϕ2.(2) : We assume (2) for ϕ1 and ϕ2 and onlude (2) for ϕ1 ∧ ϕ2. Assume
V[G] � ϕ1 ∧ϕ2. By (2) for ϕ1 and ϕ2 there are p1, p2 ∈ G suh that p1 P ϕ1and p2 P ϕ2. Let r ∈ G be suh that p1 ≤ r ≥ p2. Then r P ϕ1 and r P ϕ2,hene, r P ϕ1 ∧ ϕ2.
ψ(x

˜
1, . . . , x

˜
n) ≡ ∃xϕ(x) : Let ψ(x

˜
1, . . . , x

˜
n) be an existential formulaof the form ∃xϕ(x) for some formula ϕ.(1) : We assume (1) for ϕ(x

˜
) and onlude (1) for ∃xϕ(x). Assume p ∈ Gand p P ∃xϕ(x). Then the set

{
r ∈ P : ∃x

˜

(
r P ϕ(x

˜
)
)}is dense above p. So, we �nd a q ∈ G and a P-name x

˜
0 ∈ VP suh that

q P ϕ(x
˜
0). By (1) for ϕ(x

˜
0) we get V[G] � ϕ

(
x
˜
0[G]

), and therefore V[G] �
∃xϕ(x).(2) : We assume (2) for ϕ(x

˜
[G]

) and onlude (2) for ∃xϕ(x). Assume
V[G] � ∃xϕ(x). Then there exists an x0 ∈ V[G] suh that V[G] � ϕ(x0)and let x

˜
0 be suh that V[G] � x

˜
0[G] = x0. By (2) for ϕ(x

˜
0[G]

) there is a
p ∈ G suh that p P ϕ(x

˜
0). Then for all r ≥ p we have r P ϕ(x

˜
0), whihimplies that p P ∃xϕ(x). ⊣One might be tempted to prove the following result (whih is to someextent the onverse of the Foring Theorem 14.10): If for all P-generi �lters



ZFC in generi models 297
G ⊆ P ontaining a ertain P-ondition p we have V[G] � ψ (for a givensentene ψ), then p P ψ. For the proof we notie �rst that p / P ψ wouldimply that there exists a ondition q > p suh that q P ¬ψ. Now, if weould show that there exists a P-generi �lter G ontaining q we would have
V[G] � ¬ψ, whih ontradits our assumption. However, as we shall see below,the existene of a P-generi �lter G (no matter if it ontains q or not) annotbe proved within ZFC.However, assume for the moment� as we shall later always do� that forany ondition q there exists a generi �lter ontaining q. As an appliation ofthe Foring Theorem 14.10 we prove the following lemma, whih is one ofthe standard results about foring.Lemma 14.11. Let P = (P,≤) be a foring notion, let G be P-generi over
V, and let p ∈ G.(a) If p P z

˜
∈ y

˜
, then there exist a P-name x

˜
with rk(x

˜
) < rk(y

˜
) and a

P-ondition q ≥ p in G suh that q P z
˜
= x

˜
.(b) If p P f

˜
∈ A

˜B˜
∧ x
˜
0 ∈ A

˜
, then there is a P-name 〈y

˜
, r〉 ∈ B

˜
with r ∈ Gand a ondition q ≥ p in G suh that q P f

˜
(x
˜
0) = y

˜
.Proof. (a) Sine p ∈ G, V[G] � z

˜
[G] ∈ y

˜
[G], and sine y

˜
[G] =

{
x
˜
[G] : x

˜
∈ y
˜

},there is a name 〈x
˜
0, r〉 ∈ y

˜
with r ∈ G suh that x

˜
0[G] = z

˜
[G]. In partiular,

rk(x
˜
0) < rk(y

˜
). Now, sine V[G] � x

˜
0[G] = z

˜
[G], there is a ondition p′ ∈ Gsuh that p′ P z

˜
= x

˜
0. Further, sine G is direted, there is a q ∈ G suhthat p ≤ q ≥ p′. Thus, q P z

˜
= x

˜
0.(b) Sine p ∈ G, there is a set z ∈ V[G] suh that

V[G] � z ∈ B
˜
[G] ∧

〈
x
˜
0[G], z

〉
∈ f
˜
[G] .Let z

˜
be a P-name in V for z (i.e., z

˜
[G] = z). By the proof of (a) there is a

P-name 〈y
˜
, r〉 ∈ B

˜
with r ∈ G and a p′ ∈ G suh that p′ P y

˜
= z

˜
∧ y
˜
∈ B

˜
.Sine G is direted, there is a q ∈ G suh that p ≤ q ≥ p′. Thus, we have

q P op(x
˜
0, y
˜
) ∈ f

˜
, or in other words, q P f

˜
(x
˜
0) = y

˜
. ⊣The Generi Model Theorem. With the Foring Theorem 14.10 wewould now be able to prove that generi extensions of models of ZFC are alsomodels of ZFC (however, we omit most of the quite tedious proof).Theorem 14.12 (Generi Model Theorem). Let V be a transitive stan-dard model of ZFC (i.e., a transitive model with the standard membershiprelation), let P = (P,≤) be a foring notion whih belongs to V, and let

G ⊆ P be P-generi over V. Then V[G] � ZFC. Moreover, the lass V isa sublass of V[G], G ∈ V[G], and every transitive standard model of ZFContaining V as a sublass and G as an element also ontains V[G] (i.e., V[G]is the smallest standard model of ZFC ontaining V as a sublass and G as aset). Furthermore, ΩV[G] = ΩV, i.e., every ordinal in V[G] belongs to V, andvie versa.



298 14 The Notion of ForingInstead of the full Generi Model Theorem, let us just prove the followingfour partial results.Fat 14.13. If V � ZFC and G is P-generi over V, then V[G] satis�es theAxiom of Pairing.Proof. Let G be an arbitrary P-generi �lter and let x
˜
and y

˜
be P-names forsome sets x and y in V[G] (i.e., x

˜
[G] = x and y

˜
[G] = y respetively). Beause

G is downwards losed we have 0 ∈ G and therefore we get
up(x

˜
, y
˜
)[G] =

{
x
˜
[G], y

˜
[G]

}
= {x, y} .Thus, if x and y belong to V[G], then also {x, y} belongs to V[G]. ⊣Proposition 14.14. If V � ZFC and G is P-generi over V, thenV[G] � AC.Proof. Let x ∈ V[G] be an arbitrary set. Sine the Well-Ordering Prinipleimplies AC, it is enough to prove that inV[G] there exists an injetive funtionfrom x into Ω (notie that the empty funtion is injetive). Let x

˜
be a P-namein V for x and let

ȳ =
{
y
˜
: ∃p ∈ P (〈y

˜
, p〉 ∈ x

˜
)
}
.Obviously, ȳ is a set of P-names whih belongs to V. By the Axiom of Choie,whih holds in V, we an write ȳ = {y

˜
α : α ∈ κ}, where κ = |ȳ| is a ardinalin V. Now let

R
˜
=

{
op(α

˙
, y
˜
α) : α ∈ κ

}
×
{
0
}whih is a P-name in V for a set of ordered pairs in V[G]. Sine 0 ∈ G, R

˜
[G]indues a surjetion from {

α ∈ κ : ∃p ∈ G(〈y
˜
α, p〉 ∈ x

˜
)
}
⊆ κ onto the set

x = x
˜
[G] =

{
y
˜
α[G] : ∃p ∈ G(〈y

˜
α, p〉 ∈ x

˜
)
}, and onsequently the set x ∈ V[G]an be well-ordered. Hene, sine x was arbitrary, V[G] � AC. ⊣Fat 14.15. If V � ZFC and G is P-generi over V, then G ∈ V[G] and Vis a sublass of V[G].Proof. Let G be an arbitrary P-generi �lter. By de�nition of G

˙
, G
˙
[G] = G,and hene, by de�nition of V[G], G ∈ V[G]. Further, G is downwards losedand therefore ontains 0 (the smallest element of P ). Hene, for eah x ∈ Vwe have x

˙
[G] = x and onsequently x ∈ V[G]. ⊣Proposition 14.16. Let V � ZFC, let P be a foring notion in V, and let Gbe P-generi over V; then ΩV[G] = ΩV.Proof. Sine V ⊆ V[G], we obviously have ΩV ⊆ ΩV[G]. On the other hand,assume towards a ontradition that there exists an ordinal in V[G] whihdoes not belong to V. Sine the lass ΩV[G] is well-ordered in V[G] by ∈,there is a smallest ordinal in V[G], say γ, whih does not belong to V. Let

γ
˜
be a P-name for γ, i.e., γ = γ

˜
[G]. Then {

x
˜
: ∃p(〈x

˜
, p〉 ∈ γ

˜
)
} is a set in V,hene, the olletion of all ordinals α ∈ γ is in fat a set in V. This impliesthat γ belongs to V and ontradits our assumption. ⊣



ZFC in generi models 299Until now we did not show that generi �lters exist, but let us postpone thistopi until the end of this hapter and let us show �rst how a statement (e.g.,�there are Ramsey ultra�lters�) an be fored to beome true in a ertaingeneri model.Foring notions whih do not add reals. In this setion, we shall seethat the foring notion U adds a Ramsey ultra�lter to the ground model V.In fat we shall see that whenever G is U-generi over V, then G indues a�lter over ω suh that for any olouring π : [ω]2 → 2 in V there is an x ∈ Gsuh that π|[x]2 is onstant. However, in order to make this approah work wehave to show that foring with U does not add any new reals (i.e., subsets of
ω or funtions [ω]2 → 2) to V; if U would add new reals to V, there might bea olouring ρ : [ω]2 → 2 in V[G] suh that no set x ∈ G is homogeneous for ρ,and onsequently, {x ∈ [ω]ω : ∃y ∈ G(y ⊆ x)

} would just be a �lter in V[G].So, let us �rst prove that whenever G is U-generi over V, then [ω]ω∩V =
[ω]ω ∩ V[G], i.e., every subset of ω whih is in V[G] is also in V, and vieversa.A foring notion P = (P,≤) is said to be σ-losed if whenever 〈pn : n ∈ ω〉is an inreasing sequene of elements of P (i.e., m < k → pm ≤ pk), then thereexists a ondition q ∈ P suh that for all n ∈ ω, q ≥ pn.By the proof of the fat that p is unountable (f. Theorem 8.1) we getthat the foring notion U is σ-losed.The next result shows that foring with a σ-losed foring notion does notadd new reals to the ground model.Lemma 14.17. Let P = (P,≤) be a σ-losed foring notion, G a P-generi�lter over V, X a set in V, and f : ω → X a funtion in V[G], i.e., V[G] �
f ∈ ωX; then f belongs to V.Proof. Let f ∈ ωX be a funtion in V[G] and let f

˜
be a P-name for f . Assumetowards a ontradition that f

˜
[G] /∈ V. By the Foring Theorem 14.10.(2)there is a ondition q ∈ P (in fat, q ∈ G) suh that

q P f
˜
∈ ωX

˜
∧ f
˜
/∈ q
ωX .Notie the di�erene between ωX

˜
(whih is a P-name for the set ωX ∈

V[G]) and q
ωX (whih is the anonial P-name for the set ωX ∈ V). ByLemma 14.11.(b), let p0 ≥ q be suh that p0 P f

˜
(0
˙
) = x

˙
0 (for some x0 ∈ X),and for n ∈ ω let pn+1 ≥ pn be suh that pn+1 P f

˜
(n
˙
+ 1

˙
) = x

˙
n+1 (for some

xn+1 ∈ X). Notie that by Lemma 14.11.(b), p0 and pn+1 exist and that theonstrution an be arried out in V. Finally, let p ∈ P be suh that for all
n ∈ ω, p ≥ pn. Then, by Fat 14.9.(a), for all n ∈ ω there is an xn ∈ X suhthat p P f

˜
(n
˙
) = x

˙
n. Thus,

p P f
˜
∈ q
ωX ,whih is a ontradition to our assumption. ⊣



300 14 The Notion of ForingSine U is σ-losed and every real x ∈ [ω]ω orresponds to a funtion fx ∈ ω2(stipulating fx(n) = 1 ⇐⇒ n ∈ x), by Lemma 14.17, ultra�lter foring Udoes not add any new reals to the ground model V. In other words, if G is
U-generi over V, then [ω]ω ∩V = [ω]ω ∩V[G]. With this observation we areready to prove the following result.Proposition 14.18. If G is U-generi over V. Then ⋃

G is a Ramsey ul-tra�lter in V[G] whih is di�erent from all ultra�lters in V, i.e., ultra�lterforing U adds a new Ramsey ultra�lter to V. In partiular, V[G] ontains aRamsey ultra�lter.Proof. Firstly we show that ⋃G =
{
x ∈ [ω]ω : [x]̃ ∈ G

} is an ultra�lter over
ω whih is di�erent from all ultra�lters in V: Sine G is downwards losed,direted, and meets every maximal anti-hain in [ω]ω/ fin whih belongs to
V (in partiular all anti-hains of the form {

[z ]̃ , [ω \ z ]̃
} for o-in�nite sets

z ∈ [ω]ω), and sine foring with U does not add reals, ⋃G is an ultra�lterover ω. Let now U ∈ V be an arbitrary ultra�lter over ω. Then
DU =

{
[x]̃ ∈ [ω]ω : x /∈ U

}is an open dense subset of [ω]ω/ fin. Thus,G∩DU 6= ∅ whih implies⋃G 6= U ,and sine U was arbitrary, the ultra�lter ⋃G is di�erent from all ultra�ltersin V.Seondly we show that ⋃G is a Ramsey ultra�lter: Let π : [ω]2 → 2 be anarbitrary olouring in V[G]. Sine foring with U does not add reals, π ∈ V.Now the set
Dπ :=

{
[x]̃ ∈ [ω]ω : π|[x]2 is onstant}is an open dense subset of [ω]ω/ fin. Thus, G ∩ Dπ 6= ∅ whih implies thatthere exists an [x]̃ ∈ G suh that π|[x]2 is onstant, and sine π was arbitrary,⋃

G is a Ramsey ultra�lter. ⊣The preeding theorem is a typial example how to fore the existene of aertain set whose existene annot be proved in ZFC: By the same foringonstrution as above we shall see in Chapter 24 that there may be a Ramseyultra�lter even in the ase when p < c.Foring notions whih do not ollapse ardinals. Now we onsider theforing notion Cκ (for an arbitrary ardinal κ) and show that the foringnotion Cκ adds κ reals to the ground model V. As a onsequene we get thatwhenever G is Cκ-generi over V, then V[G] � c ≥ κ (where c denotes theardinality of the ontinuum). In partiular, for κ > ω1 we get V[G] � ¬CH.However, in order to make this approah work we have to show that κ is thesame ardinal in V[G] as it is in V. Let us explain this problem in greaterdetail: Let P be a foring notion and let G be P-generi over V. Further, let κbe an arbitrary in�nite ardinal in V. By de�nition, κ is an ordinal suh thatthere is no bijetion between κ and any of its elements (reall that the elements



ZFC in generi models 301of ordinal are ordinals). Sine V and V[G] ontain the same ordinals, κ is anordinal number inV[G]. However, sineV[G] is an extension ofV, there mightbe an injetive funtion in V[G] whih maps κ to one of its elements. In otherwords, the ordinal number κ, whih is a ardinal in V, might beome anordinary ordinal in V[G], i.e., we might have V � |κ| = κ but V[G] � |κ| ∈ κ.If this is the ase, then we say that P ollapses κ; otherwise, we say that Ppreserves κ. If P preserves all ardinal numbers, i.e., |κ|V[G] = κ whenever
|κ|V = κ, then we simply say that P preserves ardinalities. Notie that all�nite ardinals are preserved by any foring notion, and onsequently also ωmust be preserved, i.e., we always have |ω|V = |ω|V[G] = ω. On the other hand,any unountable ardinal number an be ollapsed; moreover, any unountableardinal an be fored to beome a ountable ordinal.Now, let us prove that the foring notion Cκ preserves ardinals, but �rstwe prove a slightly more general result.Reall that a foring notion P = (P,≤) is said to satisfy the ount-able hain ondition, denoted , if every anti-hain in P is at mostountable� in whih ase we usually just say �P satis�es �. For example,by Corollary13.3 we know that the foring notion Cκ satis�es .In order to show that a foring notion whih satis�es  does not ollapseany ardinal, we shall show the slightly more general result that a foringnotion whih preserves o�nalities also preserves ardinalities: A foring notion
P preserves o�nalities if wheneverG is P-generi overV and κ is a ardinalin V, then cf(κ)V = cf(κ)V[G].Lemma 14.19. If P preserves o�nalities, then P preserves ardinalities.Proof. Assume P preserves o�nalities and let G be P-generi over V.Firstly, let κ be a regular ardinal in V, i.e., V � cf(κ) = κ. Then, sine
P preserves o�nalities, the ordinal cf(κ)V is equal to the ordinal cf(κ)V[G].Thus, V[G] � κ = cf(κ) whih shows that the ordinal κ, whih is a regularardinal in V, is still a regular ardinal in V[G].Seondly, if λ > ω is a limit ardinal in V, then the set of ardinals
C = {κ < λ : κ regular} is o�nal in λ (reall that by Proposition 5.10suessor ardinals are regular), and sine the ardinals in C remain (regular)ardinals in V[G], CV = CV[G] and onsequently λ is a ardinal (in fat alimit ardinal) in V[G] as well. ⊣Lemma 14.20. If P = (P,≤) is a foring notion whih satis�es , then Ppreserves o�nalities as well as ardinals.Proof. Let P = (P,≤) be a foring notion whih satis�es  and whih belongsto some model V of ZFC, and let G be P-generi overV. By Lemma 14.19 it isenough to prove that P preserves o�nalities. Let κ be an in�nite ardinal in
V and let S

˜
be a P-name for a stritly inreasing sequene of length λ = cf(κ)in V[G] whih is o�nal in κ, i.e., we have S

˜
[G] : λ → κ with ⋃{

S
˜
[G](α) :

α ∈ λ
}
= κ. Thus, there is a P-ondition p ∈ G suh that
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p P S˜

∈ λκ
˜

∧
⋃{

S
˜
(α
˙
) : α

˙
∈ λ

˙

}
= κ

˙
.Work for a moment in the ground model V: For eah α ∈ λ let

Dα =
{
q ≥ p : ∃y

(
q P S˜

(α
˙
) = y

)}
.Then, by Fat 14.9.(b), Dα is open dense above p. For eah α ∈ λ de�ne

Yα =
{
γ ∈ κ : ∃q ∈ Dα

(
q P S˜

(α
˙
) = γ

˙

)}
.Then, for every α ∈ λ, the set Yα ⊆ κ is in V, and sine P satis�es ,

|Yα| ≤ ω. Indeed, if q1 P S˜
(α
˙
) = γ1

˙
and q2 P S˜

(α
˙
) = γ2

˙
, where γ1 6= γ2,then q1 ⊥ q2.Let us turn bak to the model V[G]: For every α ∈ λ let Aα be a maximalanti-hain in Dα. By Fat 14.6.(b) and Fat 14.7, G meets every set Aα,whih implies that for every α ∈ λ, S

˜
[G](α) ∈ Yα. Let Y :=

⋃{Yα : α ∈ λ};then Y ⊆ κ is a set in V suh that ⋃Y = κ. Sine the ardinal λ is in�nitewe get |Y | ≤ λ · ω = λ, whih implies that cf(κ)V ≤ λ. Thus, sine λ =
cf(κ)V[G] ≤ cf(κ)V, we have cf(κ)V = cf(κ)V[G]. ⊣Independene of CH: The Gentle WaySine Cκ satis�es , in order to prove the following result we just have toshow that foring with Cκ adds κ di�erent real numbers to the ground model
V, i.e., the ontinuum in V[G] is at least of ardinality κ.Theorem 14.21. If V � ZFC and G is Cκ-generi overV, then V[G] � c ≥ κ.In partiular, if κ > ω1, then V[G] � ¬CH.Proof. Let G be Cκ-generi over V. Sine Cκ satis�es , by Lemma 14.20it is enough to prove that with G one an onstrut κ di�erent real numbers.To keep the notation short let Cκ := Fn(κ× ω, 2).Firstly we show that ⋃

G is a funtion from κ × ω to 2: For α ∈ κ and
n ∈ ω let

Dα,n =
{
p ∈ Cκ : 〈α, n〉 ∈ dom(p)

}
.Then for any α ∈ κ and n ∈ ω, Dα,n is an open dense subset of Cκ andtherefore G ∩ Dα,n 6= ∅. Thus, for every α ∈ κ and for every n ∈ ω there isa p ∈ G suh that p is de�ned on 〈α, n〉, and sine G is direted, ⋃G is afuntion with dom

(⋃
G
)
= κ× ω.Seondly we show how to onstrut κ di�erent real numbers from G: Foreah α ∈ κ de�ne rα ∈ ω2 by stipulating rα(n) := ⋃

G
(
〈α, n〉

) (for all n ∈ ω).Now, for α, β ∈ κ let
Dα,β =

{
p ∈ Cκ : ∃n ∈ ω({〈α, n〉, 〈β, n〉} ⊆ dom(p) ∧ p(〈α, n〉) 6= p(〈β, n〉)

}
.



Independene of CH: the gentle way 303Then for any distint ordinals α, β ∈ κ, Dα,β is an open dense subset of Cκand therefore G ∩Dα,β 6= ∅. Thus, for any distint α, β ∈ κ there is an n ∈ ωand a p ∈ G suh that p(〈α, n〉) 6= p(〈β, n〉), and therefore rα(n) 6= rβ(n).We an even show that G adds κ new reals to the ground model V: Tosee this, let f : ω → 2 be an arbitrary funtion in V, and for any α ∈ κ let
Df,α =

{
p ∈ Cκ : ∃n ∈ ω

(
〈α, n〉 ∈ dom(p) ∧ p(〈α, n〉) 6= f(n)

)}
.Sine Df,α is obviously open dense in Cκ, rα 6= f , and sine the funtion

f ∈ V was arbitrary, for eah α ∈ κ we have rα /∈ V. ⊣Now we show that for eah ordinal α, the statement 2ωα = ωα+1 is onsistentwith ZFC. In partiular, for α = 0 we get the relative onsisteny of theContinuum Hypothesis; but �rst we have to introdue some notations.Let κ be an in�nite ardinal. We say that a foring notion P = (P,≤) is
κ-losed if whenever γ < κ and {pξ : ξ ∈ γ} is an inreasing sequene ofelements of P (i.e., ξ0 < ξ1 → pξ0 ≤ pξ1), then there exists a ondition q ∈ Psuh that for all ξ ∈ γ, q ≥ pξ. In partiular, ω1-losed is the same as σ-losed.The following fat is just a generalisation of Lemma 14.17 and we leavethe proof as an exerise to the reader.Fat 14.22. Let P = (P,≤) be a κ-losed foring notion, λ an ordinal in κ,
G a P-generi �lter over V, X a set in V, and f : λ→ X a funtion in V[G];then f belongs to V.For ordinals α let Kα be the set of all funtions p from a subset of ωα+1to P(ωα) suh that ∣∣ dom(p)

∣∣ < ωα+1 (i.e., ∣∣dom(p)
∣∣ ≤ ωα), and let Kα :=

(Kα,⊆). Sine ωα+1 is an in�nite suessor ardinal, it is regular, and therefore
Kα is ωα+1-losed. Thus, by Fat 14.22, for eah ordinal β, every funtionfrom ωα to β in a Kα-generi extension belongs to the ground model. As aonsequene we get that the foring notion Kα preserves all ardinals ≤ωα+1and does not add new subsets of ωα.With the foring notion Kα we an now easily onstrut a generi model inwhih 2ωα = ωα+1.Theorem 14.23. If V � ZFC and Gα is Kα-generi over V, then V[Gα] �
2ωα = ωα+1. In partiular we get V[G0] � CHProof. We shall show that ⋃

Gα is a surjetive funtion from ωα+1 onto
P(ωα). Work in V. For ξ ∈ ωα+1 and x ∈ P(ωα) let

Dξ,x =
{
p ∈ Kα : ξ ∈ dom(p) ∧ x ∈ ran(p)

}
.Then for every ξ ∈ ωα+1 and every x ∈ P(ωα),Dξ,x is an open dense subset of

Kα and therefore Gα ∩Dξ,x 6= ∅. Thus, for all ξ ∈ ωα+1 and x ∈ P(ωα) thereis a p ∈ Gα suh that ξ ∈ dom(p) and x ∈ ran(p), and sine Gα is direted,this implies that the set ⋃Gα (in V[G]) is indeed a surjetive funtion from
ωα+1 onto P(ωα). Hene, V[Gα] �

∣∣P(ωα)
∣∣ ≤ ωα+1, and sine 2ωα ≥ ωα+1we �nally get V[Gα] � 2ωα = ωα+1. ⊣



304 14 The Notion of ForingBy the two preeding theorems it follows that there are models of ZFC inwhih the Continuum Hypothesis holds as well as some in whih it fails, andas a onsequene we get that CH is independent of ZFC. However, the on-strution of the orresponding generi models relied on the existene of theorresponding generi �lters, and it is now time to disuss this issue.On the Existene of Generi FiltersLet V be again a model of ZFC and let P = (P,≤) be a foring notion whihbelongs to V. We know from Chapter 5 that if ZF is onsistent, then so is ZFCand that there is a smallest standard model of ZFC ontaining the ordinals,namely Gödel's onstrutible universe L. So, we an assume V = L (in fatwe have no other hoie beause L is the only model of ZFC we know of). Nowassume that the set G ⊆ P is P-generi over V, where P belongs to V and Vis a model of ZFC (e.g., V = L). We �rst show that G does not belong to themodel V.Fat 14.24. If V is a model of ZFC, P = (P,≤) a foring notion in V, and
G ⊆ P is P-generi over V, then the set G does not belong to V.Proof. Let DG = P \G and let p ∈ P be an arbitrary P-ondition. Sine P is aforing notion, there are inompatible elements above p, i.e., ∃q1, q2 ∈ P

(
p ≤

q1 ∧ p ≤ q2 ∧ q1 ⊥ q2
). Now, sine G is direted, at most one of these twoelements belongs to G, or in other words, at least one of these two elementsbelongs to DG. Therefore, DG is dense in P and sine G is downwards losed,

DG is also open. Hene, DG is an open dense subset of P . If G belongs to V,then DG belongs to V as well, but obviously G ∩DG = ∅ whih implies that
G is not P-generi over V. ⊣This leads to the following question: If P-generi �lters do not belong to theground model V, why do we know that P-generi �lters exist? Informally,people living in V may ask: Is there life beyond V ?Unfortunately, one annot prove within ZFC that P-generi �lters exist,but at least, this one an prove: Consider the onstrutible universe L. Allsets in L are onstrutible, and vie versa, all onstrutible sets are in L. Ifwe add the statement all sets are onstrutible, denoted V = L, as a kindof axiom to ZFC, then there exists just a single transitive standard model ofZFC+V = L ontaining all the ordinals, namely L (at the same time we getthat V = L is onsistent with ZFC). Thus, as a onsequene of V = L we getthat there are no P-generi �lters whatsoever.Let us now explain how to get around this di�ulty: Firstly onstrut a small(i.e., ountable) model M of a large enough fragment of ZFC inside V, andthen extend M within V to a suitable generi model M[G]. For example toshow that ¬CH is onsistent with ZFC, by the Compatness Theorem 3.7



Referenes 305it is enough to show that whenever Φ is a �nite set of axioms of ZFC, then
Φ + ¬CH has a model. Let Φ ⊆ ZFC be an arbitrary but �xed �nite set ofaxioms. Now, take a ountable set M ∈ V suh that M an be extended in Vto a set model M[G] (still in V) suh that M[G] � Φ but also M[G] � ¬CH.Beause Φ was arbitrary, this shows that ¬CH is onsistent with ZFC.In the next hapter we show how to onstrut ountable models for arbi-trary �nite fragments of ZFC and in Chapter 16 we �nally show how to getproper independene proofs. However, in later hapters we shall skip this quitetedious onstrution and just work with the� in fat equivalent � approahpresented here. NotesThe reation of foring. The notion of foring and of generi sets were introduedby Paul Cohen [1℄ in 1963 to prove that ¬AC is onsistent with ZF and that ¬CHis onsistent with ZFC, and sine Gödel's onstrutible universe L is a model ofZF + AC + CH, this implies that AC and CH are even independent of ZF and ZFCrespetively. Cohen's original approah and notation were modi�ed for example bySott, who de�ned essentially the foring relationship given in Definition 14.8 andintrodued the orresponding foring symbol � � (this de�nition of foring andthe orresponding symbol were �rst published in Feferman [6, p. 328 f.℄). Notie thesimilarity between � � and �⊢�, and ompare the Foring Theorem 14.10 withGödel's Completeness Theorem 3.4. For a desription of how Cohen had ometo foring we refer the reader to Cohen [5℄, and a history of the origins and the earlydevelopment of foring an be found in Moore [9℄ and Kanamori [7℄ (but see alsoCohen [1, 2, 3, 4℄).The approah taken here. The way we introdued foring was motivated byKunen [8, Chapter VII, ��2�5℄, from where for example Definition 14.8 as wellas the proof of the Foring Theorem 14.10 were taken, and where one analso �nd a omplete proof of the Generi Model Theorem 14.12 (f. [8, Chap-ter VII, Theorem 4.2℄). However, Kunen onsiders generi extensions of ountabletransitive models of �nite fragments of ZFC (whereas we onsidered generi exten-sions of models of full ZFC). This way he gets model-theoreti theorems whereas wejust get results in the metatheory.Referenes1. Paul J. Cohen, The independene of the ontinuum hypothesis I., Proeedingsof the National Aademy of Sienes (U.S.A.), vol. 50 (1963), 1143�1148.2. , The independene of the ontinuum hypothesis II., Proeedings of theNational Aademy of Sienes (U.S.A.), vol. 51 (1964), 105�110.3. , Independene results in set theory , in The Theory of Models, Proeed-ings of the 1963 International Symposium at Berkeley (J.W. Addison, L. Henkin,and A. Tarski, eds.), [Studies in Logi and the Foundation of Mathematis],North-Holland, Amsterdam, 1965, pp. 39�54.



306 14 The Notion of Foring4. , Set Theory and the Continuum Hypothesis, Benjamin, New York,1966.5. , The disovery of foring , Proeedings of the Seond Honolulu Confereneon Abelian Groups and Modules (Honolulu, HI, 2001), vol. 32, 2002, pp. 1071�1100.6. Solomon Feferman, Some appliations of the notions of foring and generisets, Fundamenta Mathematiae, vol. 56 (1964/1965), 325�345.7. Akihiro Kanamori, Cohen and set theory , The Bulletin of Symboli Logi,vol. 14 (2008), 351�378.8. Kenneth Kunen, Set Theory, an Introdution to Independene Proofs,
[Studies in Logi and the Foundations of Mathematis 102], North-Holland,Amsterdam, 1983.9. Gregory H. Moore, The origins of foring , in Logi Colloquium '86, Pro-eedings of the Colloquium held in Hull, U.K., July 13�19, 1986 (F.R. Drake andJ.K. Truss, eds.), [Studies in Logi and the Foundation of Mathematis 124],North-Holland, Amsterdam, 1988, pp. 143�173.



15Models of �nite fragments of Set Theory
In this hapter we summarise the model-theoreti fats whih will be used inthe next hapter in whih the independene of the Continuum Hypothesis willbe proved. Most of the following statements are lassial results and are statedwithout proper proofs (for whih we refer the reader to standard textbooksin axiomati Set Theory like Jeh [4℄ or Kunen [5℄).Basi Model-Theoretial FatsLet L be an arbitrary but �xed language. Two L -strutures M and N withdomain A and B respetively are alled isomorphi if there is a bijetion
f : A→ B between A and B suh that:
• f

(
cM

)
= cN (for eah onstant symbol c ∈ L )

• RM
(
a1, . . . , an

)
⇐⇒ RN

(
f(a1), . . . , f(an)

) (for eah n-ary relation sym-bol R ∈ L )
• f

(
FM(a1, . . . , an)

)
= FN(f(a1), . . . , f(an)

) (for eah n-ary funtion sym-bol F ∈ L )If the L -strutures M and N are isomorphi and f : A → B is the orre-sponding bijetion, then for all a1, . . . , an ∈ A and eah formula ϕ(x1, . . . , xn)we have:
M � ϕ

(
a1, . . . , an

)
⇐⇒ N � ϕ

(
f(a1), . . . , f(an)

)This shows that isomorphi L -strutures are essentially the same, exept thattheir elements have di�erent �names�, and therefore, isomorphi strutures areusually identi�ed. For example the dihedral group of order six and S3 (i.e.,the symmetri group of order six) are isomorphi; whereas C6 (i.e., the yligroup of order six) is not isomorphi to S3 (e.g., onsider ϕ(x1, x2) ≡ x1◦x2 =
x2◦x1).



308 15 Models of �nite fragments of Set TheoryIfM and N are L -strutures and B ⊆ A, then N is said to be an elemen-tary substruture of M, denoted N ≺ M, if for every formula ϕ(x1, . . . , xn)and every b1, . . . , bn ∈ B:
N � ϕ(b1, . . . , bn) ⇐⇒ M � ϕ(b1, . . . , bn)For example the linearly ordered set (Q, <) is an elementary substrutureof (R, <). On the other hand, (Z, <) is not an elementary substruture of

(Q, <), e.g., ∀x∀y(x < y → ∃z(x < z < y)
) is false in (Z, <) but true in

(Q, <).The key point in onstrution of elementary substrutures of a given stru-ture M with domain A is the following fat: A struture N with domain
B ⊆ A is an elementary substruture of M if and only if for every formula
ϕ(u, x1, . . . , xn) and all b1, . . . , bn ∈ B:

∃a ∈ A : M � ϕ(a, b1, . . . , bn) ⇐⇒ ∃b ∈ B : M � ϕ(b, b1, . . . , bn)Notie that the impliation from the right to the left is obviously true (sine
B ⊆ A). Equivalently we get that N ≺ M if for every formula ϕ(u, x1, . . . , xn)and all b1, . . . , bn ∈ B:

∀a ∈ A : M � ϕ(a, b1, . . . , bn) ⇐⇒ ∀b ∈ B : M � ϕ(b, b1, . . . , bn)Notie that in this ase, the impliation from the left to the right is obviouslytrue.The following theorem is somewhat similar to Corollary 15.5 below, eventhough it goes beyond ZFC (see Related Result 86). However, it is notused later, but it is a nie onsequene of the haraterisation of elementarysubmodels given above.Theorem 15.1 (Löwenheim-Skolem Theorem). Every in�nite model fora ountable language has a ountable elementary submodel. In partiular,every model of ZFC has a ountable elementary submodel.The Re�etion PrinipleInstead of aiming for a set model of all of ZFC, we an restrit our attentionto �nite fragments of ZFC (i.e., to �nite sets of axioms of ZFC), denoted byZFC∗.We will see that for every �nite fragment ZFC∗ of ZFC, there is a set whihis a model of ZFC∗, but before we an state this result we have to give somefurther notions from model theory.Let V � ZFC, let M ∈ V be any set, and let M = (M,∈) be an ∈-struture with domain M . An ∈-struture M = (M,∈), where M ∈ V isa set, is alled a set model. Notie that this de�nition of model is slightly



The Re�etion Priniple 309di�erent to the one given in Chapter 3, where we de�ned models with re-spet to a set of formulae. For any formula ϕ we de�ne ϕM, the rela-tivisation of ϕ to M, by indution on the omplexity of the formula ϕ:
• (x = y)M is x = y.
• (x ∈ y)M is x ∈ y.
• (ψ1 ∧ ψ2)

M is ψM

1 ∧ ψM

2 .
• (¬ψ)M is ¬(ψM).
• (∃xψ)M is ∃x (x ∈M ∧ ψM).In other words, ϕM is the formula obtained from ϕ by replaing the quan-ti�ers �∃x� by �∃x ∈ M �. If ϕ(x1, . . . , xn) is a formula and x1, . . . , xn ∈ M ,then ϕM(x1, . . . , xn) is the same as ϕ(x1, . . . , xn) exept that the bound vari-ables of ϕ range over M . (For x1, . . . , xn not all in M , the interpretation of
ϕM(x1, . . . , xn) is irrelevant.) Notie that in the de�nition of ϕM, the inter-pretation of the non-logial symbol �∈� remains unhanged. Further, notiethat also the sets themselves remain unhanged (whih will not be the asefor example when we apply Mostowski's Collapsing Theorem 15.4).For a formula ϕ and a set model M, M � ϕ means ϕM (where the freevariables take arbitrary values inM). Similarly, for a set of formulae Φ,M � Φmeans M � ϕ for eah formula ϕ ∈ Φ. If M = (M,∈) and for all formulae
ϕ ∈ Φ we have

M � ϕ ⇐⇒ V � ϕ ,then we say that M re�ets Φ.The following theorem shows that if ZFC is onsistent, then any �nitefragment of ZFC has a set model.Theorem 15.2 (Refletion Priniple). Assume that ZFC has a model,say V, let M0 ∈ V be an arbitrary set, and let ZFC∗ ⊆ ZFC be an arbitrarilylarge �nite fragment of ZFC. Then we have:(a) There is a set M ⊇M0 in V suh that M re�ets ZFC∗. In other words,there is a set M ⊇M0 suh that for M = (M,∈) we have
M � ZFC∗ .(b) There is even a transitive set M ⊇ M0 that re�ets ZFC∗ (reall that aset x is transitive if z ∈ y ∈ x implies z ∈ x).() Moreover, there is a limit ordinal λ suh that Vλ ⊇ M0 and the set Vλre�ets ZFC∗.(d) There is anM ⊇M0 suh thatM re�ets ZFC∗ and |M | ≤ max

{
|M0|, ω

}.In partiular, for M0 = {∅}, there is a ountable set M that re�ets ZFC∗.The ruial point in the proof of the Refletion Priniple 15.2 is to showthat for any existential formula ∃xϕ(x, y) and any set M0 there exists a set



310 15 Models of �nite fragments of Set Theory
M ⊇M0 with the property that whenever V ontains a so-alled witness for
∃xϕ(x, y), i.e., a set a ∈ V suh that for all b ∈ M, V � ϕ(a, b), then there isalready a witness for ∃xϕ(x, y) in M :Lemma 15.3. Let V be a model of ZFC and let ϕ(x, y1, . . . , yn) be a formulawith {x, y1, . . . , yn} ⊆ free(ϕ). For eah non-empty set M0 there is a set
M ⊇M0 (where M ∈ V) suh that for all c1, . . . cn ∈M we have:

V � ∃xϕ(x, c1, . . . , cn) → ∃a ∈M ϕ(a, c1, . . . , cn)Moreover, we an onstrut M ′ ⊇ M0 suh that |M ′| ≤ max{|M0|, ω}, inpartiular, if M0 is ountable, then M ′ is ountable as well.Proof. Let V � ZFC and letM0 be any non-empty set, e.g.,M0 = {∅}. Firstly,de�ne in V the lass funtion H : Vn → V as follows:If V � ∃xϕ(x, u1, . . . , un) for some u1, . . . , un ∈ V, then let
H(u1, . . . , un) =

⋂{
Vα : α ∈ Ω ∧ ∃x ∈ Vα ϕ(x, u1, . . . , un)

}
,otherwise, H(u1, . . . , un) := {∅}.Now, we onstrut the set M ⊇M0 by indution: For i ∈ ω let

Mi+1 =Mi ∪
⋃{

H(c1, . . . , cn) : c1, . . . , cn ∈Mi

}and let
M =

⋃

i∈ω

Mi .If c1, . . . , cn ∈ M , then there is an i ∈ ω suh that c1, . . . , cn ∈ Mi, andonsequently, if V � ∃xϕ(x, c1, . . . , cn), then there is an a ∈ M suh that
V � ϕ(a, c1, . . . , cn).By AC, �x a well-ordering < of M , and de�ne the partial funtion
h(c1, . . . , cn) : Mn → M as follows: If H(c1, . . . , cn) = {∅}, then let
h(c1, . . . , cn) := ∅; otherwise, let a ∈ M be the <-minimal element of
H(c1, . . . , cn) ⊆M and let h(c1, . . . , cn) := a. We onstrut the set M ′ ⊇M0again by indution: For i ∈ ω let

M ′
i+1 =M ′

i ∪
{
h(c1, . . . , cn) : c1, . . . , cn ∈M ′

i

}and let
M ′ =

⋃

i∈ω

M ′
i .For all i ∈ ω we have |M ′

i+1| ≤ | seq(M ′
i)| = max{|M ′

i |, ω}, and therefore,
|M ′| ≤ max{|M0|, ω}. ⊣



The Re�etion Priniple 311Proof of Theorem 15.2 (Sketh). Let ZFC∗ be an arbitrary �nite fragment ofZFC. Let ϕ1, . . . , ϕl be the �nite list of all subformulae of formulae ontainedin ZFC∗. We may assume that the formulae ϕ1, . . . , ϕl are written in theset-theoreti language {∈} and that no universal quanti�er ours in theseformulae (i.e., replae �∀x� by �¬∃x¬�).Applying the proof of Lemma 15.3 to all these formulae simultaneously,yields a set M suh that for eah i with 1 ≤ i ≤ l we have:
V � ∃xϕi → ∃x ∈M ϕiA formula ϕ(x1, . . . , xn) is said to be absolute for M = (M,∈) and V, iffor all a1, . . . , an ∈M we have V � ϕ(a1, . . . , an) ⇐⇒ M � ϕ(a1, . . . , an)

M.The proof is now by indution on the omplexity of the formulae ϕ1, . . . , ϕl:Let i, j, k be suh that 1 ≤ i, j, k ≤ l. If ϕi is atomi, i.e., ϕi is equivalent to
x = y or x ∈ y, then ϕi is obviously absolute for M and V. If ϕi is of theform ¬ϕj , ϕj ∨ ϕk, ϕj ∧ ϕi, or ϕj → ϕk, where ϕj and ϕi are absolute for Mand V, then ϕi is absolute for M and V too. Finally, if ϕi ≡ ∃xϕj , then byonstrution of M , ϕi is absolute for M and V.Hene, M ⊇M0, and the model M = (M,∈) has the desired properties.

⊣The Refletion Priniple 15.2 an be onsidered as a kind of ZFC-versionof the Löwenheim-Skolem Theorem 15.1, and even though it is weakerthan that theorem, it has many interesting onsequenes and important ap-pliations, espeially in onsisteny proofs.Some remarks:(1) If we ompare (b) with (d) we see that we may require that the set M istransitive or that |M | ≤ max
{
|M0|, ω

}, but in general not both.For example let ZFC∗ be rih enough to de�ne ω1 as the smallest un-ountable ordinal and assume that M = (M,∈) re�ets ZFC∗. If M isountable, then M annot be transitive; and if M is transitive, then Mmust be unountable.(2) As a onsequene of the Refletion Priniple 15.2 and of Gödel'sSeond Inompleteness Theorem 3.9, it follows that ZFC is not�nitely axiomatisable (i.e., there is no way to replae the two axiomshemata by just �nitely many single axioms).On the other hand, by the Refletion Priniple 15.2 we get that foreah �nite fragment ZFC∗ of ZFC, there is a proof in ZFC that ZFC∗ has aset model, whereas byGödel's Seond Inompleteness Theorem 3.9the existene of a model of ZFC is not provable within ZFC.(3) Let ZFC∗ be a �nite fragment of ZFC and assume that ZFC∗ ⊢ ϕ (for somesentene ϕ). Further, assume that M re�ets ZFC∗ and let M = (M,∈).Then, in the model-theoreti sense, M � ZFC∗, and onsequently, M � ϕ.As we will see later, this is the �rst step in order to show that a given



312 15 Models of �nite fragments of Set Theorysentene ϕ is onsistent with ZFC: By the Compatness Theorem 3.7it is enough to show that whenever Φ ⊆ ZFC is a �nite fragment of ZFC,then Φ+ϕ has a model. Let Φ be an arbitrary but �xed �nite set of axiomsof ZFC. Now, let M ∈ V be a set model of Ψ, where Ψ is a ertain �nitefragment of ZFC whih makes sure that the model M an be extended to aset modelM[X ] suh that M[X ] � Φ+ϕ. Thus, sine Φ was arbitrary, thisshows that ϕ is onsistent with ZFC. (This method is used and explainedagain in Chapter 16.)Countable Transitive Models of Finite Fragments of ZFCAs mentioned above, a set model M = (M,∈) of a �nite fragment of ZFC anbe taken to be ountable or transitive, but in general not both. However, as aonsequene of Mostowski's Collapsing Theorem 15.4 we an get also atransitive set model whih is isomorphi to M . This is done by reinterpretingthe elements ofM and as a result we get a model whih is ountable and tran-sitive, but whih is not a submodel of M. Before we an state Mostowski'sCollapsing Theorem 15.4, we have to introdue some notions.Let M be an arbitrary set. For a binary relation E ⊆ M ×M on M andeah x ∈M let
extE(x) = {z ∈M : z E x}be the extension of x.A binary relation E on M is said to be well-founded if every non-emptysubset ofM has an E-minimal element (i.e., for eah non-empty A ⊆M thereis an x0 ∈ A suh that extE(x0) ∩ A = ∅).A well-founded binary relation E on M is extensional if for all x, y ∈Mwe have
extE(x) = extE(y) → x = y .In other words, E is extensional i� (M,E) satis�es the Axiom of Extensionality(with respet to the binary relation E).The following result shows that for every struture (M,E) whih satis�esthe Axiom of Extensionality, there exists a transitive set N suh that (M,E)and (N,∈) are isomorphi.Theorem 15.4 (Mostowski's Collapsing Theorem). If E is a well-founded and extensional binary relation on a setM , then there exists a uniquetransitive set N and an isomorphism π between (M,E) and (N,∈), i.e., π :

M → N is a bijetion and for all x, y ∈M , y E x↔ π(y) ∈ π(x).Proof (Sketh). Let x0 ∈ M be an E-minimal element of M . Sine E isextensional, x0 is unique. De�ne π(x0) := ∅ and let A0 = {x0}. If, for some
α ∈ Ω, Aα is already de�ned and M \ Aα 6= ∅, then let Xα be the set of all
E-minimal elements of M \ Aα, let Aα+1 := Aα ∪ Xα, and for eah x ∈ Xα



Countable transitive models of �nite fragments of ZFC 313de�ne π(x) := {
π(y) : y E x

}. Now, M =
⋃
α∈λAα (for some λ ∈ Ω) and wede�ne N := π[M ]. We leave it as an exerise to the reader to show that π and

(N,∈) have the required properties and that (N,∈) is unique. ⊣It is worth mentioning that not just the set N , but also the isomorphism
π is unique. We also would like to mention that Mostowski's CollapsingTheorem 15.4 is a ZFC result and that π is just a mapping between two sets.As an immediate onsequene of Mostowski's Collapsing Theorem 15.4we getCorollary 15.5. Let V be a model of ZFC and let M = (M,∈) be a ount-able set model in V. If ZFC∗ is a �nite fragment of ZFC ontaining the Axiomof Extensionality and M � ZFC∗, then there is a ountable transitive set N in
V suh that N = (N,∈) is a set model in V whih is isomorphi to M (inpartiular, N � ZFC∗).Proof. Let M = (M,∈) be a ountable set model of ZFC∗. Beause M isa set, the relation �∈� is obviously a well-founded and extensional binaryrelation on M . Thus, by Mostowski's Collapsing Theorem 15.4, there isa transitive set N suh that M = (M,∈) and N = (N,∈) are isomorphi, andsine π :M → N is a bijetion, N is ountable. ⊣Let ZFC∗ be any �nite fragment of ZFC and let V be a model of ZFC. Then,by the Refletion Priniple 15.2.(d), there is a ountable setM in V thatre�ets ZFC∗ and for M = (M,∈) we have M � ZFC∗. Thus, by Corol-lary 15.5, there is a ountable transitive set N that re�ets ZFC∗. In otherwords, for any �nite fragment ZFC∗  ZFC there is a ountable transitivemodel N in V suh that N � ZFC∗.Let us brie�y disuss the preeding onstrutions: We start with a model Vof ZFC and an arbitrary large but �nite set of axioms ZFC∗  ZFC. By theRefletion Priniple 15.2.(d) there is a ountable set M in V suh that
M = (M,∈) is a model of ZFC∗. By applying Mostowski's CollapsingTheorem 15.4 to (M,∈) we obtain a ountable transitive model N = (N,∈)in V suh that the models N = (N,∈) and M are isomorphi, and onse-quently, N is a model of ZFC∗.It is worth mentioning that the model M = (M,∈) is a genuine submodelof V and therefore ontains the real sets of V. For example if

M � �λ is the least unountable ordinal�then λ = ω1, i.e., ω1 ∈M . However, sine the set M is ountable in V, thereare ountable ordinals in V whih do not belong to the set M , and thereforenot to the model M (whih implies that M is not transitive). In other words,
V � λ = ω1 ∧ ω1 ∈M ∧ |λ ∩M | = ω .On the one hand, the model N = (N,∈) is in general not a submodel of Vand just ontains a kind of opies of ountably many set of V. For example if
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N � �λ is the least unountable ordinal�then λ, whih orresponds to ω1 in N, is just a ountable ordinal in V. How-ever, sine N is transitive, every ordinal in V whih belongs to λ also belongsto the set N , and therefore to the model N. In other words,

V � λ ∈ ω1 ∧ λ ∈ N ∧ λ ∩N = λ .The relationships between the three models V, M, and N, are illustrated bythe following �gure:
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As we shall see in the next hapter, ountable transitive models of �nitefragments of ZFC play a key role in onsisteny and independene proofs.NotesFor onepts of model theory and model-theoretial terminology we refer thereader to Hodges [3℄ or to Chang and Keisler [1℄. However, the preeding results(inluding proofs) an also be found in Jeh [4, Chapter 12℄.The Löwenheim-Skolem Theorem 15.1 was already disussed in the notes ofChapter 3; the Refletion Priniple 15.2 was introdued by Montague [7℄ (seealso Lévy [6℄); and the transitive ollapse was de�ned by Mostowski [8℄.Related Results82. A model of ZF− Inf and the onsisteny of PA. Vω � ZF− Inf, where Inf denotesthe Axiom of In�nity, and moreover, we even have Con(PA) ⇐⇒ Con(ZF− Inf)(see Jeh [4, Exerise 12.9℄ and Kunen [5, Chapter IV,Exerise 30℄).83. Models of Z. Let Z be ZF without the Axiom Shema of Replaement. For everylimit ordinal λ > ω we have Vλ � Z (see Jeh [4, Exerise 12.7℄ or Kunen [5,Chapter IV,Exerise 6℄).



Referenes 315For every in�nite regular ardinal κ let Hκ :=
{
x : |TC(x)| < κ

}. The elements of Hκare said to be hereditarily of ardinality < κ. In partiular, Hω �whih oinideswith Vω � is the set of hereditarily �nite sets and Hω1 is the set of hereditarilyountable sets.84. Models of ZFC−P. If AC holds in V, then for all ardinals κ > ω we have Hκ �Z−P, where P denotes the Axiom of Power Set. Moreover, for regular ardinals
κ > ω we even have Hκ � ZFC − P (see Kunen [5, Chapter IV,Exerise 7℄ andKunen [5, Chapter IV,Theorem 6.5℄).An unountable regular ardinal κ is said to be inaessible if for all λ < κ, 2λ < κ.The inaessible ardinals owe their name to the fat that they annot be obtained(or aessed) from smaller ardinals by the usual set-theoretial operations. To someextent, an inaessible ardinal is to smaller ardinals what ω is to �nite ardinalsand what is re�eted by the fat that Hω � ZFC − Inf (f. Jeh [4, Exerise 12.9℄).Notie that by Cantor's Theorem 3.25, every inaessible ardinal is a regularlimit ardinal. One annot prove in ZFC that inaessible ardinals exist; moreover,one annot even prove that unountable regular limit ardinals exist (see Kunen [5,Chapter VI,Corollary 4.13℄ but also Hausdor�'s remark [2, p. 131℄).85. Models of ZFC. If κ is inaessible, then Hκ � ZFC (f. Kunen [5, Chap-ter IV,Theorem 6.6℄). Let us show that if ZFC is onsistent, then ZFC 0 Ina,where Ina denotes the axiom �∃κ (κ is inaessible)�. Sine Hκ � ZFC (if κis inaessible), it is provable from ZFC + Ina that ZFC has a model whihis equivalent to saying that ZFC is onsistent. Now, if ZFC ⊢ Ina, then weonsequently get that ZFC proves its own onsisteny, whih is impossible byGödel's Seond Inompleteness Theorem 3.9 (unless ZFC is inonsistent).86. The Löwenheim-Skolem Theorem. Even though the Löwenheim-Skolem The-orem 15.1 for ZFC�whih says that every model of ZFC has a ountable ele-mentary submodel� is somewhat similar to Corollary 15.5, it an neither beformulated in First-Order Logi nor an it be proved in ZFC: Firstly, notie thatZFC onsists of in�nitely many axioms. Thus, we annot write these axioms as asingle formula as we have done above in order to prove the Refletion Prin-iple 15.2. Furthermore, even in the ase when we would work in higher orderLogi, if every model V of ZFC would have a ountable elementary submodel
V

′, then the set of ordinals in V
′ (i.e., ΩV ∩V

′) would be ountable in V (butnot in V
′, of ourse). Now, in V we an build the sequene α0 :=

⋃
ΩV ∩ V

′,
α1 :=

⋃
ΩV′∩V

′′, and so on. This would result in an in�nite, stritly dereasingsequene α0 ∋ α1 ∋ . . . of ordinals in V, whih is a ontradition to the Axiomof Foundation. Referenes1. Chen Chung Chang and H. Jerome Keisler, Model Theory, 2nd ed.,
[Studies in Logi and the Foundations of Mathematis 73], North-Holland,Amsterdam, 1977.2. Felix Hausdorff, Grundzüge der Mengenlehre, de Gruyter, Leipzig, 1914
[reprint: Chelsea, New York, 1965].



316 15 Models of �nite fragments of Set Theory3. Wilfried Hodges, Model Theory, Cambridge University Press, Cambridge,1993.4. Thomas Jeh, Set Theory, The Third Millennium Edition, Revised andExpanded, [Springer Monographs in Mathematis], Springer-Verlag, Berlin, 2003.5. Kenneth Kunen, Set Theory, an Introdution to Independene Proofs,
[Studies in Logi and the Foundations of Mathematis 102], North-Holland,Amsterdam, 1983.6. Azriel Lévy, Axiom shemata of strong in�nity in axiomati set theory , Pai�Journal of Mathematis, vol. 10 (1960), 223�238.7. Rihard Montague, Fraenkel's addition to the axioms of Zermelo, in Essayson the Foundations of Mathematis, Magnes Press, Hebrew University,Jerusalem, 1961, pp. 91�114.8. Andrzej Mostowski, An undeidable arithmetial statement , FundamentaMathematiae, vol. 36 (1949), 143�164.



16Proving Unprovability
Consisteny and Independene Proofs: The Proper WayWe have seen in Chapter 14 how we ould extend models of ZFC to modelsin whih for example CH fails � supposed we have suitable generi �lters athand. On the other hand, we have also seen in Chapter 14 that there is noway to prove that generi �lters exist.However, in order to show that for example CH is independent of ZFC wehave to show that ZFC + CH as well as ZFC + ¬CH has a model. In otherwords we are not interested in the generi �lters themselves, but rather in thesentenes whih are true in the orresponding generi models; on the otherhand, if there are no generi �lters, then there are also no generi models.The trik to avoid generi �lters (over models of ZFC) is to arry out thewhole foring onstrution within a given model V of ZFC�or alternativelyin ZFC: In V we �rst onstrut a ountable model N of a suitable �nitefragment of ZFC. Then we de�ne a kind of �mini-foring� P whih belongs tothe model N and show that there is a set G in V whih is P-generi over N.From the point of view of N, N[G] is a proper generi extension of N, andsine G is a set in V, also N[G] belongs to V. This shows that ertain generiextensions exist, in partiular generi extensions of ountable models of �nitefragments of ZFC.What we gain with this approah is that the whole onstrution takesplae in the model V, but the prie we pay is that neither N nor N[G] is amodel of ZFC; but now it is time to desribe the proper way for obtainingonsisteny and independene results in greater detail:0. The goal : Suppose we would like to show that a given sentene ϕ is onsis-tent with ZFC, i.e., we have to show that Con(ZFC) implies Con(ZFC+ϕ).By Gödel's Completeness Theorem 3.4 this is equivalent to showingthat ZFC+ ϕ has a model whenever there is a model V of ZFC.



318 16 Proving Unprovability1. Getting started : By theCompatness Theorem 3.7, ZFC+ϕ is onsistentif and only if for every �nite set of axioms Φ of ZFC, Φ + ϕ is onsistent,i.e., Φ + ϕ has a model. Below, we show how to onstrut a model of
Φ0 + ϕ, where Φ0 is an arbitrary but �xed �nite set of axioms of ZFC.2. A suitable foring notion P: In the model V de�ne a foring notion P =
(P,≤) whih has the property that there is a ondition p0 ∈ P suh that
p0 P ϕ. For example if ϕ is ¬CH, then by the methods presented inChapter 14, Cω2 would have the required properties.3. Choosing a suitable �nite set of axioms : Let ZFC∗  ZFC be a �nitefragment of ZFC suh that:(a) Eah axiom of Φ0 belongs to ZFC∗.(b) ZFC∗ is strong enough to de�ne the foring notion P, the existene ofthe ondition p0, as well as some properties of P like satisfying ,being σ-losed, et etera.() ZFC∗ is strong enough to prove that every sentene in Φ0 is fored tobe true in any P-generi extension of V.(d) ZFC∗ is strong enough to prove that various onepts like ��nite�,�partial ordering and dense sets�, et etera, are absolute for all ount-able transitive models.The properties (b)�(d) of ZFC∗ are neessary to prove Theorem 16.1;however, we will omit most of the quite tedious and tehnial proof ofthat theorem.4. The orresponding ountable transitive model N: Let M0 = {p0, P,R≤},whereR≤ =

{
〈p, q〉 ∈ P×P : p ≤ q

}. By theRefletion Priniple 15.2there is a ountable set M ⊇M0 in V suh that M re�ets ZFC∗, i.e., for
M = (M,∈) we have M � ZFC∗. By Corollary 15.5 and Mostowski'sCollapsing Theorem 15.4, there is a ountable transitive model N =
(N,∈) in V suh that N � ZFC∗, and in addition there is a bijetion
π : M → N suh that for all x, y ∈ M , y ∈ x ↔ π(y) ∈ π(x). De�ne
PN := π[P ] and ≤N:= π[R≤]. Notie that for all p, q ∈ PN, N � p ≤N qi� π−1(p) ≤ π−1(q).5. Relativisation of P-generi �lters to N: For a set G ⊆ PN let

N[G] = {x
˜
[G] : x

˜
is a P-name in N} .A set G ⊆ PN is PN-generi over N if it meets every open dense subset

D ⊆ PN whih is in N.6. Relativisation of the Generi Model Theorem: There is even a relativisationof the Generi Model Theorem 14.12 whih states as follows.Theorem 16.1. Let V be a model of ZFC, let P = (P,≤) be a foringnotion in V and let p0 be an arbitrary ondition in P . Furthermore, let
Φ0 and ZFC∗ be as above and let N = (N,∈) be a ountable transitive



Consisteny and independene proofs: the proper way 319model in V suh that N � ZFC∗. Then there is a set G ⊆ PN in V whihontains p0 and whih is PN-generi over N. Moreover,N[G] = (N [G],∈)is a ountable transitive model in V and N[G] � Φ0.Proof (Sketh). Firstly, let us show that there exists a set G ⊆ PN in
V whih is PN-generi over N and ontains p0: Beause the model Nis ountable in V, from the point of view of V, the model N ontainsjust ountably many sets whih are open dense subsets of PN. Let {Dn :
n ∈ ω} be this ountable set. Sine D0 is dense, we an take a ondition
q0 ∈ D0 suh that q0 ≥ p0; and in general, for n ∈ ω take qn+1 ∈ Dn+1suh that qn+1 ≥ qn. Finally let

G =
{
p ∈ PN : ∃n ∈ ω(p ≤ qn)

}
.Then G ⊆ PN is a set in V whih ontains p0 and meets every open densesubset of PN whih belongs to N, and hene, G is PN-generi over N.Notie that even though eah qn belongs to the model N, the sequene

{qn : n ∈ ω}�and onsequently the set G�does not belong to N.Notie also that sine N is ountable in V, there are only ountably manynames in N and onsequently N [G] is ountable in V.Seondly, let us show that N[G] � Φ0: By the hoie of ZFC∗ (in step 3)we an show in N, by using the tehnique introdued in Chapter 14, thatwhenever G is PN-generi over N and ontains p0, then N[G] � Φ0. ⊣7. The �nal step: In step 2 we assumed that V[G] � ϕ whenever G is P-generi over V and ontains p0. Thus, by Theorem 16.1, we get that
N[G] � ϕwhenever G is PN-generi over N and p0 ∈ G. On the other hand, by thehoie of the set of axioms ZFC∗ and sine N � ZFC∗ we get N[G] � Φ0,hene,

N[G] � Φ0 + ϕwhih shows that Φ0 + ϕ is onsistent.8. Conlusion: Sine the �nite set of axioms Φ0 we have hosen in step 1 wasarbitrary, Φ+ ϕ is onsistent for every �nite set of axioms Φ of ZFC, andonsequently we get that ϕ is onsistent with ZFC. This is what we wereaiming for and what is summarised by the following result.Proposition 16.2. Let ϕ be an arbitrary sentene in the language of SetTheory. If there is a foring notion P = (P,≤) and a ondition p ∈ P suhthat p P ϕ, then ϕ is onsistent with ZFC.



320 16 Proving UnprovabilityThe model-theoreti part of the above onstrution is illustrated by the fol-lowing �gure:
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The most inelegant part in the proof of the onsisteny of ϕ is surely step 3,where we have to �nd a �nite set of axioms ZFC∗  ZFC whih is strongenough to prove that whenever N � ZFC∗ and G is P-generi over N, then
N[G] � Φ0. On the other hand, for a onsisteny proof it is not neessary todisplay expliitly the axioms in ZFC∗; it is su�ient to know that suh a �niteset of axioms exists.The ruial point in the proof of the onsisteny of ϕ is step 2, where wehave to �nd (or de�ne) a foring notion P suh that there is a P-ondition
p0 whih fores ϕ. In fat it will turn out that p0 is always equal to 0, inwhih ase we say that P fores ϕ, i.e., ϕ is true in all P-generi extensions of
V. For example K0 and Cω2 (both de�ned in Chapter 14) fore CH and ¬CHrespetively.Now, let us turn our attention to independene results: Firstly reall that asentene ϕ is independent of ZFC if ϕ as well as ¬ϕ is onsistent with ZFC. So,in order to show that a sentene ϕ is independent of ZFC we would have to gotwie through the proedure desribed above. However, sine the only ruialpoint in the proof is step 2, all what we have to do is to �nd two suitableforing notions:In order to show that a given set-theoreti sentene ϕ is independentof ZFC, we have to show that there are two foring notions suh thatone fores ϕ and the other one fores ¬ϕ.As a �rst example let us onsider the ase when ϕ is CH.Theorem 16.3. CH is independent of ZFC.Proof. On the one hand, by Theorem 14.21 we get that whenever G is Cκ-generi over V and κ > ω1, then V[G] � ¬CH, and therefore we get that
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Con(ZFC) ⇒ Con(ZFC + ¬CH). On the other hand, by Theorem 14.23 weget that whenever G is K0-generi over V, then V[G] � CH, whih shows that
Con(ZFC) ⇒ Con(ZFC+ CH). ⊣The Cardinality of the ContinuumUntil now we just have seen that for eah in�nite ardinal κ there is a modelin whih c ≥ κ, but we did not give any estimate how large c atually is insuh a model. Of ourse, sine cω = c, c = κ implies that κ must also satisfy
κω = κ. Surprisingly, this is the only demand for κ to make it possible to forethat c = κ.Theorem 16.4. For every ardinal κ whih satis�es κω = κ we have:

Con(ZFC) ⇒ Con(ZFC+ c = κ)Proof. Let V � ZFC and let κ be a ardinal in V whih satis�es κω = κ.Consider the foring notion Cκ =
(
Fn(κ × ω, 2), ⊆

). For onveniene, wewrite Cκ instead of Fn(κ×ω, 2). If G is Cκ-generi over V, then V[G] � c ≥ κ(f. Theorem 14.21). Thus, it remains to show that V[G] � c ≤ κ.Firstly we investigate Cκ-names for subsets of ω: Let x
˜
be an arbitrary

Cκ-name for a subset of ω. For eah n ∈ ω let
∆n

˙
∈x
˜
=

{
p ∈ Cκ : (p Cκ

n
˙
∈ x
˜
) ∨ (p Cκ

n
˙
/∈ x
˜
)
}
.By Fat 14.9.(b), for eah n ∈ ω the set ∆n

˙
∈x
˜
is open dense in Cκ. For eah

n ∈ ω hoose a maximal anti-hain An in ∆n
˙
∈x
˜
and de�ne

x
˙
=

{
〈n
˙
, p〉 : p ∈ An ∧ p Cκ

n
˙
∈ x
˜

}
.A name for a subset of ω of the form like x

˙
is alled a nie name (i.e.,nie names are a speial kind of names for subsets of ω). Now we show that

0 Cκ
x
˙
= x

˜
by showing that for eah n ∈ ω the set

Dn =
{
q ∈ Cκ : q Cκ

n
˙
∈ x

˙
↔ n

˙
∈ x
˜

}is dense in Cκ. Fix n ∈ ω and let p be an arbitrary Cκ-ondition. Sine ∆n
˙
∈x
˜
isdense in Cκ there is a p0 ⊇ p suh that p0 ∈ ∆n

˙
∈x
˜
, and sine An is a maximalanti-hain in ∆n

˙
∈x
˜
, there is a q0 ∈ An suh that p0 and q0 are ompatible.Thus, there is a q ∈ Cκ suh that p0 ⊆ q ⊇ q0. By onstrution we get

q Cκ
n
˙
∈ x

˙
↔ n

˙
∈ x
˜
,and sine p ⊆ q and p was arbitrary this shows that Dn is dense in Cκ. Inpartiular we get that for every Cκ-name x

˜
for a subset of ω there exists anie name x

˙
suh that 0 Cκ

x
˙
= x

˜
.



322 16 Proving UnprovabilitySeondly we ompute the ardinality of the set of nie names: Sine κ isin�nite, ∣∣[κ× ω × 2]<ω
∣∣ = κ (f. Corollary 5.8), and onsequently |Cκ| = κ(we leave the details as an exerise to the reader). Reall that Cκ satis�es, i.e., every anti-hain in Cκ is at most ountable. Now, every nie nameis the ountable union of at most ountable sets of ordered pairs, where eahordered pair is of the form 〈n

˙
, p〉 for some n ∈ ω and p ∈ Cκ. Thus, there areat most (

(ω · κ)ω
)ω

= κω·ω = κω = κnie names for subsets of ω. Now, beause eah set x ⊆ ω whih is in V[G] hasa Cκ-name in V, and beause every Cκ-name for a subset of ω orresponds toa nie name, there are at most κ subsets of ω in V[G]. Hene, V[G] � c ≤ κand we �nally get V[G] � c = κ. ⊣NotesApproahes to foring. There are di�erent ways of presenting the foring teh-nique, and even though they all yield preisely the same onsisteny proofs, theyan be quite di�erent in their metamathematial oneption. The approah to for-ing presented in this hapter is essentially taken from Kunen [4, Chapter VII℄.Another approah� taken for example by Jeh in [3, Chapter 14℄ and in [2,Part I, Setion 1℄ � uses Boolean-valued models. For a disussion of di�erent ap-proahes, as well as for some historial bakground, we refer the reader to Kunen [4,Chapter VII, �9℄. Related Results87. The κ-hain ondition. Let κ be a regular ardinal. We say that a foring notion
P = (P,≤) satis�es the κ-hain ondition, denoted κ-, if every anti-hain in
P has ardinality <κ (i.e., stritly less than κ). In partiular, ω1- is equivalentto .One an show that if a foring notion P satis�es the κ-, then foring with Ppreserves all ardinals ≥κ (see for example Kunen [4, Chapter VII, Lemma 6.9℄or Jeh [2, Part I, Setion 2℄).88. On the onsisteny of 2ωα > ωα+1. With essentially the same onstrution asin the proof of Theorem 16.4, but replaing the  foring notion by a similarone satisfying the ωα+1-hain ondition, one an show that 2ωα = κ is onsistentwith ZFC whenever cf(κ) > ωα. Notie that by Corollary 5.12, the ondition
cf(κ) > ωα is neessary. A more general result is obtained using Easton foring(see Easton [1℄ or Chapter 18 |Related Result 100).Referenes1. William B. Easton, Powers of regular ardinals, Annals of Pure and Ap-plied Logi, vol. 1 (1970), 139�178.
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17Models in whih AC fails
In Chapter 7 we have onstruted models of Set Theory in whih the Axiom ofChoie failed. However, these models were models of Set Theory with atoms,denoted ZFA, where atoms are objets whih do not have any elements butare distint from the empty set. In this hapter we shall demonstrate how onean onstrut models of Zermelo-Fraenkel Set Theory (i.e., models of ZF) inwhih AC fails. Moreover, we shall also see how we an embed arbitrary largefragments of permutation models (i.e., models of ZFA) into models of ZF.Symmetri Submodels of Generi ExtensionsLet V be a model of ZFC and let P = (P,≤) be a foring notion whih isde�ned in V with smallest element 0. A mapping α : P → P is alled anautomorphism of P if α is a one-to-one mapping from P onto P suh thatfor all p, q ∈ P :

αp ≤ αq ⇐⇒ p ≤ q .In partiular we get α0 = 0. If α is an automorphism of P, then we de�ne, byindution on rk(x
˜
), an automorphism of the lass of P-namesVP by stipulating

αx
˜
=

{
〈αy

˜
, αp〉 : 〈y

˜
, p〉 ∈ x

˜

}
.Notie that in partiular we have α∅ = ∅. Moreover, if x

˙
=

{
〈y
˙
,0〉 : y ∈ x

} isthe anonial P-name for a set x ∈ V and α is an arbitrary automorphism of
P, then αx

˙
= x

˙
. Furthermore, with respet to the foring relationship � P �we have
p P ϕ(x

˜
1, . . . , x

˜
n) ⇐⇒ αp P ϕ(αx

˜
1, . . . , αx

˜
n)where ϕ(x1, . . . , xn) is a �rst-order formula with all free variables shown and

x
˜
1, . . . , x

˜
n ∈ VP are arbitrary P-names.



326 17 Models in whih AC failsLet now G be an arbitrary but �xed group of automorphisms of P. In otherwords, let G be an arbitrary subgroup of the automorphism group of P.For eah P-name x
˜
we de�ne the symmetry group symG (x

˜
) ⊆ G of x

˜
bystipulating

symG (x
˜
) =

{
α ∈ G : αx

˜
= x

˜

}
.In partiular, if x

˙
is the anonial P-name for a set x ∈ V, then symG (x

˙
) = G .Further, if β ∈ symG (x

˜
) and α is an arbitrary automorphisms of P, then

(αβα−1)(αx
˜
) = αx

˜
, and therefore

symG (αx
˜
) = α symG (x

˜
)α−1 ,whih shows that β ∈ symG (x

˜
) i� αβα−1 ∈ symG (αx

˜
).A set F of subgroups of G is a normal �lter on G if for all subgroups

H,K of G we have:
• G ∈ F

• if H ∈ F and H ⊆ K, then K ∈ F

• if H ∈ F and K ∈ F , then H ∩K ∈ F

• if α ∈ G and H ∈ F , then αHα−1 ∈ FLet F be an arbitrary but �xed normal �lter on G . Then x
˜
∈ VP is saidto be symmetri if symG (x

˜
) ∈ F . In partiular, anonial P-names x

˙
forsets x ∈ V are symmetri (sine symG (x

˙
) = G and G ∈ F ), and if x

˜
issymmetri and α ∈ G , then also αx

˜
is symmetri (sine symG (x

˜
) ∈ F i�

symG (αx
˜
) ∈ F ).The lass HS of hereditarily symmetri names is de�ned by indutionon rk(x

˜
):

x
˜
∈ HS ⇐⇒ x

˜
is symmetri and {

y
˜
: ∃p ∈ P

(
〈y
˜
, p〉 ∈ x

˜

)}
⊆ HS.Sine for all x ∈ V and eah automorphism α of P we have αx
˙
= x

˙
, allanonial names for sets in V are in HS. Furthermore, if a P-name x
˜

ishereditarily symmetri and α ∈ G , then also αx
˜
is hereditarily symmetri.Thus, for all α ∈ G we have αx

˜
∈ HS i� x

˜
∈ HS.Now, for any G ⊆ P whih is P-generi over V de�ne

V̂ =
{
x
˜
[G] : x

˜
∈ HS

}
.In other words, V̂ is the sublass of V[G] whih ontains all elements of V[G]that have a hereditarily symmetri P-name. Sine P-names for P-generi �ltersare in general not symmetri, the set G, whih belongs to V[G], is in generalnot a member of V̂. However, V̂ is a transitive model of ZF whih is alledsymmetri submodel of V[G].Proposition 17.1. Every symmetri submodel V̂ of V[G] is a transitivemodel of ZF whih ontains V, i.e., V ⊆ V̂ ⊆ V[G] and V̂ � ZF.



Symmetri submodels of generi extensions 327Proof (Sketh). Like for theGeneri Model Theorem 14.12, we shall provejust a few fats; the remaining parts of the proof are left as an exerise to thereader.The heredity of the lass HS implies that the lass V̂ is transitive, and bythe de�nition of V̂ we get V̂ ⊆ V[G]. Further, sine x
˙
∈ HS for every x ∈ V,we get V ⊆ V̂.As a onsequene of the transitivity of V̂ we get that V̂ satis�es the Axiomof Extensionality as well as the Axiom of Foundation.To see that the Axiom of Empty Set and the Axiom of In�nity are validin V̂, just notie that the anonial P-names for ∅ and ω respetively arehereditarily symmetri.For the Axiom of Pairing, let x0 and x1 be arbitrary sets in V̂ and let

x
˜
0, x
˜
1 ∈ HS be P-names for x0 and x1 respetively. Let y

˜
:=

{
〈x
˜
0,0〉, 〈x

˜
1,0〉

}.Then y
˜
[G] = {x0, x1}, and sine y

˜
∈ HS we get {x0, x1} ∈ V̂.For the Axiom Shema of Separation, let ϕ(x, y1, . . . , yn) be a �rst-orderformula with free(ϕ) ⊆ {x, y1, . . . , yn}. Let u, a1, . . . , an be sets in V̂ and let

u
˜
, a
˜
1, . . . , a

˜
n be the orresponding hereditarily symmetri P-names for thesesets. We have to �nd a hereditarily symmetri P-name for the set

w =
{
v ∈ u : ϕ(v, a1, . . . , an)

}
.For this, let ū

˜
:=

{
〈v
˜
, p〉 : ∃q ∈ P

(
q ≤ p ∧ 〈v

˜
, q〉 ∈ u

˜

)} and let
w
˜
=

{
〈v
˜
, p〉 ∈ ū

˜
: p P ϕ(v

˜
, a
˜
1, . . . , a

˜
n)
}
.Obviously we have w

˜
[G] = w and it remains to show that w

˜
∈ HS. Sine

u
˜
∈ HS, also ū

˜
∈ HS, and it is enough to show that symG (w

˜
) ∈ F . Let

I := symG (ū
˜
)∩symG (a

˜
1)∩· · · symG (a

˜
n). Then I, as the intersetion of �nitelymany groups in F , belongs to F . For any α ∈ I we have αū

˜
= ū

˜
and forevery 1 ≤ i ≤ n we have αa

˜
i = a

˜
i Further we have

αw
˜
=

{
〈αv

˜
, αp〉 : 〈v

˜
, p〉 ∈ w

˜

}

=
{
〈αv

˜
, αp〉 : 〈v

˜
, p〉 ∈ ū

˜
∧ p P ϕ(v

˜
, a
˜
1, . . . , a

˜
n)
}

=
{
〈αv

˜
, αp〉 : 〈αv

˜
, αp〉 ∈ ū

˜
∧ αp P ϕ(αv

˜
, αa

˜
1, . . . , αa

˜
n)
}

=
{
〈αv

˜
, αp〉 ∈ ū

˜
: αp P ϕ(αv

˜
, a
˜
1, . . . , a

˜
n)
}

=
{
〈v
˜
, p〉 ∈ ū

˜
: p P ϕ(v

˜
, a
˜
1, . . . , a

˜
n)
}
= w

˜Thus, I ⊆ symG (w
˜
) ∈ F and we �nally have w

˜
∈ HS. ⊣As we shall see in the following examples, V̂ does in general not satisfy theAxiom of Choie. Thus, in general we have V̂ 2 ZFC, even though V as wellas V[G] are models of ZFC.



328 17 Models in whih AC failsExamples of Symmetri ModelsA model in whih the reals annot be well-orderedIn this setion we shall onstrut a symmetri model V̂ in whih there existsan in�nite set A of real numbers (i.e., A ⊆ [ω]ω) suh that A is Dedekind-�nitein V̂, i.e., there is no injetion in V̂ whih maps ω into A.Consider the foring notion Cω =
(
Fn(ω × ω, 2),⊆

) onsisting of �nitepartial funtions from ω × ω to {0, 1}. To keep the notation short let Cω :=
Fn(ω × ω, 2). Reall that the smallest element of Cω is ∅ and for p, q ∈ Cω, pis stronger than q i� the funtion p extends q.Before we onstrut the symmetri model V̂, let us de�ne a Cω-name A

˜for a set of reals. For eah n ∈ ω de�ne the Cω-name a
˜
n by stipulating

a
˜
n =

{
〈k
˙
, p〉 : k ∈ ω ∧ p ∈ Cω ∧ p

(
〈n, k〉

)
= 1

}and let
A
˜
=

{
〈a
˜
n, ∅〉 : n ∈ ω

}
.First we show that A

˜
[G] is an in�nite set inV[G] wheneverG is Cω-generiover some model V of ZFC. For this, let G ⊆ Cω be an arbitrary Cω-generi�lter over V. Then we obviously have A

˜
[G] =

{
a
˜
n[G] : n ∈ ω

}. Sine for anyintegers n, l ∈ ω the set
{
p ∈ Cω : ∃k ∈ ω(k ≥ l ∧ 〈k

˙
, p〉 ∈ a

˜
n)
}is open dense in Cω we get V[G] � a

˜
n[G] ∈ [ω]ω. Furthermore, for any distintintegers n,m ∈ ω, also

{
p ∈ Cω : ∃k ∈ ω

(
〈n, k〉 ∈ dom(p)∧〈m, k〉 ∈ dom(p)∧ p(〈n, k〉) 6= p(〈m, k〉)

)}is open dense in Cω and therefore
V[G] � “A

˜
[G] is in�nite�. (∞)Now we onstrut a symmetri submodel V̂ of V[G] in whih A

˜
[G] isDedekind-�nite. If π is a permutation of ω (i.e., π is a one-to-one mappingfrom ω onto ω), then π indues an automorphism απ of Cω by stipulating

απ p =
{〈

〈πn, k〉, i
〉
:
〈
〈n, k〉, i

〉
∈ p

}
,i.e., απ p(〈πn, k〉) = p

(
〈n, k〉

).Let G be the group of all automorphisms of Cω that are indued by per-mutations of ω, i.e.,
G = {απ : π is a permutation of ω} .



A model in whih the reals annot be well-ordered 329For every �nite set E ∈ fin(ω) let
fixG (E) =

{
απ ∈ G : πn = n for eah n ∈ E

}
.Let F be the �lter on G generated by the subgroups {fixG (E) : E ∈ fin(ω)

},i.e., a subgroup H ⊆ G belongs to F i� there is an E ∈ fin(ω) suhthat fixG (E) ⊆ H . Then F is a normal �lter (notie for example that
απ fixG (E)α−1

π = fixG (πE) or see Chapter 7).Finally, let HS be the lass of all hereditarily symmetri Cω-names andlet V̂ be the orresponding symmetri submodel of V[G].In order to see that the set A
˜
[G] belongs to V̂ we have to verify that A

˜
∈

HS. Firstly notie that eah automorphism απ orresponds to a permutationof the set {a
˜
n : n ∈ ω}. In fat, for eah n ∈ ω we have

απ a
˜
n =

{
〈απ k

˙
, απ p〉 : 〈k

˙
, p〉 ∈ a

˜
n

}

=
{
〈k
˙
, απ p〉 : απ p

(
〈πn, k〉

)
= 1

}

=
{
〈k
˙
, q〉 : q

(
〈πn, k〉

)
= 1

}
= a

˜
πn .In partiular, απ a

˜
n = a

˜
n i� πn = n. Thus, for eah n ∈ ω, fixG

(
{n}

)
=

symG (a
˜
n), and sine {

k
˙
: ∃p ∈ Cω

(
〈k
˙
, p〉 ∈ a

˜
n

)}
⊆ HS, eah a

˜
n belongs to

HS. Furthermore, for eah απ ∈ G we have
απA˜

=
{
〈απ a

˜
n, απ ∅〉 : 〈a

˜
n, ∅〉 ∈ A

˜
}

=
{
〈a
˜
πn, ∅〉 : 〈a

˜
n, ∅〉 ∈ A

˜
}
= A

˜
,whih shows that symG (A˜

) = G . Thus, A
˜

∈ HS whih implies that A
˜
[G]belongs to V̂. In fat, by (∞), A

˜
[G] is an in�nite set of reals whih belongsto the model V̂, i.e.,̂

V � “A
˜
[G] ⊆ [ω]ω and A

˜
[G] is in�nite� .On the other hand we shall see that

V̂ � “A
˜
[G] is D-�nite� .Assume towards a ontradition that the funtion f : ω →֒ A

˜
[G] is an injetionwhih belongs to the model V̂. Then there is a hereditarily symmetri Cω-name f

˜
∈ HS for f and a ondition p ∈ Cω suh that

p Cω
f
˜
: ω
˙
→֒ A

˜
.Let the �nite set E0 ∈ fin(ω) be suh that fixG (E0) ⊆ symG (f

˜
). Sine f

˜
is aninjetive funtion with dom(f

˜
) = ω, there is an n0 ∈ ω \ E0, a k ∈ ω, and aondition p0 ≥ p suh that
p0 Cω

f
˜
(k
˙
) = a

˜
n0 .



330 17 Models in whih AC failsLet now π be a permutation of ω suh that απ ∈ fixG (E0), πn0 6= n0, but απ p0and p0 are ompatible (i.e., there is an r ∈ Cω suh that απ p0 ≤ r ≥ p0). Thenthe orresponding automorphism απ ∈ G belongs to symG (f
˜
), in partiular

απ f
˜

= f
˜
. Reall that απ k

˙
= k

˙
(for all k ∈ ω). If r ∈ Cω is suh that

απ p0 ≤ r ≥ p0, then we have
r Cω

f
˜
(k
˙
) = a

˜
n0 ,beause r ≥ p0, as well as

r Cω
f
˜
(k
˙
) = a

˜
πn0 ,beause r ≥ απ p0. Hene, r Cω

a
˜
n0 = a

˜
πn0 , but this ontradits the fatthat n0 6= πn0 → a

˜
n0 [G] 6= a

˜
πn0 [G]. Obviously, this shows that there is nohereditarily symmetri name for an injetion f : ω →֒ A

˜
[G], in other words,

V̂ � “A
˜
[G] is D-�nite� .Conlusion: Starting from a model V of ZFC we onstruted a symmetrimodel V̂ of ZF in whih there exists an in�nite but D-�nite set of reals. Thus,there is a model of ZF in whih the reals annot be well-ordered. In partiular,the Well-Ordering Priniple is not provable in ZF.A model in whih every ultra�lter over ω is prinipalThe following onstrution of a symmetri model V̂ in whih every ultra�lterover ω is prinipal is essentially the same as in the example above, exept thatthe set {
a
˜
n[G] : n ∈ ω

} will not belong to the model V̂. Thus, let V be amodel of ZFC and onsider again the foring notion Cω =
(
Fn(ω × ω, 2),⊆

).For eah n ∈ ω let a
˜
n =

{
〈k
˙
, p〉 : k ∈ ω ∧ p ∈ Cω ∧ p

(
〈n, k〉

)
= 1

}, and let
G ⊆ Cω be Cω-generi over V; then V[G] � a

˜
n[G] ∈ [ω]ω.For every X ⊆ ω × ω we de�ne an automorphism αX of Cω by stipulating

αX p : dom(p) −→ {0, 1}

〈n,m〉 7−→
{
p
(
〈n,m〉

) if 〈n,m〉 /∈ X ,
1− p

(
〈n,m〉

) if 〈n,m〉 ∈ X .Let G be the group of all automorphisms αX , where X ⊆ ω × ω, and let Fbe the normal �lter on G generated by {
fixG (E × ω) : E ∈ fin(ω)

}, where
fixG (E × ω) =

{
αX : X ∩ (E × ω) = ∅

}
.Finally, let HS be the lass of all hereditarily symmetri names and let V̂ bethe orresponding symmetri model.Below, we show that whenever U ∈ V̂ is an ultra�lter over ω, then U is



A model with a paradoxial deomposition of the real line 331prinipal, i.e., U ontains a �nite set. Let U
˜

∈ HS be a name for U and let
p ∈ G be suh that

p Cω
�U
˜

is an ultra�lter over ω
˙
� .Let E0 ∈ fin(ω) be suh that fixG (E0 × ω) ⊆ symG

(
U
˜
) and �x an naturalnumber l /∈ E0. Then there is a q ≥ p suh that q ∈ ∆a

˜
l∈U

˜
∩G, i.e., q ∈ G and

q deides whether or not a
˜
l ∈ U

˜
. Let us assume that q Cω

a
˜
l /∈ U

˜
(the asewhen q Cω

a
˜
l ∈ U

˜
is similar). Let m0 be suh that for all integers m ≥ m0we have 〈l,m〉 /∈ dom(q) and let
X0 =

{
〈l,m〉 : m ≥ m0

}
⊆ ω × ω .Let U := U

˜
[G], al := a

˜
l[G], and for b

˜
l := αX0 a

˜
l let bl := b

˜
l[G]. Then, for eah

m ≥ m0, m ∈ al ↔ m /∈ bl, whih implies that (ω\al)∩(ω\bl) is �nite. Notiethat sine q Cω
a
˜
l /∈ U

˜
, αX0 q Cω

αX0 a
˜
l /∈ αX0 U

˜
. By de�nition of X0 wefurther have αX0 ∈ fixG (E0×ω) ⊆ symG

(
U
˜
) and therefore αX0 U

˜
= U

˜
, andsine αX0 q = q and αX0 a

˜
l = b

˜
l we have q Cω

b
˜
l /∈ U

˜
. Thus, sine q ∈ G, weget that neither al nor bl belongs to U . Beause U is an ultra�lter, ω \ al aswell as ω \ bl belongs to U , and therefore (ω \ al) ∩ (ω \ bl) ∈ U . Hene, Uontains a �nite set, or in other words, U is prinipal.Conlusion: Starting from a model V of ZFC we onstruted a symmetrimodel V̂ of ZF in whih every ultra�lter over ω is prinipal. Thus, there is amodel of ZF in whih for example the Fréhet ideal annot be extended to aprime ideal. In partiular we get that the Prime Ideal Theorem is not provablein ZF.A model with a paradoxial deomposition of the real lineBelow, we shall onstrut a model of ZF in whih the real line R an bepartitioned into a family R, suh that |R| > |R|. (Reall that R is a partitionofR if R ⊆ P(R) suh that⋃R = R and for any distint x, y ∈ R, x∩y = ∅.)By Corollary 4.13 it is enough to onstrut a model in whih the set ofreals P(ω) is a ountable union of ountable sets.In order to onstrut a symmetri model in whih P(ω) is a ountableunion of ountable sets we start with a model V of ZFC suh that for eah

n ∈ ω, V � 2ωn = ωn+1. Suh a model is for example Gödel's onstrutibleuniverse L. Alternatively, suh a model is also obtained by an iterated appli-ation of Theorem 14.23, or more preisely, by iterating the foring notionsof Theorem 14.23 using the iteration tehnique given in Chapter 18 (see alsoRelated Result 100 of that hapter).Now, let
P =

{
p ∈ Fn(ω × ω, ωω) : ∀〈n,m〉 ∈ dom(p)

(
p(〈n,m〉) ∈ ωn

)}
.Then P := (P,⊆) is a foring notion.



332 17 Models in whih AC failsLet G ⊆ P be P-generi over V. We onstrut a symmetri submodel V̂of V[G] suh that in V̂, the set of reals is a ountable union of ountable sets.For this, let G be the group of all permutations π of ω × ω suh that
π〈n, i〉 = 〈m, j〉 → n = m.Now, for eah π ∈ G and every n ∈ ω let πn be the permutation of ω suhthat for every i ∈ ω,

π〈n, i〉 = 〈n, πni〉 .Every π ∈ G indues an automorphism απ of P by stipulating
απ p =

{〈
〈n, πn i〉, α

〉
:
〈
〈n, i〉, α

〉
∈ p

}
.For every n ∈ ω, let Hn be the group of all π ∈ G suh that for all k ∈ n,the orresponding permutation πk is the identity, and let F be the �lter on

G generated by the subgroups {Hn : n ∈ ω}. We leave it as an exerise tothe reader to verify that F is a normal �lter. Finally, let V̂ be the symmetrisubmodel of V[G] whih is determined by F .Now, we show that there are ountably many ountable sets of reals Rn in
V̂ suh that V̂ � P(ω) =

⋃
n∈ω Rn. Firstly we onstrut anonial names forreals in V̂: Let x

˜
∈ HS be a name for a real (i.e., for a subset of ω), or morepreisely, let x

˜
⊆

{
〈k
˜
, p〉 : k

˜
∈ HS ∧ p ∈ P

} be suh that for eah 〈k
˜
, p〉 ∈ x

˜
,

p P k
˜
∈ ω

˙
(notie that we also have p P k

˜
∈ x
˜
). Sine x

˜
∈ HS there is an

n0 ∈ ω suh that Hn0 ⊆ symG (x
˜
), whih implies that for all απ ∈ Hn0 wehave

x
˜
=

{
〈k
˜
, p〉 : 〈k

˜
, p〉 ∈ x

˜

}
=

{
〈απ k

˜
, απ p〉 : 〈k

˜
, p〉 ∈ x

˜

}
= απx

˜
.With respet to x

˜
, the anonial name x

˙
∈ HS is de�ned as follows:

x
˙
=

{
〈m
˙
, q〉 : ∃〈k

˜
, p〉 ∈ x

˜
∃r ≥ p

(
q = r|n0×ω ∧ r Pm

˙
= k

˜

)}Claim. V[G] � x
˙
[G] = x

˜
[G].Proof of Claim. First we show that x

˙
[G] ⊆ x

˜
[G] : Let 〈m

˙
, q〉 be an arbitrarybut �xed element of x

˙
suh that q ∈ G. In partiular, m

˙
[G] ∈ x

˙
[G]. We showthat m

˙
[G] ∈ x

˜
[G]. By de�nition of x

˙
, there is a 〈k

˜
, p〉 ∈ x

˜
and a ondition

r0 ≥ p suh that q = r0|n0×ω and r0 Pm
˙

= k
˜
∧ k
˜

∈ x
˜
. Now, for everyondition r′ ≥ q we an �nd an automorphism απ ∈ Hn0 and a ondition rsuh that r′ ≤ r ≥ απ r0, whih implies that r Pm

˙
= απ k

˜
∧ απ k

˜
∈ x
˜
(reallthat απx

˜
= x

˜
and that for all π ∈ G , απm

˙
= m

˙
). Sine απ ∈ Hn0 we get

απ r|n0×ω = r|n0×ω = q and therefore the set {r ≥ q : r Pm
˙
∈ x
˜

} is denseabove q. Thus, m
˙
[G] ∈ x

˜
[G], and sine 〈m

˙
, q〉 ∈ x

˙
was arbitrary (with theproperty that q ∈ G), we get V[G] � x

˙
[G] ⊆ x

˜
[G].Now we show that x

˜
⊆ x

˙
: If V[G] � m ∈ x

˜
[G], then there exist an r ∈ Gand a name 〈k

˜
, p〉 ∈ x

˜
suh that r ≥ p and r Pm

˙
= k

˜
∈ x

˜
, whih impliesthat 〈m

˙
, r|n0×ω〉 ∈ x

˙
and shows that V[G] � x

˜
[G] ⊆ x

˙
[G]. ⊣Claim



A model with a paradoxial deomposition of the real line 333Thus, eah real x ∈ V̂ (i.e., eah subset of ω in V̂) has a anonial name
x
˙
whih is a subset of {

〈m
˙
, q〉 : m ∈ ω ∧ q ∈ Pn0

}, where n0 ∈ ω and
Pn0 :=

{
p ∈ P : ∀〈n,m〉 ∈ dom(p)

(
n ∈ n0

)}. If x
˙
is a anonial name fora real x ∈ V̂ with Qx ⊆ Pn, where Qx =

{
q ∈ P : ∃m

˙
(〈m

˙
, q〉 ∈ x

˙
)
}, then

symG (x
˙
) ⊇ Hn and sine m

˙
∈ HS for any m ∈ ω, x

˙
∈ HS. Moreover, forevery α ∈ G , if x

˙
is a anonial name for a real then also αx

˙
is a anonialname for a real. To see this, let x

˜
∈ HS be a name for some real x ∈ V̂, let x

˙be the anonial name for x whih orresponds to x
˜
, and let α ∈ G . Then αx

˜is a hereditarily symmetri name for a real in V̂ with orresponding anonialname αx
˙
.Now, for eah n ∈ ω let

Rn
˜

=
{
〈x
˙
, ∅〉 : x

˙
is a anonial name for a real x with Qx ⊆ Pn

}
.Notie that Rn

˜
is in V and that for eah n ∈ ω and all α ∈ G we have

αRn
˜

= Rn
˜
, whih shows that symG (Rn

˜
) = G , and sine symG (x

˙
) ⊇ Hn forall x

˙
∈ Rn

˜
, we even have Rn

˜
∈ HS, i.e., Rn

˜
[G] ∈ V̂. Moreover, also thefuntion whih maps eah n ∈ ω to Rn

˜
[G] belongs to V̂ (notie that thename {

〈op(n
˙
, Rn
˜
), ∅〉 : n ∈ ω

} is hereditarily symmetri). Further, the set⋃{Rn
˜
[G] : n ∈ ω} ontains all reals in V̂. So, in order to prove that the set ofreals in V̂ an be written as a ountable union of ountable sets, it is enoughto prove that eah Rn

˜
[G] is ountable in V̂, whih is done in two steps:Firstly reall that V � 2ωn = ωn+1 for eah n ∈ ω. Now, by ounting (in theground model V) the anonial names whih belong to Rn

˜
we get that foreah n ∈ ω, ∣∣Rn

˜

∣∣ = (ωn+1)
V.Seondly, for eah n ∈ ω de�ne

fn
˜

=
{
〈op(k

˙
, α
˙
), p〉 : p ∈ Pn+1 ∧ 〈n, k〉 ∈ dom(p) ∧ p

(
〈n, k〉

)
= α

}
.Then, for every n ∈ ω, fn

˜
is a name for a funtion from ω to ωn, symG (fn

˜
) ⊇

Hn+1, and fn
˜

∈ HS, hene fn
˜
[G] ∈ V̂. Moreover, fn

˜
[G] : ω ։ ωV

n is surjetivewhih implies that ωV

n is ountable in V̂. Now, sine ∣∣Rn
˜

∣∣ = (ωn+1)
V (for eah

n ∈ ω), eah Rn
˜
[G] is ountable in V̂�whereas⋃{

Rn
˜
[G] : n ∈ ω

}
= P(ω)V̂is unountable in V̂.Conlusion: Starting from a model V of ZFC + ∀n ∈ ω (2ωn = ωn+1) weonstruted a symmetri model V̂ of ZF in whih the set of reals is a ountableunion of ountable sets. In partiular, this shows that without some form ofAC we annot prove that ountable unions of ountable sets are ountable.Furthermore, we get that in the absene of AC it might be possible that thereal line R an be partitioned into a family R, suh that |R| > |R|. Moreover,by Fat 4.3 we know that ∣∣[0, 1]2∣∣ = ∣∣R

∣∣ is provable in ZF only, and thereforewe get that in the absene of AC, it might be possible to deompose a squareinto more parts than there are points on the square.



334 17 Models in whih AC failsSimulating Permutation Models by Symmetri ModelsThe following theorem provides a method whih enables us to embed an ar-bitrarily large fragment of a given permutation model (i.e., a model of ZFA)into a well-founded model of ZF. In partiular, if ϕ is a statement whih holdsin a given permutation model and whose validity depends only on a ertainfragment of that model, then there is a well-founded model of ZF in whih ϕholds as well. For example assume that there are two sets R and S in somepermutation model V of ZFA suh that V � |R| < |S| ∧ |S| ≤∗ |R|, i.e., thereis an injetion from R into S, a surjetion from R onto S, but no bijetionbetween the two sets (f. Theorem 4.21 and Proposition 7.14). Notie thatthe surjetion from R onto S indues a partition R of R of ardinality |S|, i.e.,
|R| > |R|. Now, the validity of the sentene ∃R ∃S

(
|R| < |S| ∧ |S| ≤∗ |R|

),whih holds in V , depends only on a ertain fragment of that model, and thus,by the following theorem, there is a well-founded model of ZF in whih we�nd sets R̂ and Ŝ suh that |R̂| < |Ŝ| ∧ |Ŝ| ≤∗ |R̂|.Theorem 17.2 (Jeh-Sohor Embedding Theorem). Let V � ZFA be apermutation model in whih AC holds in the kernel of V. Furthermore, let Abe the set of all atoms of V, let γ be an arbitrary but �xed ordinal number,and let Vγ := Pγ(A) ∩ V. Then there exist a symmetri model V̂ (i.e., amodel of ZF) and an embedding x 7→ x̂ of V into V̂ whose restrition to Vγis an ∈-isomorphism between the sets Vγ and Pγ(Â)V̂, where f : S → T isan ∈-isomorphism between S and T if f is a bijetion and for all x, y ∈ S,
x ∈ y ⇐⇒ f(x) ∈ f(y). In other words, one an simulate arbitrarily largefragments of permutation models by symmetri models, whih is visualisedby the following �gure:

A

Vγ

V
�

ZFA
Â

V̂
�

ZF
∅Proof. Let M be a model of ZFA + AC and let V := P∞(∅) ⊆ M be thekernel of M; then V � ZFC. Let A0 be the set of all atoms of M. We onsider



Simulating permutation models by symmetri models 335a group G0 of permutations of A0 and a normal �lter F0 on G0, and let V ⊆ Mbe the permutation model (i.e., a model of ZFA) given by G0 and F0. Further,let γ be an arbitrary but �xed ordinal number and let Vγ := Pγ(A) ∩V .In order to onstrut a symmetri submodel of a generi extension, wehave to work in a ground model of ZFC. So, we shall work in the model Vand �rst onstrut a generi extension V[G] of V: Let Ā be a set in V suhthat M � |Ā| = |A0| and �x in M a bijetion ι : A0 → Ā. Let κ be a regularardinal (in V) suh that κ >
∣∣Pγ(Ā)

∣∣. The set P of foring onditionsonsists of funtions p : dom(p) → {0, 1} suh that dom(p) ⊆ (Ā× κ)× κ and
| dom(p)| < κ. As usual let p ≤ q ⇐⇒ p ⊆ q. Then, by the hoie of κ, P =
(P,≤) is a κ-losed foring notion. Below, for p ∈ P and 〈

〈ā, ξ〉, η
〉
∈ dom(p)we shall write p(ā, ξ, η) instead of p(〈〈ā, ξ〉, η〉). For eah a ∈ A0 and eah

ξ ∈ κ let
x
˙
aξ =

{
〈η
˙
, p〉 : p(ιa, ξ, η) = 1

}
,and for eah a ∈ A0 de�ne

a
˙
=

{
〈x
˙
aξ, ∅〉 : ξ ∈ κ

}and let A
˙
= {a

˙
: a ∈ A0}. Having now de�ned a

˙
for eah a ∈ A0, by trans�nitereursion we de�ne x

˙
for eah x ∈ M by stipulating

x
˙
=

{
〈y
˙
, ∅〉 : M � y ∈ x

}
.Claim 1. If G is P-generi over V, then for all x, y ∈ M:

M � y ∈ x ⇐⇒ V[G] � y
˙
[G] ∈ x

˙
[G]

M � y = x ⇐⇒ V[G] � y
˙
[G] = x

˙
[G]Proof of Claim 1. Notie �rst that x

˙
aξ[G] 6= x

˙
a′ξ′ [G] whenever 〈a, ξ〉 6= 〈a′, ξ′〉,that x

˙
aξ[G] 6= x

˙
[G] whenever x ∈ V, and that for all x ∈ M and a ∈ A0,

x
˙
[G] /∈ a

˙
[G]. Consequently we have a

˙
[G] 6= a′

˙
[G] whenever a 6= a′ are atomsand that the atoms do not ontain any elements of the form x

˙
[G]. Further, forall a ∈ A0, all ξ ∈ κ, and every x ∈ M, we have x

˙
[G] 6= x

˙
a,ξ[G]. To see this,notie that on the one hand, for all x ∈ V we have x

˙
[G] = x

˙
[G] and therefore

x
˙
[G] 6= x

˙
a,ξ[G]; on the other hand, if x ∈ M\V then TC(x) (i.e., the transitivelosure of x) ontains an atom a0 ∈ A0, and hene, x

˙
a0ζ [G] ∈ TC

(
x
˙
[G]

) (forevery ζ ∈ κ), whereas for example x
˙
a00[G] /∈ TC

(
x
˙
aξ[G]

).Now we an prove the laim simultaneously for �∈� and �=� by indutionon rank, where, for a set x, rkM(x) is the least α ∈ Ω suh that x ∈ Pα(A0).Notie that rkM(∅) = 1, whereas rkM(a) = 0 for all atoms a ∈ A0. Assumethat the laim is valid for y ∈ z and y = z whenever rkM(z) < rkM(x); weshall show that the laim is also valid for y ∈ x and y = x.
(∈) : If M � y ∈ x, then V[G] � y

˙
[G] ∈ x

˙
[G] follows by de�nition of

x
˙
.Conversely, if V[G] � y

˙
[G] ∈ x

˙
[G], then x

˙
an neither be the name for



336 17 Models in whih AC failsan atom nor for the empty set, sine otherwise we would have p P y
˙
∈ x

˙
(forsome p ∈ P ), whih is obviously impossible. Hene, V[G] � y

˙
[G] = z

˙
[G] forsome z

˙
∈ x

˙
(i.e., z ∈ x), and we have M � y = z by the indution hypothesis,thus M � y ∈ x.

(=) : Obviously, if M � y = x, then V[G] � y
˙
[G] = x

˙
[G]. Conversely, if

M � y 6= x, then either both x and y are atoms or the empty set and then
V[G] � y

˙
[G] 6= x

˙
[G]; or for example x ontains some z whih is not in y,and then, by the ∈ part already proved, V[G] � z

˙
[G] ∈ x

˙
[G] \ y

˙
[G], hene,

V[G] � y
˙
[G] 6= x

˙
[G]. ⊣Claim 1Notie that the proof of Claim 1 does not depend on the partiular P-generi�lter G.The next step is to onstrut a symmetri submodel V̂ of V[G] whihre�ets to some extent the model V: We de�ne a group Ḡ of automorphismsof P and a normal �lter F̄ on Ḡ as follows. For every permutation σ of A0,let σ̄ be the set of all permutations π of Ā × κ suh that for all a ∈ A0 andall ξ ∈ κ:

π〈ιa, ξ〉 =
〈
ισ(a), ξ′

〉 for some ξ′ ∈ κ .One an visualise the set Ā×κ as a set Ā of pairwise disjoint bloks, eah blokonsisting of κ elements. Every permutation σ of A0 indues a permutation
σ′ of the bloks and every π ∈ σ̄ permutes the elements of Ā × κ in suh away that π ats on the bloks exatly as σ′ does.Let

Ḡ =
⋃{

σ̄ : σ ∈ G0

}and for every subgroup H of G0 let H̄ =
⋃{σ̄ : σ ∈ H}. Sine every permuta-tion π of Ā× κ orresponds to an automorphism of P by stipulating

πp
(
π〈ā, ξ〉, η

)
:= p(ā, ξ, η) ,we onsider Ḡ as well as its subgroups as groups of automorphisms of P. Forevery �nite E ∈ fin(Ā× κ) let

fixḠ (E) =
{
π ∈ Ḡ : πx = x for eah x ∈ E

}
.We let F̄ be the �lter on Ḡ generated by

{
H̄ : H ∈ F0

}
∪
{
fixḠ : E ∈ fin(Ā× κ)

}
.We leave it as an exerise to the reader to hek that F̄ is a normal �lter.Now, let HS be the lass of all hereditarily symmetri names (with respetto Ḡ and F̄ ), let G be P-generi over V, and let V̂ =

{
x
˜
[G] : x

˜
∈ HS

} be theorresponding symmetri submodel of V[G]. As an immediate onsequene ofthe de�nition of F̄ we have:
• x

˙
aξ[G] ∈ V̂ for all a ∈ A0 and ξ ∈ κ, beause symḠ (x

˙
aξ) = fixḠ

(
{〈ιa, ξ〉}

).



Simulating permutation models by symmetri models 337
• a

˙
[G] ∈ V̂ for all a ∈ A0, beause symḠ (a

˙
) = symG0

(a), i.e., for every
σ ∈ symḠ (a

˙
), σ̄ ⊆ symG0

(a
˙
).

• A
˙
[G] ∈ V̂, beause symḠ (A

˙
) = Ḡ .Below, we shall write x̂ for x

˙
[G]. So, in partiular we have â ∈ V̂ and Â ∈ V̂,i.e., the �atoms� (more preisely, the surrogates of atoms introdued by theforing) as well as the set of all �atoms� belongs to the model V̂.The next task is to show that x ∈ V i� x̂ ∈ V̂, whih is done in the followingtwo steps.Claim 2. For all x ∈ M: x ∈ V ⇐⇒ x

˙
∈ HS.Proof of Claim 2. It su�es to show that

symG0
(x) ∈ F0 ⇐⇒ symḠ (x

˙
) ∈ F̄ .If σ ∈ G0 and π ∈ σ̄, then απx

˙
is the anonial name for σx, and therefore

symḠ (x
˙
) = symG0

(x). Thus, if symG0
(x) ∈ F0, then symḠ (x

˙
) ∈ F̄ . On theother hand, if symḠ (x

˙
) ∈ F̄ , then symG0

(x) ⊇ H̄ ∩ fixḠ (E) for some H ∈ F0and a �nite set E ∈ fin(Ā× κ). Let E|A0 =
{
a ∈ A0 : ∃ξ(〈ιa, ξ〉 ∈ E)

}. Then
symG0

(x) ⊇ H ∩ fixG0(E|A0), and sine F0 is a normal �lter on G0 we have
fixG0(E|A0) ∈ F0 and hene symG0

(x) ∈ F0. ⊣Claim 2Claim 3. For all x ∈ M: x ∈ V ⇐⇒ x̂ ∈ V̂ .Proof of Claim 3. By Claim 2, it su�es to show that if x̂ ∈ V̂, then x ∈ V .Assume towards a ontradition that there exists an x ∈ M suh that x̂ ∈ V̂and x /∈ V, but for all y ∈ x, y ∈ V. Thus x ⊆ V, and sine x̂ ∈ V̂, thereexist a name z
˜
∈ HS and a ondition p0 ∈ G suh that p0 P z

˜
= x

˙
. In otherwords, x

˙
/∈ HS but there exists a name z

˜
∈ HS suh that x̂ = z

˜
[G], andonsequently x̂ ∈ V̂. Sine we have symḠ (z

˜
) ∈ F̄ , there is a group H0 ∈ F0and a �nite set E0 ∈ fin(Ā× κ) suh that symḠ (z

˜
) ⊇ H̄0 ∩ fixḠ (E0). Assumethere are permutations σ ∈ G0 and π ∈ σ̄ suh that(a) π ∈ H̄0 ∩ fixḠ (E0),(b) σx 6= x, and() πp0 and p0 are ompatible.Then we have πz

˜
= z

˜
by (a), p0 P πx

˙
6= x

˙
by (b) and Claim 1, and sine

πp0 P πz
˜
= πx

˙
, by () there is a q0 ∈ P suh that πp0 ≤ q0 ≥ p0 and
q0 P (z

˜
= x

˙
) ∧ (x

˙
6= πx

˙
) ∧ (πx

˙
= z
˜
) ,a ontradition. To see that permutations σ and π with the above propertiesexist, notie �rst that sine x is not symmetri (i.e., x /∈ V), there exists a

σ ∈ H0 ∩ fixG0(E0|A0) suh that σx 6= x. Sine | dom(p)| < κ, there is a δ ∈ κsuh that
{
〈a, ξ〉 : a ∈ A0 ∧ δ ∈ ξ ∈ κ

}
∩ (dom(p) ∪ E0) = ∅and we de�ne π ∈ σ̄ as follows.
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• If a ∈ E0|A0, then for all ξ ∈ κ:

π〈ιa, ξ〉 = 〈ιa, ξ〉 .

• If a /∈ E0|A0 and ξ ∈ δ, then
π〈ιa, ξ〉 = 〈ι(σa), δ + ξ〉

π〈ιa, δ + ξ〉 = 〈ι(σa), ξ〉 .

• If a /∈ E0|A0 and δ ∈ ξ + 1 ∈ κ, then
π〈ιa, δ + ξ〉 = 〈ι(σa), δ + ξ〉 .By de�nition it follows that π ∈ H̄0 ∩ fixḠ (E0) and that πp0 and p0 areompatible. ⊣Claim 3The �nal step in the proof of Theorem 17.2 is to show that the embedding

x 7→ x̂ is a bijetion between Vγ and Pγ(Â)V̂.Claim 4. {x̂ : x ∈ Vγ
}
= Pγ(Â)V̂Proof of Claim 4. By Claim 3, the left-hand side is inluded in the right-handside; thus, it su�es to show that Pγ(Â)V̂ ⊆

{
x̂ : x ∈ Vγ

}, whih will be doneby trans�nite reursion: Let x ∈ Vγ and let y ∈ V̂ be suh that V̂ � y ∈ x̂.We have to show that y = ẑ for some z ∈ V. Let y
˜
be a P-name for y. Sine

P is κ-losed and κ > |x| (sine κ > ∣∣Pγ(Ā)
∣∣), there is a p ∈ G whih deides

u
˙
∈ y
˜
for all u ∈ x; more formally, p ∈ G ∩⋂

u∈x∆u
˙
∈y
˜
. Hene, y = ẑ, where

z =
{
u ∈ x : p P u

˙
∈ y
˜

}, and sine ẑ ∈ V̂, by Claim 3 we get z ∈ V. ⊣Claim 4Finally, by Claim 4 we get that the embedding x 7→ x̂ of V into V̂ is suhthat {x̂ : x ∈ Vγ
}
= Pγ(Â)V̂, and for all x, y ∈ Vγ we have V � y ∈ x i�

V̂ � ŷ ∈ x̂, whih shows that Vγ and Pγ(Â)V̂ are indeed ∈-isomorphi, i.e.,the embedding x 7→ x̂ restrited to Vγ is an ∈-isomorphism between Vγ and
Pγ(Â)V̂. ⊣Corollary 17.3. Let ν be an ordinal and let ϕ be a sentene of the form
∃Xψ(X, ν), where the only quanti�ers we allow in ψ are the restrited quan-ti�ers ∃u ∈ Pν(X) and ∀u ∈ Pν(X). If V � ZFA is a permutation model inwhih AC holds in the kernel and V � ϕ, then there exists a symmetri model
V̂ � ZF suh that V̂ � ϕ.Proof. Let X ∈ V be suh that V � ψ(X, ν) and let γ ∈ Ω be suh that
Pν(X) ⊆ Pγ(A), where A is the set of atoms of V. By the Jeh-SohorEmbedding Theorem 17.2 there exists a symmetri model V̂ of ZF suhthat Vγ and Pγ(Â) are ∈-isomorphi. Now, by the hoie of γ and sine
V � ψ(X, ν) we have (Vγ ,∈) � ψ(X, ν), and therefore (Vγ ,∈) � ϕ. Hene,(
Pγ(Â),∈

)
� ϕ whih shows that V̂ � ϕ. ⊣



Related Results 339Appliations : Most of the results of Chapter 7� obtained by permutationmodels � an now be transferred to proper models of ZF. For examplethe existene of a set X , suh that ∣∣X2
∣∣ <

∣∣[X ]2
∣∣ is onsistent with ZF(f. Proposition 7.18), or in other words, ZF 0 ∀X

(∣∣X2
∣∣ ≮

∣∣[X ]2
∣∣). Similarlywe an show that ZF 0 ∀X

(∣∣ seq(X)
∣∣ ≮

∣∣ fin(X)
∣∣) (f. Proposition 7.17).NotesSymmetri submodels of generi extensions. The idea of using symmetryarguments to onstrut models in whih the Axiom of Choie fails goes bak toFraenkel [6℄. Cohen inorporated the symmetry arguments into his method andonstruted for example the model given above in whih the reals are not well-orderable. The formulation of Cohen's method in terms of symmetri submodels ofgeneri extensions is due to Sott and Jeh (f. Jeh [11, Chapter 15℄).Three examples of symmetri models. The �rst model (i.e., the one in whihthe reals are not well-orderable) is due to Cohen (f. [3, Chapter IV, �9℄) and issometimes alled the basi Cohen model (f. Jeh [9, Chapter 5, �3℄); the seondmodel we presented (i.e., the one in whih every ultra�lter over ω is prinipal) isdue to Feferman [4℄; and the third model (i.e., the one in whih the set of reals isa ountable union of ountable sets) is due to Feferman and Lévy [5℄. However, theonstrutions an also be found in Jeh [11, Chapter 15℄, and in greater detail inJeh [10, Chapter 3, Setion 21℄ and [9, Chapter 10, �1℄ respetively.Simulating permutation models by symmetri models. The Jeh-SohorEmbedding Theorem 17.2 is due to Jeh and Sohor [12, 13℄, where numerousappliations of the theorem are given in the seond paper [13℄ (see also Jeh [9,Theorem 6.1℄ and [11, Chapter 15℄). The limits of the Jeh-Sohor EmbeddingTheorem 17.2 are disussed in Related Result 93.Related Results89. Choie priniples in the basi Cohen model. We have seen that in the basiCohen model� the model in whih the reals annot be well-ordered� there isan in�nite set of reals whih does not ontain a ountable in�nite subset andthus, the Axiom of Choie fails in that model. On the other hand, the followinghoie priniples are still valid in the basi Cohen model:

• If X is in�nite, then P(X) is trans�nite, i.e., ℵ0 ≤
∣∣P(X)

∣∣ (see Jeh [9,p. 81, Problem 20℄).
• For every family F of sets, eah ontaining at least two elements, there isa funtion F suh that for eah set S ∈ F , ∅ 6= F (S)  S (see Jeh [9,p. 82, Problem 21℄).
• Every family of non-empty well-orderable sets has a hoie funtion (seeJeh [9, p. 82, Problem 22℄ and ompare with Chapter 7 |Related Re-sult 48).90. A model in whih every ultra�lter is prinipal. Blass onstruted in [1℄ amodel� similar to Feferman's model given above� in whih every ultra�lter(and not just ultra�lters over ω) is prinipal.



340 17 Models in whih AC fails91. ω1 an be singular. It is provable in ZF that there exists a surjetion from thereals onto ω1 (f. Theorem 4.11). Hene, in the model in whih the set of realsis a ountable union of ountable sets, ω1 is a limit of a ountable sequene ofountable ordinals, and therefore ω1 is singular in that model (ompare withProposition 5.10 where it is shown that in the presene of AC, suessor ar-dinals are always regular).92. ω1 an be even measurable. An unountable aleph κ is alled a measurableardinal if there exists a non-prinipal ultra�lter U over κ whih is κ-omplete,i.e., if α ∈ κ and {xξ : ξ ∈ α} ⊆ U , then
⋂{

xξ : ξ ∈ α
}
∈ U .In the presene of AC, measurable ardinals are extremely large, even muhlarger than inaessible ardinals, on whih Hausdor� [7, p. 131℄ wrote that al-ready the smallest of those ardinals � if they exist � is of an exorbitant mag-nitude. However, under the assumption that there is a measurable ardinal inthe ground model, Jeh onstruted in [8℄ a symmetri model of ZF in whih ω1is measurable (see also Jeh [9, Chapter 12, �1℄).93. Nontransferable statements. Not every statement whih hold in a permutationmodel (i.e., in a model of ZFA) an be transferred into ZF. There are evenstatements whih imply AC in ZF but are weaker than AC in ZFA. For exampleMultiple Choie and Kurepa's Priniple are suh statements (see Theorem 5.4and Jeh [9, Theorem 9.2℄).94. Bases in vetor spaes and the Axiom of Choie∗. In Chapter 5 we have seenthat the Axiom of Choie follows in ZF from the assertion that every vetor spaehas a basis (f. Theorem 5.4). However, it is still open whether the Axiom ofChoie is deduible in ZFA from the assertion that every vetor spae has a basis,or at least from the assertion that in every vetor spae every independent setis inluded in a basis.95. Inaessible ardinals in ZF. In [2℄, Blass, Dimitriou, and Löwe introdue andinvestigate de�nitions for inaessible ardinals (see page 315) in the absene ofAC. They produe four possible de�nitions that are equivalent in ZFC but not inZF, and provide a omplete impliation diagram (in ZF) for these four di�erentonepts. Referenes1. Andreas Blass, A model without ultra�lters, Bulletin de l'AadémiePolonaise des Sienes, Série des Sienes Mathématiques, As-tronomiques et Physiques, vol. 25 (1977), 329�331.2. Andreas Blass, Ioanna Dimitriou, and Löwe Benedikt, Inaessible ar-dinals without the axiom of hoie, Fundamenta Mathematiae, vol. 194(2007), 179�189.3. Paul J. Cohen, Set Theory and the Continuum Hypothesis, Benjamin,New York, 1966.4. Solomon Feferman, Some appliations of the notions of foring and generisets, Fundamenta Mathematiae, vol. 56 (1964/1965), 325�345.
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18Combining Foring Notions
In this hapter we shall investigate how one an ombine various foring no-tions. For this we �rst onsider just two (not neessarily distint) foringnotions, say P = (P,≤P ) and Q = (Q,≤Q).The simplest way to ombine P and Q is to form the disjoint union of Pand Q (where onditions of P are inomparable with those of Q). Obviously,a generi �lter of the disjoint union is either P-generi or Q-generi, andtherefore, this onstrution is useless for independene proofs.Another way to ombine P and Q is to build the produt P × Q = (P ×
Q,≤P×Q). Sine the foring notion P × Q belongs to V, foring with P × Qis in fat just a one-step extension of V. Produts of foring notions willbe investigated in the �rst part of this hapter, where the fous will be onproduts of Cohen foring notions.A more sophistiated way to ombine P and Q is to iterate P and Q, i.e.,we �rst fore with P and then� in the P-generi extension� by Q. In thisase, the foring notion Q does not neessarily belong to V. To see this, let Gbe P-generi overV and let Q =

(
Fn(G, 2), ⊆

). Obviously, the foring notion
Q does not belong to V. However, sine Q belongs to V[G], there is a P-name
Q
˜
in V suh Q

˜
[G] = Q. Two-step iterations of this type are denoted by P ∗Q

˜
.In the seond part of this hapter we shall see how to transform a two-stepiteration into a one-step foring extension. Furthermore, we shall see di�erentways to de�ne general iterations of foring notions.From now on, a foring notion is just a partially ordered set P = (P,≤)with a smallest element; in partiular, we no longer require that there areinompatible onditions above eah p ∈ P .



344 18 Combining Foring NotionsProdutsGeneral Produts of Foring NotionsBefore we investigate produts of Cohen foring notions�whih will be themost frequently used produt of foring notions�we onsider �rst the generalase.For two foring notions P0 = (P0,≤0,00) and P1 = (P1,≤1,01), the prod-ut foring notion
P0 × P1 = (P0 × P1,≤,0)is de�ned by stipulating 0 := 〈00,01〉 and

〈p0, p1〉 ≤ 〈q0, q1〉 ⇐⇒ p0 ≤ q0 ∧ p1 ≤ q1 .We leave it as an exerise to the reader to show that P0×P1 = (P0×P1,≤,0)is indeed a foring notion.In general, if κ is a non-zero ardinal number and 〈Pα : α ∈ κ〉 is a sequeneof foring notions, where for all α ∈ κ, Pα = (Pα,≤α,0α), then we de�ne theprodut foring notion
∏

α∈κ

Pα =
( ∏

α∈κ

Pα, ≤, 0
)by stipulating 0 := 〈0α : α ∈ κ〉 and

〈pα : α ∈ κ〉 ≤ 〈qα : α ∈ κ〉 ⇐⇒ ∀α ∈ κ (pα ≤α qα) .Let us now have a loser look at the produt ∏
α∈κ Pα for some κ ≥ 2.If G is ∏α∈κ Pα-generi over V, then G ⊆ ∏

α∈κ Pα. Thus, eah p ∈ G is ofthe form p =
〈
p(α) : α ∈ κ

〉. For eah α ∈ κ let G(α) :=
{
p(α) : p ∈ G

};in partiular, G ⊆ ∏
α∈κG(α). Obviously, for eah α ∈ κ, G(α) is Pα-generiover V. Moreover, we have G =

∏
α∈κG(α), whih implies that V[G] =

V
[∏

α∈κG(α)
]
= V

[
〈G(α) : α ∈ κ〉

] (the details are left as an exerise tothe reader). In fat, we an prove even more:Lemma 18.1. Let κ be a ardinal, let ∏α∈κ Pα be a produt of foring notions
Pα = (Pα,≤α,0α), and let G be ∏

α∈κ Pα-generi over V. Then, for eah
γ ∈ κ, G(γ) is Pγ-generi over V

[
〈G(α) : α ∈ κ \ {γ}〉

].Proof. The ases when κ = 0 or κ = 1 are trivial. For the other ases, notie�rst that it is enough to prove the result just in the ase when κ = 2, for wean always onsider the produt P×Q where P := Pγ and Q :=
∏
α∈κ\{γ} Pα.So, let G(0) be P-generi over V, where P = (P,≤,0P ). We have to showthat G(1) is Q-generi over V

[
G(0)

], where Q = (Q,≤,0Q). Let D ⊆ Qbe an open dense set whih belongs to the model V[
G(0)

]�notie that D



Produts of Cohen foring 345does not neessarily belong to V. In V there exist a P-name D
˜

for D and a
P-ondition p0 ∈ G(0) suh that

V � p0 P “D˜
is an open dense subset of Q

˙
� .In other words, for every r ∈ Q there exists a P-name q

˜
for a ondition in Qsuh that p0 P q

˜
≥ r ∧ q

˜
∈ D

˜
. Now, let

D′
1 =

{
〈p, q〉 ∈ P ×Q : p ≥ p0 ∧ p P q

˙
∈ D

˜
}
⊆ P ×Q .We leave it as an exerise to the reader to show that D′

1 is dense above
〈p0,0Q〉. Sine p0 ∈ G(0) and G(1) is Q-generi over V, by Fat 14.7 thereare onditions p′ ∈ P and q′ ∈ Q suh that 〈p′, q′〉 ∈ D′

1 ∩
(
G(0) ×G(1)

). Inpartiular we have p′ ∈ G(0) and p′ P q
˙

′ ∈ D
˜
, whih implies that V[

G(0)
]
�

q′ ∈ D
˜
[G(0)]. Finally, sine q′ ∈ G(1) and D

˜
[G(0)] = D, we get q′ ∈ D∩G(1),i.e., D ∩G(1) is non-empty. ⊣We now introdue the notion of support of a ondition� a notion whihwe shall meet again in the de�nition of iterated foring.Let p =

〈
p(α) : α ∈ κ

〉 be a ∏
α∈κ Pα-ondition, i.e., for eah α ∈ κ wehave p(α) ∈ Pα, where Pα = (Pα,≤α,0α). Then the set {α ∈ κ : p(α) 6= 0α

}is alled the support of p and is denoted by supp(p). Notie that for any∏
α∈κ Pα-onditions p and q, p ≤ q implies supp(p) ⊆ supp(q). A �nitesupport produt of foring notions is a produt of foring notions onsistingof those onditions that have �nite support.Produts of Cohen ForingIn this setion we show that a �nite support produt of ountably many Cohenforing notions is essentially the same as Cohen foring.For this, let us �rst onsider Cohen foring C =

(
Fn(ω, 2), ⊆

), as it wasde�ned in Chapter 14. If G is C-generi over some ground model V, then
c :=

⋃
G is a funtion in V[G] from ω to {0, 1} (i.e., c ∈ ω2) whih has theproperty that the set {

p ∈ Fn(ω, 2) : p ⊆ c
} is C-generi over V. A real

c ∈ ω2 (in some model V′) with this property is alled a Cohen real over
V. Obviously, every C-generi �lter over V orresponds to a Cohen real, andvie versa, every Cohen real over V orresponds to a C-generi �lter over V.Sometimes it is onvenient to onsider a Cohen real, de�ned as an elementof ω2, as a funtion from ω to ω. Of ourse, there exist natural mappingsbetween the sets ω2 and ωω. However, there is a more elegant way to getCohen reals c ∈ ωω : Consider again Cohen foring C =

(
Fn(ω, 2), ⊆

), andfor the moment let C̄ :=
(⋃

n∈ω
n2, ⊆

), C(ω) := (
Fn(ω, ω), ⊆

), and C̄(ω) :=(⋃
n∈ω

nω, ⊆
).We shall show that the foring notions C̄, C(ω), and C̄(ω), are all equivalentto Cohen foring C, i.e., no matter whether we fore (over some ground model

V) with C or with one of C̄, C(ω), or C̄(ω), we always get the same generiextension.



346 18 Combining Foring NotionsProposition 18.2. C ≈ C̄ ≈ C(ω) ≈ C̄(ω).Proof. In order to prove that two foring notions P = (P,≤) and Q = (Q,≤)are equivalent, it is enough to show that there exists a dense embedding
h : P → Q (see Fat 14.3).
C ≈ C̄ and C(ω) ≈ C̄(ω) : The identities ι1 :

⋃
n∈ω

n2 → Fn(ω, 2) and
ιω :

⋃
n∈ω

nω → Fn(ω, ω) are obviously dense embeddings.
C̄(ω) ≈ C̄ : We shall de�ne a dense embedding h :

⋃
n∈ω

nω → ⋃
n∈ω

n2.For this, take an arbitrary funtion p : n0 → ω. If n0 = 0, then h(p) := ∅.Otherwise, by indution on n0 we �rst de�ne integers bk suh that for all
k ∈ n0 we have

bk =

{
p(0) if k = 0,
bk−1 + p(k) + 1 if k > 0.Let xp := {bk : k ∈ n0} and de�ne the funtion h(p) : bn0−1 + 1 → 2 bystipulating

h(p)(j) =

{
1 if j ∈ xp,
0 if j /∈ xp.Notie that we always have h(p)(bn0−1) = 1. On the other hand, if the funtion

q : k0 + 1 → 2 is suh that q(k0) = 1, then there exists a p : l → ω, where
l =

∣∣{m ∈ k0 + 1 : q(m) = 1
}∣∣, suh that h(p) = q. In fat, h(p) is thesequene of p(0) zeros, a single 1, p(1) zeros, a single 1, et etera. We leave itas an exerise to the reader to verify that h is indeed a dense embedding. ⊣Sine the foring notions C, C̄, C(ω), C̄(ω), are all equivalent, we shall notdistinguish between these four foring notions, and in order to simplify theterminology, eah of these four foring notions is alled Cohen foring andis denoted by C.Let us now onsider produts of Cohen foring: For any ordinal λ ∈ Ωlet Cλ =

(
Fn(ω × λ, 2), ⊆

) and let Cλ denote the �nite support produt of
λ opies of Cohen foring C =

(
Fn(ω, 2), ⊆

). We shall show that for anyordinal λ, Cλ ≈ Cλ, and in addition, if λ is a non-zero ountable ordinal, thenboth foring notions are equivalent to Cohen foring C.Proposition 18.3. For every ordinal λ we have Cλ ≈ C|λ| ≈ C|λ| ≈ Cλ, andfor every non-zero ountable ordinal γ we have C ≈ Cγ ≈ Cγ .Proof. It is su�ient to show that for every non-zero ountable ordinal γ wehave C ≈ Cγ , and that for every ordinal λ we have Cλ ≈ C|λ|, Cλ ≈ C|λ|, and
Cλ ≈ Cλ.
C ≈ Cγ : Let ξ : ω×γ → ω be a bijetion and let h : Fn(ω×γ, 2) → Fn(ω, 2)be suh that for eah p ∈ Fn(ω × γ, 2), dom(

h(p)
)
= ξ[dom(p)] and for all

j ∈ ξ[dom(p)] we have h(p)(j) = p
(
ξ−1(j)

). Then h is obviously a denseembedding; in fat, h is even an isomorphism.
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Cλ ≈ Cλ : Sine Cλ is a �nite support produt, for every Cλ-ondition p =〈
p(β) : β ∈ λ

〉, the set supp(p) = {
β ∈ λ : p(β) 6= 0

} is �nite. Now, for every
Cλ-ondition p let h(p) ∈ Fn(ω × λ, 2) be suh that

dom
(
h(p)

)
=

{
〈β, n〉 ∈ supp(p)× ω : n ∈ dom

(
p(β)

)}and h(p)(〈β, n〉) = p(β)(n). Then h is obviously a dense embedding; in fat,it is even an isomorphism.Finally, let ζ : λ→ |λ| be a bijetion. Then ζ indues a bijetion between ω×λand ω × |λ|, as well as a bijetion between the set of Cλ-onditions and theset of C|λ|-onditions, whih shows that Cλ ≈ C|λ| and that Cλ ≈ C|λ|. ⊣As an immediate onsequene of Proposition 18.3 we get that for every non-zero ountable ordinal λ, eah Cλ-generi �lter an be enoded by a singleCohen real. Roughly speaking, adding one Cohen real is the same as addingountably many Cohen reals. Sine this is one of the main features of Cohenforing, we state it in a more formal way.Fat 18.4. If G is Cλ-generi over V and G′ is Cλ-generi over V, where λis a non-zero ountable ordinal, then there are Cohen reals c and c′ over Vsuh that V[G] = V[c] and V[G′] = V[c′].A Model in whih a < cAs a �rst appliation of a produt of Cohen foring we shall onstrut a modelof ZFC in whih c is large and a is small. Reall that a is the least ardinalityof an in�nite, maximal almost disjoint family (alled mad family), where afamily F ⊆ [ω]ω is almost disjoint if any two distint elements of F have�nite intersetion (see Chapter 8).Proposition 18.5. ω1 = a < c is onsistent with ZFC.Proof. Let V be a model of ZFC+CH, let κ ≥ ω2 be a ardinal, and let G be
Cκ-generi over V (by Proposition 18.3 we ould equally well work with the�nite support produt Cκ). By Theorem 14.21 we know that V[G] � c ≥ κ.Thus, it remains to show that V[G] ontains a mad family of size ω1. Firstly,we shall onstrut a family A0 ⊆ [ω]ω of size ω1 in V suh that whenever
g is C-generi over V, then V[g] � �A0 is mad �. Then we shall show that
A0 �whih is obviously an almost disjoint family in V[G]� is still maximalin V[G].Constrution of A0 in V: Consider Cohen foring C =

(
Fn(ω, 2), ⊆

).Within V, let {
〈pξ, x

˜
ξ〉 : ω ≤ ξ ∈ ω1

} be an enumeration of all pairs 〈p, x
˜
〉suh that p ∈ Fn(ω, 2) and x

˜
is a nie name for a subset of ω, i.e., for all

〈n
˙
, q1〉, 〈n

˙
, q2〉 ∈ x

˜
, either q1 = q2 or q1 ⊥ q2 (see the proof of Theorem 16.4).Notie that sine V � CH, there are just ω1 nie names in V for subsetsof ω. The set A0 = {Aξ ∈ [ω]ω : ξ ∈ ω1} is onstruted as follows: Let
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{An ∈ [ω]ω : n ∈ ω} be any family of pairwise disjoint in�nite subsets of ω.Let ω ≤ ξ ∈ ω1 and assume that we have already de�ned Aη for all η ∈ ξ.Then, hoose Aξ ∈ [ω]ω suh that the following onditions are satis�ed:(1) For all η ∈ ξ, Aη ∩ Aξ is �nite.(2) If

pξ C |x
˜
ξ| = ω

˙
∧ ∀η ∈ ξ

(
pξ C

∣∣x
˜
ξ ∩ A

˙
η

∣∣ < ω
˙

)
, (∗∗)then the set {r ≥ pξ : r C |A

˙
ξ ∩ x

˜
ξ| = ω

˙

} is dense above pξ.To see that Aξ may be hosen that way, notie that whenever (∗∗) fails, then wejust have to take are of (1) and we simply apply the fat that ξ is ountableand therefore the almost disjoint family {Aη : η ∈ ξ} annot be maximal. Onthe other hand, if (∗∗) holds, then whenever g is C-generi over V and pξ ∈ gwe have
V[g] � x

˜
ξ[g] ∈ [ω]ω ∧ ∀η ∈ ξ

(∣∣x
˜
ξ[g] ∩ Aη

∣∣ < ω
)
.In other words, x

˜
ξ[g] witnesses that the almost disjoint family {Aη : η ∈ ξ} isnot maximal in V[g].Now, we onstrut Aξ, satisfying (1), suh that V[g] � |x

˜
ξ[g] ∩ Aξ| = ω:For this, let {Bi : i ∈ ω} be an enumeration of the set {Aη : η ∈ ξ} and let{

〈ni, qi〉 : i ∈ ω
} be an enumeration of ω×{

q : q ≥ pξ
}. By (∗∗), for eah i ∈ ωwe obviously have

qi C

∣∣x
˜
ξ \ (B

˙
0 ∪ . . . ∪B

˙
i)
∣∣ = ω

˙
.Thus, we �nd a C-ondition ri ≥ qi as well as an integer mi ≥ ni suh that

mi /∈
(
B0 ∪ . . . ∪ Bi

) and ri Cm
˙
i ∈ x

˜
ξ, and de�ne Aξ := {mi : i ∈ ω}.What have we ahieved? By (∗∗), for every q ≥ pξ, every n ∈ ω, and every�nite set {η0, . . . , ηk} ⊆ ξ, there is a ondition q′ ≥ q and an integer m ≥ nsuh q′ Cm ∈ x

˜
ξ ∧ m

˙
/∈ ⋃

i∈k A˙
ηi . Thus, x

˜
ξ[g] is not a witness for thestatement �{Aη : η ∈ ξ + 1} is not a mad family in V[g]�, whih implies that

A0 = {Aξ ∈ [ω]ω : ξ ∈ ω1} is in fat a mad family in V[g]. In other words, A0is a mad family in V whih remains mad after adding a single Cohen real. Inthe next step we show that the same is true even if we add many Cohen reals.
A0 is mad in V[G]: Consider now the foring notion Cκ. Let G be Cκ-generi over V and assume towards a ontradition that

V[G] � ∃x ∈ [ω]ω ∀Aξ ∈ A0

(
|x ∩ Aξ| < ω

)
.Then there would be a Cκ-name x

˜
for a subset of ω and a Cκ-ondition p suhthat for all ξ ∈ ω1,

p Cκ
|x
˜
| = ω

˙
∧ |x

˜
∩ A

˙
ξ| < ω

˙
.By the fats proved earlier and sine Cκ satis�es  and every Cκ-onditionis �nite, there is a ountable set I0 ⊆ κ suh that, with respet to CI0 =
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(
Fn(ω × I0, 2), ⊆

), there is a nie CI0 -name x
˜
0 for a subset of ω as well as a

CI0 -ondition p0 suh that for all ξ ∈ ω1,
p0 CI0

|x
˜
0| = ω

˙
∧ |x

˜
0 ∩ A

˙
ξ| < ω

˙
.By Proposition 18.3, C ≈ CI0 , and hene we an replae CI0 by C. Thus,there exists a pair 〈pξ0 , x

˜
ξ0〉, onsisting of a C-ondition pξ0 and a nie name

x
˜
ξ0 for a subset of ω, suh that for all ξ ∈ ω1,

pξ0 C |x
˜
ξ0 | = ω

˙
∧ |x

˜
ξ0 ∩ A

˙
ξ| < ω

˙
.In partiular, for Aξ0 we would have

pξ0 C |x
˜
ξ0 ∩A

˙
ξ0 | < ω

˙
,whih ontradits the onstrution of Aξ0 . ⊣For a proof using iterated foring (introdued below) seeRelated Result 99.IterationsBelow, we shall develop some methods to add generi �lters step by step.The simplest ase, whih we onsider �rst, is when only two generi �lters areadded. This so-alled two-step iteration is quite easy to understand, but be-ause it involves most of the tools whih are used to handle longer iterations,it is worthwhile to onsider this ase in greater detail. Nevertheless, the situa-tion beomes more di�ult when the length of the iteration is in�nite � whihwill be disussed in a slightly less detailed way.Two-Step IterationsLet us start with an example: Let V be a model of ZFC. Assume we want toonstrut an in�nite set H ⊆ ω in some generi extension of V whih is almosthomogeneous for eah olouring π : [ω]n → r whih belongs to V (where

n ∈ ω and r is a positive integer). Reall that an in�nite set H ⊆ ω is almosthomogeneous for a olouring π : [ω]n → r, if there is a �nite set K ∈ fin(ω)suh that [H \K]n is monohromati. There are many di�erent ways to obtainsuh a real H . For example, if there is a Ramsey ultra�lter U in V, then itwould be enough to fore the existene of a set H ∈ [ω]ω whih is almostontained in eah x ∈ U . Why? Sine U is a Ramsey ultra�lter, for everyolouring π : [ω]n → r there is an x ∈ U whih is homogeneous for π. Now,if H is almost ontained in x, then H is almost homogeneous for π. However,if there is no Ramsey ultra�lter in V (see for example Proposition 25.11),we �rst have to fore the existene of a Ramsey ultra�lter. In order to forea Ramsey ultra�lter we use the foring notion U =
(
[ω]ω/ fin,≤

) whih was



350 18 Combining Foring Notionsintrodued in Chapter 14. Let G0 be U-generi over V and let U =
⋃
G0.Then, by Proposition 14.18, U is a Ramsey ultra�lter in V[G0]. Now, wefore the existene of a set H ∈ [ω]ω whih is almost ontained in eah x ∈ U :In V[G0], onsider the foring notion QU = (QU ,≤), where QU is the setof all ordered pairs 〈s, E〉 suh that s ∈ fin(ω) and E ∈ fin(U ), and for all

〈s, E〉, 〈t, F 〉 ∈ QU we de�ne
〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ⊆

⋂
E .If G1 is QU -generi over V[G0], then the set

H0 =
⋃{

s ∈ fin(ω) : ∃E ∈ fin(U )
(
〈s, E〉 ∈ G1

)}
,whih belongs to the model V[G0][G1], is almost homogeneous for all olour-ings π : [ω]n → r whih belong to V.Notie that the foring notion QU belongs to V[G0], so, there is a U-name

Q
˜

U in V for QU . Foring �rst with U over V, followed by foring with QUoverV[G0], is a two-step �proess� whih we shall denote by U∗Q
˜

U . The goalis now to �nd a foring notion P in V suh that P is equivalent to U ∗ Q
˜

U ,in other words, the goal is to write the two-step �proess� U ∗Q
˜

U as a singleforing extension over the ground model V.More generally, we have the following situation: We start in some groundmodel V of ZFC, where in V we have a foring notion P = (P,≤P,0P). If
G is P-generi over V, then V[G] is again a model of ZFC. Assume that
Q = (Q,≤Q,0Q) is a foring notion in V[G] (whih is not neessarily in V)and that H is Q-generi over V[G]. Then V[G][H ] is a model of ZFC, too.Sine Q belongs to V[G], there is a P-name Q

˜
in V for Q. So, by ombiningthe onditions in P with P-names for Q-onditions, it should be possible towrite the so-alled two-step iteration P ∗Q

˜
as a single foring notion R whihbelongs to the ground model V. Furthermore, it would be interesting to knowwhether some ombinatorial properties of P and Q are preserved in the two-step iteration. For example, if P and Q both satisfy , does this imply that

R also satis�es ? Before we an answer this question (in the a�rmative),we �rst have to show that P ∗Q
˜
is indeed equivalent to a single foring notionwhih belongs to V�whih is onsequently denoted by P ∗Q

˜
.Let V be a model of ZFC and let P = (P,≤P,0) be a foring notion in

V with smallest element 0. Notie that by Fat 14.4 we may always assumethat the smallest element of a foring notion is ∅, i.e., 0 = ∅. A P-name in Vfor a foring notion Q = (Q,4, ∅) in the P-generi extension of V is a tripleof P-names 〈Q
˜
,4
˜
, ∅
˙
〉 whih has the following properties:(a) ∅ P “4

˜
is a partial ordering of Q

˜
� (reall that a partial ordering is a bi-nary relation whih is transitive, re�exive, and anti-symmetri).(b) If p P q

˜
∈ Q

˜
for some P-name q

˜
, then there is a P-ondition p′ suh that

p ≤P p′, and there are P-names r
˜
1 and r

˜
2 suh that

p′ P r
˜
1 ∈ Q

˜
∧ r
˜
2 ∈ Q

˜
∧ q
˜
4
˜
r
˜
1 ∧ q

˜
4
˜
r
˜
2 ∧ r

˜
1⊥˜

r
˜
2 .
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˙
∈ Q

˜
.(d) If p P q

˜
∈ Q

˜
, then p P ∅

˙
4
˜
q
˜
.Now, we �rst de�ne a foring notion R in V, whih depends on P & Q

˜
,and then we show that foring with R yields the same generi extension asthe two-step iteration P ∗Q

˜
.Let R = (R,≤R,0R) where

R =
{
〈p, q

˜
〉 : p ∈ P ∧ p P q

˜
∈ Q
˜

} and 0R = 〈∅, ∅
˙
〉 ,and for all 〈p1, q

˜
1〉, 〈p2, q

˜
2〉 ∈ R, let

〈p1, q
˜
1〉 ≤R 〈p2, q

˜
2〉 ⇐⇒ p1 ≤P p2 ∧ p2 P q

˜
1 4
˜
q
˜
2 .Before we show that foring with R is equivalent to P∗Q

˜
, we have to showthat R = (R,≤R,0R) is a foring notion with smallest element 0R.For this, we �rst show that the binary relation ≤R is a partial ordering,i.e., we show that ≤R is (1) re�exive, (2) transitive, and (3) has the propertythat (

〈p1, q
˜
1〉 ≤R 〈p2, q

˜
2〉 ∧ 〈p2, q

˜
2〉 ≤R 〈p1, q

˜
1〉
)
→ (p1 = p2)and that p1 P q

˜
1 = q

˜
2: For (1)�(3), let 〈p, q

˜
〉, 〈p1, q

˜
1〉, 〈p2, q

˜
2〉, 〈p3, q

˜
3〉, bearbitrary R-onditions.(1) 〈p, q

˜
〉 ≤R 〈p, q

˜
〉 ⇐⇒ p ≤P p ∧ p P q

˜
4
˜
q
˜
.Sine ≤P is a partial ordering, p ≤P p, and by (a) we have p P q

˜
4
˜
q
˜
.(2) 〈p1, q

˜
1〉 ≤R 〈p2, q

˜
2〉 ∧ 〈p2, q

˜
2〉 ≤R 〈p3, q

˜
3〉 ⇐⇒

p1 ≤P p2 ∧ p2 ≤P p3︸ ︷︷ ︸whih implies p1 ≤P p3

∧ p2 P q
˜
1 4
˜
q
˜
2 ∧ p3 P q

˜
2 4
˜
q
˜
3︸ ︷︷ ︸sine p2 ≤P p3 we get p3 P q

˜
1 4

˜
q
˜
2 ∧ q

˜
2 4

˜
q
˜
3By (a) we get p3 P q

˜
14
˜
q
˜
3, and hene, 〈p1, q

˜
1〉 ≤R 〈p3, q

˜
3〉.(3) 〈p1, q

˜
1〉 ≤R 〈p2, q

˜
2〉 ∧ 〈p2, q

˜
2〉 ≤R 〈p1, q

˜
1〉 ⇐⇒

p1 ≤P p2 ∧ p2 ≤P p1︸ ︷︷ ︸whih implies p1=p2 ∧ p2 P q
˜
1 4
˜
q
˜
2 ∧ p1 P q

˜
2 4
˜
q
˜
1︸ ︷︷ ︸sine p1=p2 we get p1 P q

˜
1 4

˜
q
˜
2 ∧ q

˜
2 4

˜
q
˜
1By (a), 4

˜
is fored to be anti-symmetri, thus, p1 P q

˜
1 = q

˜
2.Now, we show that 0R (i.e., 〈∅, ∅

˙
〉) belongs to R and that 0R is the smallestelement (with respet to the partial ordering ≤R):

• 〈∅, ∅
˙
〉 ∈ R ⇐⇒ ∅ P ∅

˙
∈ Q
˜
, whih is just ().

• Let 〈p, q
˜
〉 be an arbitrary R-ondition. Sine 〈p, q

˜
〉 ∈ R we have p P q

˜
∈ Q

˜
,and further we have 〈∅, ∅

˙
〉 ≤R 〈p, q

˜
〉 ⇐⇒ p P ∅

˙
4
˜
q
˜
, whih is in fatjust (d).



352 18 Combining Foring NotionsFinally, we show that R = (R,≤R) is indeed a foring notion: For this wehave to show that there are inompatible onditions above eah 〈p, q
˜
〉 ∈ R. Let

p1, p2 ∈ P be suh that p ≤P p1, p ≤P p2, and p1 ⊥P p2. Then 〈p, q
˜
〉 ≤R 〈p1, q

˜
〉,

〈p, q
˜
〉 ≤R 〈p2, q

˜
〉, and 〈p1, q

˜
〉 ⊥R 〈p2, q

˜
〉, as required.It remains to show that foring with R is equivalent to the two-step itera-tion P ∗Q

˜
. We shall give a detailed proof of one diretion and leave the otherdiretion as an exerise to the reader.Proposition 18.6. Let V be a model of ZFC and let G be R-generi over

V. Then there are sets G0 and G1 in V[G], suh that G0 is P-generi over Vand G1 is Q
˜
[G0]-generi over V[G0].Proof. In the model V[G] we de�ne

G0 =
{
p ∈ P : ∃q

˜
∈ Q

˜
(〈p, q

˜
〉 ∈ G)

}and
G1 =

{
q
˜
[G0] ∈ Q

˜
[G0] : ∃p ∈ G0(〈p, q

˜
〉 ∈ G)

}
.We �rst show that G0 and G1 are �lters, i.e., G0 and G1 are both down-wards losed and direted.

G0 is downwards losed and direted : If p ∈ G0, then there is a q
˜
∈ Q

˜
suhthat 〈p, q

˜
〉 ∈ G, and for any p′ ≤ p we have 〈p′, ∅

˙
〉 ≤ 〈p, q

˜
〉. Sine G is down-wards losed, this implies 〈p′, ∅

˙
〉 ∈ G, and therefore p′ ∈ G0. Furthermore, if p0and p1 belong to G0, then we �nd 〈p0, q

˜
0〉 and 〈p1, q

˜
1〉 in G, and sine G is di-reted, there is an R-ondition 〈p, q

˜
〉 ∈ G suh that 〈p0, q

˜
0〉 ≤ 〈p, q

˜
〉 ≥ 〈p1, q

˜
1〉.Thus, p ∈ G0 and p0 ≤ p ≥ p1.

G1 is downwards losed and direted : If q
˜
0[G0] ∈ G1, then there is a

p0 ∈ G0 suh that 〈p0, q
˜
0〉 ∈ G. Assume that in V[G0], q

˜
1[G0] ≤ q

˜
0[G0].We have to show that q

˜
1[G0] ∈ G1. Firstly, there is a p′ ∈ G0 suh that

p′ P q
˜
1 ≤ q

˜
0. Seondly, sine G is direted, there is a 〈p1, q

˜
2〉 ∈ G suh that

〈p′, ∅
˙
〉 ≤ 〈p1, q

˜
2〉 ≥ 〈p0, q

˜
0〉, in partiular we get p1 P q

˜
0 ≤ q

˜
2. Now, sine

p1 ≥ p′, we also have p1 P q
˜
1 ≤ q

˜
0. Thus, p1 P q

˜
1 ≤ q

˜
2, whih implies

〈p1, q
˜
2〉 ≥ 〈p1, q

˜
1〉, and sine G is downwards losed, 〈p1, q

˜
1〉 ∈ G. Hene,

q
˜
1[G0] ∈ G1. Furthermore, if q

˜
0[G0] and q

˜
1[G0] belong to G1, then we �nd

〈p0, q
˜
0〉 and 〈p1, q

˜
1〉 in G, and sine G is direted, there is an R-ondition

〈p, q
˜
〉 ∈ G�and therefore q

˜
[G0] ∈ G1 � suh that 〈p0, q

˜
0〉 ≤ 〈p, q

˜
〉 ≥ 〈p1, q

˜
1〉.Thus, p P q

˜
0 ≤ q

˜
≥ q

˜
1, and sine p ∈ G0 we get q

˜
0[G0] ≤ q

˜
[G0] ≥ q

˜
1[G0].Now we show that G0 and G1 are generi, i.e., G0 and G1 meet every opendense set in V and V[G0] respetively.

G0 is generi: Let D0 ⊆ P be an open dense subset of P and let
D′

0 =
{
〈p, q

˜
〉 ∈ R : p ∈ D0

}
.Then D′

0 is an open dense subset of R, and sine G is R-generi over V, thereis an R-ondition 〈p, q
˜
〉 ∈ G�and therefore p ∈ G0 � suh that p belongs to

D0. Hene, G0 ∩D0 6= ∅, whih shows that G0 is P-generi over V.
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G1 is generi: Let D1 be an arbitrary open dense subset of Q

˜
[G0]. Thenthere is a P-name D

˜ 1 for D1 and a P-ondition p0 ∈ G0 suh that
p0 P “D˜ 1 is open dense in Q

˜
� .With respet to D

˜ 1 de�ne
D′

1 =
{
〈p, q

˜
〉 ∈ R : p P q

˜
∈ D

˜ 1

}
.Then D′

1 ⊆ R is open dense above 〈p0, ∅
˙
〉, and sine 〈p0, ∅

˙
〉 ∈ G (beause

p0 ∈ G0), we get that G ∩ D′
1 6= ∅, say 〈p1, q

˜
1〉 ∈ G ∩D′

1. Now, 〈p1, q
˜
1〉 ∈ Gimplies that p1 ∈ G0 and that q

˜
1[G0] ∈ G1. Furthermore, by de�nition of D′

1we get p1 P q
˜
1 ∈ D

˜ 1, and therefore q
˜
1[G0] ∈ D1. Hene, q

˜
1[G0] ∈ G1 ∩ D1,whih shows that G1 is Q

˜
[G0]-generi over V[G0]. ⊣In the next setion we shall investigate general iterations, but before letus show that two-step iterations of  foring notions satisfy .Lemma 18.7. If P satis�es  and
0P P “Q

˜
satis�es  �then also P ∗Q

˜
satis�es .Proof. Let P = (P,≤) and let Q

˜
= (Q

˜
,4
˜
). Assume towards a ontraditionthat in the ground modelV there are unountably many pairwise inompatible

P ∗ Q
˜
-onditions {

〈pξ, q
˜
ξ〉 : ξ ∈ ω1

}. Let x
˜
=

{
〈ξ
˙
, pξ〉 : ξ ∈ ω1

}; then x
˜
is a

P-name for a subset of ω1, i.e., 0P P x
˜

⊆ ω1
˙
. Let G be P-generi over V.Then x

˜
[G] = {ξ ∈ ω1 : pξ ∈ G}. We shall show that there is an ordinal β ∈ ω1suh that 0P P x

˜
⊆ β

˙
, but �rst we prove the followingClaim 1. In V[G], the set {q

˜
ξ[G] : ξ ∈ x

˜
[G]

} is an anti-hain in Q
˜
[G].Proof of Claim 1. Assume towards a ontradition that there are distint

ξ, η ∈ x
˜
[G], suh that q

˜
ξ[G] and q

˜
η[G] are ompatible elements of Q

˜
[G]. Thiswould imply that there is a P-ondition p ∈ G, as well as a P-name q
˜
for a

Q
˜
[G]-ondition, suh that

p P q
˜
∈ Q
˜
∧ q
˜
ξ 4
˜
q
˜
∧ q
˜
η 4
˜
q
˜
.In fat, by extending p if neessary, we get a P ∗ Q

˜
-ondition 〈p, q

˜
〉 whih isstronger than both 〈pξ, q

˜
ξ〉 and 〈pη, q

˜
η〉, ontraditing our assumption that{

〈pξ, q
˜
ξ〉 : ξ ∈ ω1

} is a set of pairwise inompatible P ∗Q
˜
-onditions. ⊣Claim 1Sine 0P P “Q

˜
satis�es  �, and therefore preserves ω1 (by Lemma 14.20),we get that V[G] �

∣∣x
˜
[G]

∣∣ < ω1 whenever G is P-generi over V, hene,
0P P |x

˜
| < ω1

˙
.Claim 2. There is an ordinal β ∈ ω1 suh that 0P P x

˜
⊆ β

˙
.



354 18 Combining Foring NotionsProof of Claim 2. In V, let
E =

{
α ∈ ω1 : ∃r ∈ P ∀β ∈ α

(
r P x

˜
⊆ α

˙
∧ x
˜
* β

˙

)}
.Further, for every α ∈ E hoose a P-ondition rα suh that for all β ∈ α,

rα P x
˜
⊆ α

˙
∧ x
˜
* β

˙
. The set {rα : α ∈ E}, whih belongs to V, is an anti-hain in P , and sine P satis�es , |E| < ω1. Thus, there exists a β ∈ ω1suh that E ⊆ β, whih implies that 0P P x

˜
⊆ β

˙
. ⊣Claim 2By de�nition of x

˜
, for all ξ ∈ ω1 we have pξ P ξ

˙
∈ x

˜
. In partiular we get

pβ P β
˙
∈ x
˜
, whih is a ontradition to 0P P x

˜
⊆ β

˙
. ⊣As a matter of fat we would like to mention that Lemma 18.7 does nothave an analogue for produts; in other words, the produt of two  foringnotions does not neessarily satisfy  (see Related Result 98).General IterationsIn the previous setion we have onstruted a two-step iteration U∗Q

˜
U in suha way that whenever G is U ∗Q

˜
U -generi over V, then there is an in�nite set

H0 ∈ [ω]ω ∩V[G] whih is almost homogeneous for all olourings π : [ω]n → rwhih belong to the ground model V. Obviously, suh a set H0 annot belongto V. Now, we an ask what happens if we iterate the foring notion U∗Q
˜

U ?As we have seen, at eah stage we obtain a new set H ∈ [ω]ω whih is almosthomogeneous for all �old� olourings π : [ω]n → r. So, for example an ω1-stage iteration of U ∗ Q
˜

U , starting in a model V of ZFC in whih c = ω2,would generate a family {Hα : α ∈ ω1} of size ωV
1 , where eah Hα is almosthomogeneous with respet to all �old� olourings π : [ω]n → r. Reall thatfor any integers n, r ≥ 2 there exists a bijetion between the set of olourings

π : [ω]n → r and the set of real numbers, thus, every �old� olouring an beenoded by an �old� real (and vie versa). Now, if every olouring π : [ω]n → r(i.e., real number) appears at some stage α ∈ ω1 in the iteration, and if theardinal numbers ωV

1 , ωV

2 , cV are the same as ω1, ω2, c in the �nal generiextension, then we would get a model in whih ω1 = hom < ω2 = c. But dowe really get suh a model?To understand the previous example as well as iterations in general, wehave to answer questions like:1. Is every iteration of foring notions equivalent to a single foring notion?2. How is the iteration de�ned at limit stages?3. Does the iteration add reals at limit stages of unountable o�nality?4. Does the iteration preserve ardinals?Below, we shall give a omplete answer to Questions 1�3 and we shallgive an answer to Question 4 with respet to foring notions satisfying ;regarding the foring notion U ∗ Q
˜
, we refer the reader to Chapter 20 andChapter 23 |Related Result 138.



General iterations 355Let us now onsider α-stage iterations of foring notions for arbitraryordinals α (reall that by Fat 14.4 we may always assume that the smallestelement of a foring notion is ∅).For α = 1 we get ordinary foring, and for α = 2 we get two-step iterationswhih we already disussed in the previous setion.For α = 3 we start with an arbitrary foring notion P1 = (P1,≤) whihbelongs to some ground model V. Let Q
˜
1 be a P1-name for a foring notion

(Q1,≤) in the P1-generi extension of V and let P2 := P1 ∗ Q
˜
1. Further, let

Q
˜
2 be a P2-name for a foring notion (Q2,≤) in the P2-generi extension of

V and let P3 := P2 ∗Q
˜
2. Then every P3-ondition is of the form 〈

〈q0, q
˜
1〉, q

˜
2

〉,where q0 ∈ P1, q0 P1 q
˜
1 ∈ Q

˜
1, and 〈q0, q

˜
1〉 P2 q

˜
2 ∈ Q

˜
2.To form an α-stage iteration for 3 < α ∈ ω, we just repeat this pro-edure. Thus, for positive integers n, every Pn-ondition is of the form

〈〈· · · 〈〈q0, q
˜
1〉, q

˜
2〉 · · · q

˜
n−2〉, q

˜
n−1〉, for whih we shall write the typographiallyless umbersome (and easier to read) n-tuple 〈q0, q

˜
1, . . . , q

˜
n−1〉. With this on-vention, for positive integers n, Pn-onditions are sequenes of length n.For n = 0 let P0 :=

(
{∅}, ⊆

). When we de�ne P0-names, we �nd that
G = {∅} is the unique P0-generi �lter over V. In partiular we get that a
0-stage extension of V is just V.The sequene of foring notions P0,P1, . . . ,Pn, where Pk = (Pk,≤, ∅), hasthe property that if p = 〈q0, q

˜
1, . . . , q

˜
n−1〉 ∈ Pn, then for all k ∈ n, p|k ∈ Pkand p|k Pk q

˜
k ∈ Q

˜
k, where Q

˜
k is a Pk-name for a foring notion (Qk,≤)in the Pk-generi extension of V. In partiular, P1 = Q

˜
0 is a P0-name for aforing notion (Q0,≤) in the P0-generi extension of V, whih is just V itself.In other words, P1 is a P0-name for foring notion (P1,≤) whih belongs to

V. Thus, every Pn-ondition is of the form 〈q
˜
0, q
˜
1, . . . , q

˜
n−1〉, where q

˜
0 is a P0-name for a Q0-ondition. This ompletes the de�nition of α-stage iterationsfor α ∈ ω.Similarly, we de�ne (α+1)-stage iterations for arbitrary ordinals α: If the

α-stage iteration Pα =
〈
Q
˜
β : β ∈ α

〉 is already de�ned and Q
˜
α is a Pα-namefor a foring notion in the Pα-generi extension, then Pα+1 := Pα ∗Q

˜
α.Let us now onsider the ase when α is a limit ordinal. At �rst glane,the set of Pα-onditions onsists of all α-sequenes 〈q

˜
β : β ∈ α〉, but havinga loser look we see that there is some freedom in de�ning the set of Pα-onditions. For example we an require that q

˜
β = ∅

˙
for all but �nitely many

β ∈ α, whih is alled �nite support iteration, or that q
˜
β = ∅

˙
for all butountably many β ∈ α, whih is alled ountable support iteration.For Pα-onditions p = 〈q

˜
β : β ∈ α〉 we de�ne

supp(p) =
{
β ∈ α : q

˜
β 6= ∅

˙

}
,and like for produts we all supp(p) the support of p. For example, a ount-able support iteration Pα onsists of all Pα-onditions p that have ountablesupport, i.e., | supp(p)| ≤ ω.Beause of the following result (whih will be stated without proof), �nitesupport iterations are often used in iterations of foring notions satisfying .



356 18 Combining Foring NotionsProposition 18.8. Any �nite support iteration of  foring notions satis-�es . In other words, if Pα is a �nite support iteration of 〈
Q
˜
β : β ∈ α

〉,where for eah β ∈ α we have
0β β “Q

˜
β satis�es  � ,then also Pα satis�es .Before we give an example of a �nite support iteration, let us �rst settlesome notation: Let Pα =

〈
Q
˜
γ : γ ∈ α

〉 be any α-stage iteration and let G be
Pα-generi over some model V. Then, for β ∈ α, let

G(β) =
{
qβ : ∃〈p

˜
γ : γ ∈ α〉 ∈ G

˜
(
qβ = p

˜
β [G]

)}and
G|β =

{
〈qγ : γ ∈ β〉 : ∃〈p

˜
γ : γ ∈ α〉 ∈ G

˜
∀γ ∈ β

(
qβ = p

˜
β[G]

)}
.In other words, G|β denotes the Pβ-generi �lter generated by G. In abuse ofnotation, for Pα =

〈
Q
˜
γ : γ ∈ α

〉 we usually write Pα =
〈
Qγ : γ ∈ α

〉, wherefor all γ ∈ α, Qγ := Q
˜
γ

[
G|γ

]. In other words, we usually onsider an α-stageiteration Pα, starting in some model V, as an α-sequene of foring notions
Qγ (not just Pγ-names for foring notions), where for eah γ ∈ α, Qγ belongsto the Pγ-generi extension V

[
G|γ

]. Consequently, for β ∈ α we also write
V
[
〈G(γ) : γ ∈ β〉

] instead of V[
G|β

], having in mind that we add one generi�lter after the other, rather than adding just the single generi �lter G|β .We onlude this setion by showing that in �nite support or ountablesupport iterations or produts of ertain foring notions (e.g.,  foringnotions), no new reals are added at limit stages of unountable o�nality� aresult whih will be used quite often in the forthoming hapters.Lemma 18.9. Let λ be an in�nite limit ordinal of unountable o�nality (i.e.,
cf(λ) > ω), let Pλ =

〈
Q
˜
α : α ∈ λ

〉 be any �nite support or ountable supportiteration or produt of arbitrary foring notions Qα, and let G be Pλ-generiover some model V of ZFC. If V[G] � cf(λ) > ω, then no new reals are addedat stage λ; more formally,
ωω ∩V[G] =

⋃

α∈λ

ωω ∩V[G|α] .Proof. Let f
˜
be a Pλ-name for a funtion in ωω∩V[G]. For every β ∈ λ de�nea Pβ-name g

˜
β for a partial funtion from ω to ω by stipulating
g
˜
β =

{〈
op(n

˙
,m
˙
), p

〉
∈ f
˜
: supp(p) ⊆ β ∧ p ∈ G

}
,where op(n

˙
,m
˙
) is the anonial Pλ-name for the ordered pair 〈n

˙
,m
˙
〉 (whihwas de�ned in Chapter 14). Now, we show that there exist an α ∈ λ suh



A model in whih i < c 357that V[G|α] � f
˜
[G|α] = g

˜
α[G|α], i.e., the funtion f

˜
[G] appears already in themodel V[G|α]: Let us work in the model V[G]. For every n ∈ ω we an hoosea pn ∈ G whih deides the value of f

˜
(n), i.e., 〈 op(n

˙
,m
˙
), pn

〉
∈ f
˜
for some

m ∈ ω. Using the fat that V[G] � cf(λ) > ω and that the supports of the pn'sare at most ountable (i.e., �nite or ountably in�nite), we get that in V[G],⋃
n∈ω supp(pn)  λ. Thus, there is an α ∈ λ suh that ⋃

n∈ω supp(pn) ⊆ α,and by onstrution we have g
˜
α[G|α] ∈ ωω∩V[G|α] and V[G] � f

˜
[G] = g

˜
α[G].

⊣A Model in whih i < cIn this setion we shall onstrut� by a �nite support iteration of  foringnotions� a model in whih i < c, where i is the least ardinality of a maximalindependent family; but �rst, let us reall a few notions: A set I ⊆ [ω]ω isan independent family, denoted i.f., if for any A,B ∈ fin(I ) with A ∩B = ∅we have ⋂
A \ ⋃

B is in�nite, where we stipulate ⋂ ∅ := ω (see Chapter 8).Furthermore, for independent families I , let bc (I ) be the set of all �niteboolean ombinations of distint elements of I , in other words,
bc (I ) =

{⋂
A \

⋃
B : {A,B} ⊆ fin(I ) ∧ A ∩B = ∅

}
.Notie that bc (I ) ⊆ [ω]ω and that for I = ∅ we have bc (I ) = {ω}.The following lemma�whih is in fat a ZFC result� will be ruial in theonstrution of the foring notion whih will be used in the iteration below.Lemma 18.10. Let V be an arbitrary model of ZFC and let I ⊆ [ω]ω be anarbitrary i.f. in V. Then there exists an ideal I ⊆ P(ω) in V suh that(a) I ∩ bc (I ) = ∅, and(b) for every y ∈ [ω]ω ∩V there exists an x ∈ bc (I ) suh that x∩ y or x \ ybelongs to I.Proof. Let {yα ∈ [ω]ω : α ∈ c} be an arbitrary enumeration of [ω]ω. Withrespet to this enumeration we onstrut the ideal I by indution on c. Firstly,let I0 := fin(ω). Then I0 is an ideal and I0 ∩ bc (I ) = ∅. Assume that wehave already de�ned the ideal Iα for some α ∈ c. If there are x ∈ bc (I ) and

u ∈ Iα suh that
x ⊆ yα ∪ u ,then Iα+1 := Iα; otherwise, Iα+1 is the ideal generated by Iα ∪ {yα}, i.e.,

u ∈ Iα+1 i� there is an A ∈ fin
(
Iα ∪ {yα}

) suh that u ⊆ ⋃
A. Further, forlimit ordinals λ ∈ c let Iλ :=

⋃
α∈λ Iα, and let
I =

⋃

α∈c

Iα .



358 18 Combining Foring NotionsIt remains to show that the ideal I has the required properties (we leave it asan exerise to the reader to show that I is indeed an ideal):(a) Assume towards a ontradition that there is an x ∈ bc (I ) ∩ I. Sine
I0 ∩ bc (I ) = ∅, there exists a least ordinal α ∈ c suh that x ∈ Iα+1. Inpartiular, x /∈ Iα, whih implies that Iα+1 6= Iα. Hene, Iα+1 must be theideal generated by Iα ∪ {yα}. Thus, by onstrution, there is no u ∈ Iα suhthat x ⊆ yα ∪ u. In other words, for eah u ∈ Iα we have x * yα ∪ u, whihontradits the fat that x ∈ Iα+1.(b) Take any y ∈ [ω]ω and let α ∈ c be suh that y = yα. If there are x ∈ bc (I )and u ∈ Iα suh that x ⊆ yα ∪ u, then x \ yα ⊆ u, and onsequently x \ y ∈ I;otherwise, yα ∈ Iα+1, whih implies that x ∩ yα ∈ Iα+1, and onsequently
x ∩ y ∈ I. ⊣Now we are ready to onstrut a model in whih i < c.Proposition 18.11. i < c is onsistent with ZFC.Proof. The proof will be given in two steps: In the �rst step, with respet tosome i.f. I we shall onstrut a foring notion QI (where I and I are as inLemma 18.10), and will show that QI adds a generi real g ∈ [ω]ω (over somemodel V) whih has the following properties:
• I ∪ {g} is an i.f. in V[g].
• If y ∈ [ω]ω ∩ V is suh that I ∪ {y} is independent and y /∈ I , then

I ∪ {g, y} is not independent.In the seond step, by a �nite support iteration of length ω1 of foring notions
QI , we shall onstrut a generi model in whih the set of generi reals, addedby the foring notions QI , is a maximal i.f. of size ω1.1st Step: Let V be an arbitrary model of ZFC and let I ⊆ [ω]ω be anarbitrary ountable i.f. in V. Furthermore, let I ⊆ P(ω) be the ideal on-struted in Lemma 18.10 with respet to I , i.e., I ∩ I = ∅, and for every
y ∈ [ω]ω ∩ V there exists an x ∈ bc (I ) suh that x ∩ y or x \ y belongsto I. With respet to the ideal I we de�ne the foring notion QI = (QI ,≤)as follows: A QI -ondition is an ordered pair 〈s, E〉 where s ∈ fin(ω) and
E ∈ fin(I), and for QI-onditions 〈s, E〉 and 〈t, F 〉 we de�ne

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ∩
⋃

u∈E

u = ∅ .Notie that for any E,F ∈ fin(I) and any s ∈ fin(ω), 〈s, E〉 and 〈s, F 〉 areompatible, and sine the set fin(ω) is ountable, QI satis�es .Let G be QI-generi over V and let
g =

⋃{
s ∈ fin(ω) : ∃E ∈ fin(I)

(
〈s, E〉 ∈ G

)}
.



A model in whih i < c 359We leave it as an exerise to the reader to show that g ∈ [ω]ω and that
V[g] = V[G]. Thus, we an equally well work with g instead of G, in otherwords, g is a QI -generi real over V.Now, we show that I ∪ {g} is an i.f. in V[g] whih is even maximal withrespet to the reals y whih belong to V�notie that this property of g doesnot depend on the partiular ideal I whih is involved in the onstrution ofthe foring notion QI .Claim. If g is QI -generi over V, then I ∪ {g} is an independent family in
V[g], but for all y ∈ [ω]ω ∩V with y /∈ I , I ∪ {g, y} is not independent.Proof of Claim. Firstly we show that I ∪ {g} is an i.f. in V[g], i.e., we haveto show that for every x ∈ bc (I ), both sets g ∩ x and (ω \ g)∩ x are in�nite:For every x ∈ bc (I ) and every n ∈ ω de�ne

An,x =
{
〈s, E〉 ∈ QI : |s ∩ x| > n

}
,

Bn,x =
{
〈s, E〉 ∈ QI :

∣∣⋃E ∩ x
∣∣ > n

}
.We leave it as an exerise to the reader to show that for all x ∈ bc (I ) and

n ∈ ω, An,x and Bn,x are open dense subsets of QI , whih implies that I ∪{g}is an i.f. in V[g].Now, we show that for all y ∈ [ω]ω ∩ V with y /∈ I , I ∪ {g, y} is notindependent: Let y ∈ [ω]ω ∩ V be an arbitrary real. If for all u ∈ I and
x ∈ bc (I ) we have x * y ∪ u, then let

Cy =
{
〈s, E〉 ∈ QI : y ∈ E

}
,otherwise, there is a u0 ∈ I and an x ∈ bc (I ) suh that x ⊆ y ∪ u0 and wede�ne

Cy =
{
〈s, E〉 ∈ QI : u0 ∈ E

}
.By the properties of the ideal I we get that Cy is an open dense subset of QIfor all y ∈ [ω]ω. This implies that for eah y ∈ [ω]ω we �nd an x ∈ bc (I )suh that g ∩ y is �nite (in the ase when y ∈ I), or g ∩ (x \ y) is �nite (inthe ase when x ⊆ y ∪ u for some u ∈ I). However, in both ases we get that

I ∪ {g, y} is not independent whenever y ∈ [ω]ω \ I . ⊣Claim2nd Step: Now, we are ready to de�ne the �nite support iteration whihwill yield a generi model in whih there exists a maximal independent family
I of ardinality ω1: Let V be an arbitrary model of ZFC in whih c > ω1.We onstrut the i.f. I by indution on α ∈ ω1. Let I0 = ∅ and assume thatwe have already onstruted the i.f. Iα for some α ∈ ω1. Furthermore, let
Iα ⊆ P(ω) be the ideal onstruted in the proof of Lemma 18.10 with respetto the i.f. Iα, and let gα be a QIα-generi real over V[

〈gγ : γ ∈ α〉
]. Now, let

Iα+1 := Iα ∪ {gα}; and for limit ordinals λ ∈ ω1 let Iλ :=
⋃
β∈λIβ . Notiethat for eah α ∈ ω1, Iα = {gγ : γ ∈ α} is a ountable i.f. in V
[
〈gγ : γ ∈ α〉

].Let Pω1 =
〈
QIα : α ∈ ω1

〉 be the �nite support iteration of the foringnotions QIα , let G = 〈gα : α ∈ ω1〉, and let I = {gα : α ∈ ω1}. Then G is Pω1-generi over V and I is an i.f. in V[G] of ardinality ω1. It remains to show



360 18 Combining Foring Notionsthat I is maximal and that V[G] � c > ω1: Sine Pω1 is a �nite support itera-tion of  foring notions (reall that QI satis�es ), by Proposition 18.8we get that also Pω1 satis�es , and therefore, by Lemma 14.20, all ardinalsare preserved. In partiular, sine V � c > ω1, we get that V[G] � c > ω1.Furthermore, by Lemma 18.9 we know that the iteration does not add newreals at stage ω1. Thus, for every real y ∈ [ω]ω ∩V[G] there exists an α ∈ ω1suh that y ∈ V
[
〈gγ : γ ∈ α〉

]. Now, by the Claim we know that for eah
y ∈ [ω]ω ∩V

[
〈gγ : γ ∈ α〉

] whih does not belong to Iα, Iα ∪ {gα, y} is notindependent. Consequently, for eah y ∈ [ω]ω∩V[G] we get that I ∪{y} is notindependent whenever y /∈ I . This shows that I is a maximal independentfamily in V[G], and sine |I | = ω1 and ω1 < c, we get that ω1 = i < c isonsistent with ZFC. ⊣Considering the diagram at the end of Chapter 8, we see that the independenenumber i appears on the top of the diagram. However, as we have seen above,
i an be quite small ompared to c. In the next hapter we onsider a ardinalharateristi on the bottom of the diagram, namely p, and show that p anbe equal to c, even in the ase when c > ω1.NotesProduts and iterations. For a more detailed introdution to produts and iter-ations of foring notions we refer the reader to Kunen [5, Chapter VIII℄, Baumgart-ner [1℄, and Goldstern [3℄ �where one an also �nd many more appliations of theseforing tools. In partiular, Proposition 18.5 is taken from Kunen [5, p. 256, The-orem 2.3℄ and the idea for the proof of Proposition 18.11 is taken from Kunen [5,p. 289, A12℄ (where the atual onstrution is due to Jörg Brendle).Related Results96. Iterating Cohen foring. A speial feature of Cohen foring C =

(
Fn(ω, 2), ⊆

)is that the set Fn(ω, 2) is the same in every transitive model of ZFC. In partiu-lar, for any ardinal κ we get that (�nite/ountable support) iterations of length
κ of Cohen foring C are equivalent to (�nite/ountable support) produts of κopies of C (f. Lemma 21.9).97. Produts as two-step iterations. Let P0 and P1 be some foring notions in somemodel V of ZFC, let G be P0 × P1-generi over V, and let G(0) and G(1) beas above. Then G(0) is P0-generi over V[G(1)] and G(1) is P1-generi over
V[G(0)] (see for example Kunen [5, Chapter VIII,Theorem 1.4℄ and omparewith Lemma 18.1).98. Produts and the ountable hain ondition. It is onsistent with ZFC that thereare foring notions P and Q, both satisfying , suh that produt P×Q doesnot satisfy  (ompare with Lemma 18.7). Examples of suh foring notionsan be found in Kunen [5, Chapter VIII, p. 291 f.℄.



Referenes 36199. The onsisteny of c > a revisited. Let V be a model in whih c > ω1 and let
A ⊆ [ω]ω be a ountable almost disjoint family. With respet to A we de�nethe following foring notion QA : The onditions of QA are of the form 〈s,X〉,where s is a �nite sequene of ω and X ∈ [A ]<ω and we de�ne 〈s,X〉 ≤ 〈s′, X ′〉if s ⊆ s′, X ⊆ X ′, and (s′ \ s) ∩ ⋃

X = ∅. For B =
{
B ∈ [ω]ω : ∀A ∈

A (|B ∩A| < ω)
} we get that the generi real A ∈ [ω]ω, generated by the �nitesets s, is almost disjoint from every member of A and has in�nite intersetionwith eah member of B (f. Kunen [5, Chapter II, Lemma 2.17℄). Thus, A ∪{A}is a mad family for the old reals (i.e., every real x ∈ [ω]ω in the ground model

V has in�nite intersetion with either A or an element of A ). Furthermore,it is not hard to show that the foring notion QA satis�es  (f. Kunen [5,Chapter II, Lemma 2.14℄). Now, let A0 be an arbitrary ountable almost disjointfamily in V and for non-zero ordinals α ∈ ω1 de�ne Aα by trans�nite indutionas follows: If α is a limit ordinal, then Aα :=
⋃
β∈αAβ, and if α = β + 1, thenlet Aα := Aβ ∪ {Aβ}, where Aβ ∈ [ω]ω is QAβ
-generi over V

[
〈Aγ : γ ∈ β〉

].Finally, by the fats mentioned above we get that the �nite support iteration〈
QAα : α ∈ ω1

〉, starting in V, yields a model in whih we have still c > ω1 andin whih there exists a mad family of size ω1, namely A0 ∪ {Aα : α ∈ ω1}.100. Easton foring. With so-alled Easton foring, whih is a produt foringnotion, one an modify the powers of in�nitely many regular ardinals atone. In fat, one an show that ardinal exponentiation on the regular ar-dinals an be anything not �obviously false�. For example one an fore that
∀n ∈ ω (2ωn = ωω1+n), but one annot fore that 2ω = ωω+ω (sine cf(2ω) > ω).For Easton foring see Easton [2℄ or Kunen [5, Chapter VIII, �4℄.101. Preservation of κ-hain ondition. In Chapter 16 |Related Result 87 wegeneralised the notion of  by saying that a foring notion P = (P,≤) satis�esthe κ-hain ondition if every anti-hain in P has ardinality <κ. Now, if κ isa regular unountable ardinal and Pα =

〈
Q
˜
β : β ∈ α

〉 is a �nite support itera-tion, where for eah β ∈ α we have 0β β “Q
˜
β satis�es the κ-hain ondition�,then Pα satis�es the κ-hain ondition too (see for example Kunen [5, Chap-ter VIII, Lemma 5.12℄ or Jeh [4, Part II, Theorem 2.7℄).Referenes1. James E. Baumgartner, Iterated foring , in Surveys in Set Theory (A.R.D.Mathias, ed.), [London Mathematial Soiety Leture Note Series 87], CambridgeUniversity Press, Cambridge, 1983, pp. 1�59.2. William B. Easton, Powers of regular ardinals, Annals of Pure and Ap-plied Logi, vol. 1 (1970), 139�178.3. Martin Goldstern, Tools for your foring onstrution, in Set Theory of theReals (H. Judah, ed.), [Israel Mathematial Conferene Proeedings], Bar-IlanUniversity, Israel, 1993, pp. 305�360.4. Thomas Jeh, Multiple Foring, [Cambridge Trats in Mathematis], Cam-bridge University Press, Cambridge, 1986.5. Kenneth Kunen, Set Theory, an Introdution to Independene Proofs,

[Studies in Logi and the Foundations of Mathematis 102], North-Holland,Amsterdam, 1983.





19Models in whih p = c

In this hapter we shall onsider models of ZFC in whih p = c. Sine ω1 ≤ p(by Theorem 8.1) and p ≤ c, we have p = c in all models in whih c = ω1,but of ourse, these are not the models we are interested in.By Theorem 13.6 we know that MA(σ-entred) implies p = c, moreover,by Chapter 13 |Related Result 79 we even have MA(σ-entred) ⇐⇒ p =
c. On the other hand, in a model in whih ω1 < p = c we do not neessarilyhave MA (beause MA(σ-entred) is weaker than MA) and in fat it is slightlyeasier to fore just ω1 < p = c than to fore MA + ¬CH. Thus, we shall�rst onstrut a model of ω1 < p = c, whih� by Chapter 13 |RelatedResult 79�proves the onsisteny of MA(σ-entred) + ¬CH with ZFC, andthen we shall sketh the onstrution of a generi model in whih we haveMA + ¬CH. Finally, we shall onsider the ase when a single Cohen real c isadded to a model V � ZFC in whih MA+ ¬CH holds. Even though full MAfails in V[c] (see Related Result 104), we shall see that p = c still holds in
V[c]�a result whih will be used in Chapter 27.A Model in whih p = c = ω2In this setion, we shall onstrut a generi model in whih p = c = ω2 � forthe general ase see Related Result 102.Proposition 19.1. p = c = ω2 is onsistent with ZFC.Proof. We start with a model V � ZFC+CH in whih we have V � 2ω1 = ω2.In order to obtain suh a model, use the tehniques developed in Chapter 14or see Chapter 18 |Related Result 100.In V we shall de�ne a �nite support iteration Pω2 =

〈
Qξ : ξ ∈ ω2

〉 of foring notions Qξ, suh that in the Pω2-generi model V[G] we have
V � p = c. Sine for eah ξ ∈ ω2 the foring notion Qξ will satisfy , byProposition 18.8 we get that also eah Pξ will satisfy , and therefore, by



364 19 Models in whih p = cLemma 18.9 and the proof of Theorem 16.4, for any ξ ∈ ω2 we shall have
V[G|ξ] � c = ω1 ∧ 2ω1 = ω2. Furthermore, sine for eah ξ ∈ ω2 the foringnotion Qξ will be of ardinality at most ω1, also Pξ will be of ardinality atmost ω1.Like in the proof of Theorem 16.4, one an show that for any ν ∈ ω2,there are ω1 nie Pν-names for subsets of ω, and beause V[G|ν ] � 2ω1 = ω2,for eah ν ∈ ω2 there exists a bijetion Aν : ω2 → P

(
[ω]ω

) in V[G|ν ]. Inpartiular, for all ν, η ∈ ω2 we have Aν(η) ⊆ [ω]ω, and sine c = ω1 we get
|Aν(η)| ≤ ω1. Stritly speaking, we should work with some Pν-name for Aν ,not with the atual funtion, but for the sake of simpliity we shall omit thistehnial di�ulty and leave it as an exerise to the reader.Now we are ready to onstrut the  foring notions Qξ: To start with,�x a bijetion g : ω2 → ω2 × ω2 in V (whih will serve as a bookkeepingfuntion) suh that for every ξ ∈ ω2 we have

(
g(ξ) = 〈ν, η〉

)
→ ν ≤ ξ .Let ξ ∈ ω2 be an arbitrary but �xed ordinal number and let 〈ν, η〉 := g(ξ).Sine ν ≤ ξ, V[G|ν ] ⊆ V[G|ξ], and the set Aν(η) ⊆ [ω]ω, originally de�ned in

V[G|ν ], also belongs to V[G|ξ].In order to de�ne Qξ = (Qξ,≤) we work in V[G|ν ] and onsider the fol-lowing two ases: If the family Aν(η) ⊆ [ω]ω has the strong �nite intersetionproperty s�p (i.e., intersetions of �nitely many members of Aν(η) are in�-nite), then we de�ne
Qξ =

{
〈s, E〉 : s ∈ fin(ω) ∧ E ∈ fin

(
Aν(η)

)}
,and for 〈s, E〉, 〈t, F 〉 ∈ Qξ we stipulate

〈s, E〉 ≤ 〈t, F 〉 ⇐⇒ s ⊆ t ∧ E ⊆ F ∧ (t \ s) ⊆
⋂
E .In the ase when Aν(η) does not have the s�p, let Qξ be the trivial foringnotion (

{∅},⊆
).The foring notion Qξ (in the ase when Qξ is non-trivial) was alreadyintrodued in the proof of Theorem 13.6, where it was shown that Qξ satis�es and that the generi �lter indues a pseudo-intersetion of Aν(η). Hene,we either have V[G|ξ+1] = V[G|ξ] (in the ase when Qξ is trivial), or thefamily Aν(η) has a pseudo-intersetion in V[G|ξ+1]. In partiular, the family

Aν(η), whih is a family of ardinality at most ω1, is not a witness for p = ω1.Let G be Pω2-generi over V and let F ⊆ [ω]ω be an arbitrary fam-ily in V[G] of ardinality ω1 whih has the s�p. Sine for eah ξ ∈ ω2, Qξsatis�es , by Proposition 18.8, also Pω2 satis�es , and therefore, byLemma 18.9, V[G] � c = ω2.Sine |F | = ω1, similar to Claim 2 in the proof of Proposition 24.12,there exists a ν ∈ ω2 suh that the family F belongs to V[G|ν ]. In partiular,there is an η ∈ ω2 suh that V[G|ν ] � F = Aν(η). Hene, for ξ = g−1(〈ν, η〉),



On the onsisteny of MA + ¬CH 365there is a pseudo-intersetion for F in V[G|ξ+1], and sine F was arbitrary,we get V[G] � p ≥ ω2. Now, sine V[G] � c = ω2, we �nally get V[G] � p =
c = ω2. ⊣On the Consisteny of MA+ ¬CHIn this setion we shall sketh the proof that MA+ c = ω2 is onsistent withZFC (for the general ase see Related Result 103). The ruial point in theproof is the fat that every  foring notion is equivalent to a foring notionof ardinality stritly less than c; but let us reall �rst Martin's Axiom:Martin's Axiom (MA): If P = (P,≤) is a partially ordered set whihsatis�es , and D is a set of less than c open dense subsets of P , thenthere exists a D-generi �lter on P .At �rst glane, we an build a model in whih we haveMA+¬CH by starting insome model of ZFC+¬CH, and then add a D-generi �lters for every partiallyordered set P = (P,≤) satisfying . However, the olletion of all partiallyordered sets satisfying  is a proper lass. So, we �rst have to show thatit is enough to onsider just the set of  partially ordered sets P = (P,≤)satisfying |P | < c:Lemma 19.2. The following statements are equivalent:(a) MA.(b) If P = (P,≤) is a partially ordered set that satis�es  and |P | < c,and if D is a set of less than c open dense subsets of P , then there exists a
D-generi �lter on P .Proof. Obviously it is enough to prove that (b) implies (a): Let P be a partially ordered set, and let D be a family of fewer than c open dense subsetsof P , i.e., |D | = κ for some κ < c. For eah D ∈ D , let AD ⊆ D be amaximal inompatible subset of D. Then, sine P satis�es , eah AD isountable. Now, we an onstrut a set Q ⊆ P of ardinality at most κsuh that Q ontains eah AD, and whenever p, q ∈ Q are ompatible in
P , then they are also ompatible in Q (i.e., there is an r ∈ Q suh that
p ≤ r ≥ q) � for the latter notie that ∣∣[κ]2

∣∣ = κ. By onstrution of Q weget that for eah D ∈ D , AD is a maximal anti-hain in Q. Finally, for eah
D ∈ D let ED =

{
q ∈ Q : ∃p ∈ AD (q ≥ p)

}. Then eah ED is open dense in
Q. Now, (Q,≤) is a partially ordered set whih satis�es  and |Q| ≤ κ < c.Thus, by (b), there is a �lter G on Q that meets every open dense set ED, andonsequently, Ḡ =

{
p ∈ P : ∃q ∈ G (p ≤ q)

} is a D-generi �lter on P . ⊣



366 19 Models in whih p = cProposition 19.3. MA+ c = ω2 is onsistent with ZFC.Proof (Sketh). The proof is essentially the same as the proof of Proposi-tion 19.1. We start again in a model V of ZFC in whih c = ω1 and 2ω1 = ω2,and extend V by a �nite support iteration Pω2 =
〈
Qξ : ξ ∈ ω2

〉, where foreah ξ ∈ ω2, Qξ = (Qξ,≤) satis�es  and Qξ ⊆ ω1. Sine in the �nal model
V[G] we have c = ω2, by Lemma 19.2 we an arrange the iteration so thatevery  foring notion in V[G] of size < ω2 is isomorphi to some foringnotion Qξ (for some ξ ∈ ω2). A minor problem is that by adding new generisets, we also might add new dense subsets to old partially ordered sets. Thisproblem is solved by making sure that every  foring notion Qξ appearsarbitrarily late in the iteration, whih is done by a bookkeeping funtion sim-ilar to that used in the proof of Proposition 19.1. ⊣

p = c is Preserved under Adding a Cohen RealThe following result, whih will be used in the proof of Proposition 27.9,shows that p = c is preserved under adding a Cohen real (f. Related Re-sult 104).Theorem 19.4. If V � p = c and c is a Cohen real over V, then V[c] � p = c.Proof. Throughout this proof, we shall onsider the Cohen foring notion
C =

(⋃
n∈ω

n2, ⊆
). Let V be a model of ZFC and let c ∈ ω2 be a Cohen realover V.If V � CH, then also V[c] � CH whih implies V[c] � p = c. So, let usassume thatV � c > ω1 and therefore, sine Cohen foring preserves ardinals,

V[c] � c > ω1.We have to show that every family {
Xα ∈ [ω]ω : α ∈ κ < c

} in V[c] whihhas the s�p has also a pseudo-intersetion. To start with, �x a ardinal κ with
ω1 ≤ κ < c, and let {Xα : α ∈ κ} ⊆ [ω]ω be an arbitrary but �xed family in
V[c] whih has the s�p. Furthermore, let

{
X
˜ α

: α ∈ κ
}be a set of C-names suh that {X

˜ α
[c] : α ∈ κ} = {Xα : α ∈ κ}. Now, sine

{Xα : α ∈ κ} has the s�p in V[c], there exists a C-ondition q suh that forall E ∈ fin(κ) we have
q C

∣∣⋂ {X
˜ α

: α ∈ E}
∣∣ = ω ,where we de�ne ⋂ ∅ := ω. For the sake of simpliity, let us assume that q = 0.The goal is now to onstrut a set Y ∈ V[c] whih is a pseudo-intersetionof {X

˜ α
[c] : α ∈ κ

}. For this, we de�ne (in V) the following σ-entred foringnotion P = (P,≤):



p = c is preserved under adding a Cohen real 367The set of P-onditions P onsists of pairs 〈h,A〉, where A ∈ fin(κ) and
h :

⋃ {
k2 : k ∈ m

}
→ fin(ω) for some m ∈ ω .For 〈h,A〉, 〈l, B〉 ∈ P , let 〈h,A〉 ≤ 〈l, B〉 if and only if

• h ⊆ l, A ⊆ B, and
• for eah p ∈ dom(l) \ dom(h) we have p C l(p) ⊆

⋂{
X
˜ α : α ∈ A

}.We leave it as an exerise to the reader to show that |P | = κ and that Pis σ-entred� for the latter, notie that for any 〈h,A〉, 〈h,B〉 ∈ P we have
〈h,A〉 ≤ 〈h,A ∪ B〉 ≥ 〈h,B〉. Now, for every α ∈ κ and n ∈ ω we de�ne theset Dα,n ⊆ P by stipulating 〈h,A〉 ∈ Dα,n if and only if
• α ∈ A,
• dom(h) =

{
k2 : k ∈ m

} for some m ≥ n,
• for eah p ∈ m2, ∣∣⋃i∈m h(p|i)

∣∣ ≥ n.We leave it as an exerise to the reader to show that every set Dα,n is an opendense subset of P and that ∣∣{Dα,n : α ∈ κ ∧ n ∈ ω}
∣∣ = κ. The open densesets Dα,n make sure that the set Y , onstruted below, will be a pseudo-intersetion of {

X
˜ α

[c] : α ∈ κ
}, in partiular, Y will be in�nite. At themoment, just notie the following fat: If 〈h,A〉 ∈ Dα,n and 〈h,A〉 ≤ 〈l, B〉,where dom(l) =

{
k2 : k ∈ m

}, then for eah p ∈ m2 we have ∣∣⋃i∈m l(p|i)
∣∣ ≥ n,and for eah p ∈ dom(l) \ dom(h) we have p C l(p) ⊆ X

˜ α
.The ruial point is now to show that there exists a �lter G ⊆ P in Vwhih meets every set Dα,n.Claim. Let D = {Dα,n : n ∈ ω ∧ α ∈ κ}. Then there exists in V a D-generi�lter G on P , i.e., there exists a direted and downwards losed set G ⊆ Pwhih meets every open dense subset of P whih belongs to D .Proof of Claim. The following proof is essentially the proof of the fat that

p = c is equivalent to MA(σ-entred) (see Chapter 13 |Related Result 79).Firstly notie that for eah m ∈ ω there are just ountably many funtions
h :

⋃ {k2 : k ∈ m} → fin(ω). For eahm ∈ ω �x an enumeration {hm,i : i ∈ ω}of all these ountably many funtions and let η : ω × ω → ω be a bijetion.For eah n ∈ ω we de�ne the set Pn ⊆ P by stipulating
Pn =

{
〈hm,i, A〉 ∈ P : η(〈m, i〉) = n

}
.Notie that ⋃

n∈ω Pn = P and that eah Pn onsists of pairwise ompatible
P-onditions.Seondly, for eah P-ondition p = 〈h,A〉 ∈ P and for every open denseset D ∈ D let

[p,D] =
{
n ∈ ω : ∃q ∈ Pn(q ∈ D ∧ q ≥ p)

}
.



368 19 Models in whih p = cNotie that [p,D] ∈ [ω]ω. Furthermore, for all k, r ∈ ω, any P-onditions
〈h,A0〉, . . . , 〈h,Ak〉 ∈ Pr, and any open dense sets D0, . . . , Dk ∈ D , we getthat ⋂i≤k

[
〈h,Ai〉, Di

] is in�nite. This implies that for eah r ∈ ω, the family
Fr =

{
[p,D] : p ∈ Pr ∧ D ∈ D

} has the s�p. Now, sine V � p = c and
|Fr| = |Pr × D | ≤ κ × κ = κ < c, we have V � |Fr| < p. Hene, in V thereexists a pseudo-intersetion Ir of Fr. In other words, for every r ∈ ω there isan Ir ∈ [ω]ω suh that for all p ∈ Pr and D ∈ D , Ir \ [p,D] is �nite.In the following step we enode the elements of the sets Ir by �nite se-quenes: Let seq(ω) be the set of all �nite sequenes whih an be formed withelements of ω. For s ∈ seq(ω) and i ∈ ω, s⌢i denotes the onatenation of thesequenes s and 〈i〉.Now, de�ne the funtion ν : seq(ω) → ω by stipulating
• ν(∅) = 0, and
• for all s ∈ seq(ω): {ν(s⌢i) : i ∈ ω

} enumerates Iν(s) in asending order.In partiular, {ν(〈i〉) : i ∈ ω
}

= I0, where for all i, i′ ∈ ω, i < i′ implies
ν(〈i〉) < ν(〈i′〉).Furthermore, for every D ∈ D and every s ∈ seq(ω) we hoose a P-ondition
psD ∈ Pν(s) suh that for all i ∈ ω,

ν(s
⌢
i) ∈

[
psD, D

]
→

(
psD ≤ ps

⌢
i

D

)
∧
(
ps

⌢
i

D ∈ D
)
. (∗)Notie that for any D ∈ D and s ∈ seq(ω), Iν(s) \ [psD, D] is �nite. Thus, foreah D ∈ D and eah s ∈ seq(ω) there is a least integer gD(s) ∈ ω suh thatfor every i ≥ gD(s) we have ν(s⌢i) ∈ [

psD, D
]. So, for every D ∈ D , we obtaina funtion gD : seq(ω) → ω. Then, the family E = {gD : D ∈ D} is a familyof size κ of funtions from the ountable set seq(ω) to ω.Now we show that E is bounded: For this, reall �rst that for the boundingnumber b we have p ≤ b ≤ c (see Chapter 8). Sine in V we have p = c, inpartiular V � b = c, and sine |E | = κ < c, V � |E | < b. Thus, E is boundedin V, i.e., in V there exists a funtion g : seq(ω) → ω suh that for eah

D ∈ D ,
gD(s) < g(s) for all but �nitely many s ∈ seq(ω) .By indution on n ∈ ω, de�ne the funtion f ∈ ωω suh that for all n ∈ ω,

f(n) := g(f |n). Then, by de�nition of f and the property of g, for eahD ∈ D ,
gD(f |n) < f(n) for all but �nitely many n ∈ ω .In other words, for every D ∈ D there exists an integer mD ∈ ω suh that forall n ≥ mD, f(n) > gD(f |n).We are now ready to de�ne the D-generi set G ⊆ P , but before we do so,let us summarise a few fats whih we have ahieved so far: Let D ∈ D and

n ≥ mD be arbitrary, and let s := f |n and i := f(n).



p = c is preserved under adding a Cohen real 369(0) f(n) = g(f |n) = g(s), i.e., i = g(s), and f(n+ 1) = g(f |n+1) = g(s
⌢
i).(1) Sine n ≥ mD, we get g(f |n) > gD(f |n), i.e., g(s) > gD(s), and therefore

i > gD(s).(2) Sine i > gD(s), we get ν(s⌢i) ∈ [
psD, D

], i.e.,
ν(f |n+1) ∈

[
p
f |n
D , D

]
.(3) Thus, by (∗) and (2) we get psD ≤ ps

⌢
i

D and ps⌢iD ∈ D, i.e.,
p
f |n
D ≤ p

f |n+1
D and p

f |n+1
D ∈ D .Now, let G ⊆ P be de�ned by

G =
{
q ∈ P : ∃D ∈ D ∃n ∈ ω

(
n ≥ mD ∧ q ≤ p

f |n
D

)}
.It remains to hek that G has the required properties, i.e., G is a �lter whihmeets every D ∈ D .

G is a �lter : By de�nition,G is downwards losed. To see thatG is direted,take any q, q′ ∈ G and, for some D,D′ ∈ D and n, n′ ∈ ω, let pf |nD , p
f |n′
D′ ∈ Gbe suh that q ≤ p

f |n
D and q′ ≤ p

f |n′
D′ . Without loss of generality we mayassume that n ≥ n′. Then pf |nD′ ≥ p
f |n′
D′ . Now, pf |nD and pf |nD′ both belong to

Pν(f |n) and are therefore ompatible. Thus, there exists an r ∈ Pν(f |n) suhthat pf |nD ≤ r ≥ p
f |n
D′ , and onsequently we have q ≤ r ≥ q′ where r ∈ G.

G is D-generi: By (3), for eah D ∈ D and every n ≥ mD we have
p
f |n+1
D ∈ D ∩G, and hene, G ∩D 6= ∅. ⊣ClaimWith the D-generi �lter G ⊆ P onstruted above we de�ne the funtion

H =
⋃{

h : ∃
[
〈h,A〉 ∈ G

]}
.By onstrution, the funtion H :

⋃
n∈ω

n2 → ω has the following property: If
α ∈ κ and 〈h,A〉 ∈ G with α ∈ A, then for every p ∈ ⋃

n∈ω
n2 \ dom(h) wehave

p C H(p) ⊆ X
˜ α

.In partiular, if c is a Cohen real over V, then for Y :=
⋃
n∈ωH(c|n), whihis a set in V[c], we have

V[c] � ∀α ∈ κ
(
Y ⊆∗ X

˜ α[c]
)
.We leave it as an exerise to the reader to show that V[c] � |Y | = ω (for this,reall the de�nition of the open dense sets Dα,n). Thus, in V[c], the arbitrarilyhosen family {

X
˜ α[c] : α ∈ κ < c

} has a pseudo-intersetion, whih showsthat V[c] � p = c. ⊣



370 19 Models in whih p = cNotesThe onsisteny of MA+¬CH. A omplete proof for the onsisteny ofMA+¬CHwith ZFC an be found for example in Kunen [5, Chapter VIII, �6℄ (see also Martinand Solovay [6℄).On p = c after adding one Cohen real. Theorem 19.4 is due to Roitman [7℄,but the proof given here follows the proof of Bartoszy«ski and Judah [1, Theo-rem 3.3.8℄, where the proof of the Claim, originally proved by Bell [2℄, is taken fromFremlin [3, 14C℄. Related Results102. On the onsisteny of p = κ. Let V be a model of ZFC+GCH and assume thatin V, κ is an unountable regular ardinal suh that ∣∣[κ]<κ
∣∣ = κ. Then, by aslight modi�ation of the proof of Proposition 19.1, we get a generi extensionof V in whih p = κ.103. On the onsisteny of MA + c = κ. As in Related Result 103, let V beagain a model of ZFC+GCH and assume that in V, κ is an unountable regularardinal suh that ∣∣[κ]<κ

∣∣ = κ. Then there exists a  foring notion P in V,suh that in the P-generi extension V[G] we have MA + c = κ (for a proof seeKunen [5, Chapter VIII,Theorem 6.3℄).104. Martin's Axiom and Cohen reals. By Chapter 13 |Related Result 79, whihasserts p = c ⇐⇒ MA(σ-entred), we get that V � MA(σ-entred) if and onlyif V � p = c. Hene, Theorem 19.4 implies that MA(σ-entred) is preservedunder Cohen foring, i.e., if V � MA(σ-entred) and c is a Cohen real over V,then V[c] � MA(σ-entred). However, this is not the ase for full MA. In fatone an show that if V � ¬CH and c is a Cohen real over V, then V[c] � ¬MA.The proof uses the fat that if V � MA(ω1), then there is no Suslin tree in V(see for example Jeh [4, Theorem 16.16℄). On the other hand, one an showthat whenever c is a Cohen real over V, then V[c] ontains a Suslin tree (seeShelah [8, �1℄, Todor£evi¢ [9℄, or Bartoszy«ski and Judah [1, Setion 3.3.A℄).Referenes1. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the struture ofthe real line, A.K.Peters, Wellesley, 1995.2. Murray G. Bell, On the ombinatorial priniple P (c), Fundamenta Mathe-matiae, vol. 114 (1981), 149�157.3. David H. Fremlin, Consequenes of Martin's axiom, Cambridge Trats inMathematis 84, Cambridge University Press, Cambridge, 1984.4. Thomas Jeh, Set Theory, The Third Millennium Edition, Revised andExpanded, [Springer Monographs in Mathematis], Springer-Verlag, Berlin, 2003.5. Kenneth Kunen, Set Theory, an Introdution to Independene Proofs,
[Studies in Logi and the Foundations of Mathematis 102], North-Holland,Amsterdam, 1983.6. Donald A. Martin and Robert M. Solovay, Internal Cohen extensions,Annals of Mathematial Logi, vol. 2 (1970), 143�178.
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Part III
Combinatoris of Foring Extensions





...the parts sing one after another in so-alledfugue (fuga) or onsequene (onsequenza), whihsome also all reditta. All mean the same thing:a ertain repetition of some notes or of an entiremelody ontained in one part by another part, afteran interval of time. The seond part sings the samenote values or di�erent ones, and the same inter-vals of whole tones, semitones, or similar ones.There are two type of fugues or onsequenesnamely strit and free.In free writing, the imitating voie dupliates theother in fugue or onsequene only up to a point;beyoind that point it is free to proeed indepen-dently. Gioseffo ZarlinoLe Istitutioni Harmonihe, 1558





20Properties of Foring Extensions
In this hapter we shall introdue some ombinatorial properties of foringnotions whih will aompany us throughout the remainder of this book. Fur-thermore, these properties will be the main tool in order to investigate variousombinatorial properties of generi models of ZFC.However, before we start with some de�nitions, let us modify our notationonerning names in the foring language: Let P be a foring notion and let
G be P-generi over some ground model V.
• Instead of anonial P-names for sets in V like ∅

˙
, 27
˙
, ω
˙
, et etera, we justwrite ∅, 27, ω, et etera.

• If f
˜
is a P-name for a funtion in V[G] with domain A ∈ V and a ∈ A,then we write

f
˜
(a) instead of f(a)

˜
.For example, if P = C and c

˙
is the anonial name for a Cohen real c ∈ ωω,then, for k ∈ ω, c

˙
(k) =

{
〈m
˙
, p〉 : p ∈ ⋃

n∈ω
nω ∧ k ∈ dom(p) ∧ p(k) = m

}denotes the anonial C-name for the integer c(k)�properly denoted by c(k)
˙
.Dominating, Splitting, Bounded, and Unbounded RealsFirst we reall some notions de�ned in Chapter 8: For two funtions f, g ∈ ωωwe say that g is dominated by f , denoted g <∗ f , if there is an n ∈ ω suhthat for all k ≥ n we have g(k) < f(k). For two sets x, y ∈ [ω]ω we say that xsplits y if y ∩ x as well as y \ x is in�nite.Now let V be any model of ZFC and let V[G] be a generi extension (i.e.,

G is P-generi over V with respet to some foring notion P). Let f ∈ ωω be afuntion in the model V[G]. Then f is alled a dominating real (over V) ifeah funtion g ∈ ωω ∩V is dominated by f , and f is alled an unboundedreal (overV) if it is not dominated by any funtion g ∈ ωω∩V. Furthermore,a set x ∈ [ω]ω in V[G] is alled a splitting real (over V) if it splits eah set



378 20 Properties of Foring Extensions
y ∈ [ω]ω in the ground model V. Notie that we identify funtions f ∈ ωωwith real numbers.Fat 20.1. If V[G] ontains a dominating real, then it also ontains a split-ting real.Proof. We an just follow the proof of Theorem 8.4: Whenever a funtion
f ∈ ωω belongs V[G], then also the set

σf =
⋃{[

f2n(0), f2n+1(0)
)
: n ∈ ω

}belongs to V[G], where [a, b) = {k ∈ ω : a ≤ k < b} and fn+1(0) = f
(
fn(0)

)with f0(0) := 0. Now let f ∈ ωω be a dominating real. Without loss ofgenerality we may assume that f is stritly inreasing and that f(0) > 0.Fix any x ∈ [ω]ω ∩V and let gx : ω → x be the (unique) stritly inreasingbijetion between ω and x. Sine f is dominating we have gx <∗ f , whihimplies that there is an n0 ∈ ω suh that for all k ≥ n0 we have gx(k) < f(k).For eah k ∈ ω we have k ≤ fk(0) as well as k ≤ gx(k). Moreover, for k ≥ n0we have
fk(0) ≤ gx

(
fk(0)

)
< f

(
fk(0)

)
= fk+1(0)and therefore gx(fk(0)) ∈

[
fk(0), fk+1(0)

). Thus, for all k ≥ n0 we have
gx
(
fk(0)

)
∈ σf i� k is even, whih shows that both x ∩ σf ∩ x and x \ σf arein�nite. Hene, sine x ∈ [ω]ω was arbitrary, σf is a splitting real. ⊣It is worth mentioning that the onverse of Fat 20.1 does not hold, i.e.,we annot onstrut a dominating real from a splitting real (f. Lemma 21.2and Lemma 21.3).A foring notion P is said to add dominating (unbounded, splitting) reals ifevery P-generi extension of V ontains a dominating (unbounded, splitting)real. More formally, let V � ZFC and let P ∈ V be a foring notion. Then wesay that

P adds dominating reals i� 0 P ∃f
˜
∈ ωω

˜
∀g ∈ ωω(g <∗ f

˜
) ,

P adds unbounded reals i� 0 P ∃f
˜
∈ ωω

˜
∀g ∈ ωω(f

˜
≮∗ g) ,and

P adds splitting reals i� 0 P ∃x
˜
⊆ ω ∀y ∈ [ω]ω

(
|y ∩ x

˜
| = |y \ x

˜
| = ω

)
.Notie that in this ontext, i.e., in statements being fored, ωω and [ω]ω standfor the anonial names for sets in the ground model, whereas for example ωω
˜is a P-name for the set ωω in the P-generi extension.A foring notion P is alled ωω-bounding if there are no unboundedreals in P-generi extensions. In other words, if P is ωω-bounding and G is

P-generi over V, then every funtion f ∈ ωω in V[G] is dominated by some



The Laver property and not adding Cohen reals 379funtion from the ground model V. Obviously, a foring notion whih addsa dominating real also adds unbounded reals and therefore annot be ωω-bounding, and by Fat 20.1, suh a foring notion also adds splitting reals.On the other hand, none of these impliations is reversible. An example of aforing notion whih is ωω-bounding but adds splitting reals is Silver foring(investigated in Chapter 22), and Cohen foring, disussed in the next hapter,is an example of a foring notion whih adds unbounded and splitting realsbut does not add dominating reals. Furthermore, Miller foring (disussedin Chapter 23) adds unbounded reals but does not add splitting reals, andMathias foring (disussed in Chapter 24) adds dominating reals but does notadd Cohen reals.The Laver Property and Not Adding Cohen RealsIn the following hapters we shall investigate di�erent foring notions likeCohen foring, Silver foring, Mathias foring, et etera. In fat, we shallinvestigate what kind of new reals (e.g., dominating reals or Cohen reals) areadded by (an iteration of) a given foring notion. In partiular, we have todeide whether an iteration of a given foring notion adds Cohen reals. Ourmain tool to solve this problem will be the following ombinatorial property.Laver Property: Let F be the set of all funtions S : ω → fin(ω) suhthat for every n ∈ ω, |S(n)| ≤ 2n. A foring notion P has the Laverproperty if and only if for every funtion f ∈ ωω ∩V in the groundmodel and every P-name g
˜
for a funtion in ωω suh that 0 P ∀n ∈

ω
(
g
˜
(n) ≤ f(n)

), we have 0 P ∃S ∈ F ∩V ∀n ∈ ω
(
g
˜
(n) ∈ S(n)

).Roughly speaking, if a foring notion has the Laver property, then for everyfuntion g ∈ ωω in the generi extension whih is bounded by a funtion fromthe ground model, and for every n ∈ ω, the value g(n) belongs to some �niteset of size 2n and the sequene of these �nite sets is in the ground model.Now we show that a foring notion whih has the Laver property does notadd Cohen reals.Proposition 20.2. If the foring notion P has the Laver property, then Pdoes not add Cohen reals.Proof. Suppose that P has the Laver property. Let {In : n ∈ ω} be a partitionof ω (in the ground modelV) suh that for all n ∈ ω, |In| = 2n andmax(In) <
min(In+1). Let h

˜
be a P-name for an arbitrary element of ω2, i.e., 0 P h

˜
∈ ω2

˜
.We show that h

˜
is not the name for a Cohen real, i.e., h

˜
is not the name for areal whih orresponds to a C-generi �lter over V, where C =

(⋃
n∈ω

n2, ⊆
).For every n ∈ ω, let H

˜
(n) := h

˜
|In . Then H

˜
(n) : In → 2, and sine

|In| = 2n, H
˜
(n) amounts to an element of 2n2. Thus, we an enode H

˜
(n)



380 20 Properties of Foring Extensionsby a P-name for an integer in 22n; let η(H
˜
(n)

) be that ode and let g
˜
(n) :=

η
(
H
˜
(n)

). Thus, 0 P ∀n ∈ ω
(
g
˜
(n) ≤ 22n

), and sine P has the Laver property,
0 P ∃S ∈ F ∩V ∀n ∈ ω

(
g
˜
(n) ∈ S(n)

). In the ground model V, let p0 be a P-ondition suh that for some S ∈ F ∩V we have p0 P ∀n ∈ ω
(
g
˜
(n) ∈ S(n)

).Further, let
D =

{
s ∈

⋃

n∈ω

n2 : ∃k
(
Ik ⊆ dom(s) ∧ η(s|Ik ) /∈ S(k)

)}
.Then D is an open dense subset of ⋃

n∈ω
n2. Indeed, for any m ∈ ω andany t ∈ m2 there exists k > m suh that Ik ∩ dom(t) = ∅, and we �nd an

s ∈ ⋃
n∈ω

n2 suh that t ⊆ s, Ik ⊆ dom(s), and η(s|Ik ) /∈ S(k)�here we usethat for any positive integer k, |S(k)| ≤ 2k < 22k =
∣∣Ik2

∣∣.Now, for every n ∈ ω de�ne An =
{
x ∈ ω2 : η(x|In ) ∈ S(n)

}
⊆ ω2 and let

A =
⋂
n∈ω An. Sine p0 P ∀n ∈ ω

(
g
˜
(n) ∈ S(n)

), we have p0 P h
˜
∈ A, andonsequently we get that p0 P ∀k ∈ ω

(
h
˜
|k /∈ D

). Hene, h
˜
is not a P-namefor a Cohen real over V, whih ompletes the proof. ⊣So, we know that if a foring P has the Laver property, then foring with

P does not add Cohen reals; but what an we say about produts or iterationsof P ? On the one hand, it is possible that P×P adds Cohen reals, even though
P has the Laver property (see for example Chapter 24). On the other hand,in the next setion we shall see that the Laver property is preserved underountable support iteration of proper foring notions. More preisely, if P is aforing notion whih is proper (see below) and has the Laver property, thenany ountable support iteration of P has the Laver property, and thereforedoes not add Cohen reals.Proper Foring Notions and Preservation TheoremsThe Notion of PropernessBy Proposition 18.8 we know that �nite support iterations of  foringnotions satisfy . In other words,  is preserved under �nite support iter-ation of  foring notions. Below, we shall present a generalisation of thatresult, but before we have to introdue some preliminary de�nitions: For everyin�nite regular ardinal χ let

Hχ =
{
x ∈ Vχ : |TC(x)| < χ

}
.For example the sets in Hω are the hereditarily �nite sets and the sets in

H(ω1) are the hereditarily ountable sets. Notie that eah Hχ is transitiveand that x ∈ Hχ i� |TC(x)| < χ, i.e., Hχ ontains all sets whih are hered-itarily of ardinality <χ. It is worth mentioning that for every regular un-ountable ardinal χ, Hχ is a model of ZFC minus the Axiom of Power Set(f. Chapter 15 |Related Result 84).



Proper foring notions and preservation theorems 381For the following disussion, let χ be a �large enough�regular ardinal,where �large enough�means that for all foring notions P = (P,≤) we shallonsider in the forthoming hapters we have P(P ) ∈ Hχ, i.e., the power setof P is hereditarily of size <χ. If we assume that GCH holds in the groundmodel, then χ = ω3 would be su�ient, but to be on the safe side we let
χ = i+

ω ,where the so-alled beth funtion iα is de�ned by indution on α ∈ Ω, stipu-lating i0 := ω, iα+1 := 2iα , and for limit ordinals α, iα :=
⋃{

iβ : β ∈ α
}.Let N = (N,∈) be an elementary submodel of (Hχ,∈), i.e., (N,∈) ≺

(Hχ,∈). Furthermore, let P = (P,≤) be a foring notion suh that (P,≤) ∈ N.Sine N is an elementary submodel of (Hχ,∈), for all p, q ∈ P ∩ N we have
N � p ⊥ q implies V � p ⊥ q, i.e., if p and q are inompatible in N, thenthey are also inompatible in the ground model V. We say that G ⊆ P is
N-generi for P if G has the following property.Whenever D ∈ N and N � “D ⊆ P is an open dense subset of P � ,then G ∩N ∩D 6= ∅.Notie that G is N-generi i� G ∩ N is N-generi. By Fat 14.6, we anreplae �open dense� for example by �maximal anti-hain�. Furthermore, wesay that a ondition q ∈ P , whih is not neessarily in N , is N-generi if

V � q P “G
˙
is N-generi� ,where G

˙
is the anonial P-name for the P-generi �lter over the ground model

V. Notie that if q is N-generi and q′ ≥ q, then q′ is N-generi too.Now, a foring notion P = (P,≤) is alled proper, if for all ountableelementary submodels N = (N,∈) ≺ (Hχ,∈) whih ontain P, and for allonditions p ∈ P ∩ N , there exists a ondition q ≥ p (in V) whih is N-generi.As a �rst example let us show that any foring notion P = (P,≤) whihsatis�es  is proper: Firstly, for any ountable set A ∈ N we have A ⊆ N .For this, notie that sine (N,∈) ≺ (Hχ,∈), A must be the range of a funtion
f : ω → ⋃

N whih belongs to N, and sine for all n ∈ ω, n ∈ N , we alsohave f(n) ∈ N for all n ∈ ω, whih shows that A ⊆ N . Now, let A ∈ N be amaximal anti-hain in P . Then, sine P satis�es , A is ountable and wehave A ⊆ N . Further, 0 P A ∩ G
˙

6= ∅, and therefore, 0 P A ∩ N ∩ G
˙

=
A ∩G

˙
6= ∅.As a seond example let us show that any foring notion P(P,≤) whih is

σ-losed is proper: Sine the model N is ountable, there are just ountablymany open dense subsets of P whih belong to N, say {Dn : n ∈ ω}. Let
p ∈ P ∩ N and let 〈qn : n ∈ ω〉 be suh that q0 ≥ p and for eah n ∈ ω,
qn+1 ≥ qn and qn ∈ Dn. Now, sine P is σ-losed, we �nd a ondition q suhthat for all n ∈ ω, q ≥ qn. Obviously, q ≥ p and q is N-generi.



382 20 Properties of Foring ExtensionsLet us �nish this setion by introduing a property of foring notionswhih is slightly stronger than properness, but whih is often easier to verifythan properness (e.g., for the foring notions introdued in the forthominghapters).Axiom A : A foring notion P = (P,≤) is said to satisfy Axiom A ifthere exists a sequene {≤n: n ∈ ω} of orderings on P (not neessarilytransitive) whih has the following properties:(1) For all p, q ∈ P , if q ≤n+1 p then q ≤n p and q ≤ p.(2) If 〈pn ∈ P : n ∈ ω〉 is a sequene of onditions suh that pn ≤n
pn+1, then there exists a q ∈ P suh that for all n ∈ ω, pn ≤n q.(3) If A ⊆ P is an anti-hain, then for eah p ∈ P and every n ∈ ω thereis a q ∈ P suh that p ≤n q and {r ∈ A : r and q are ompatible}is ountable.Examples of foring notions satisfying Axiom A are foring notions whih are

σ-losed or satisfy . Furthermore, one an show that every foring notionwhih satis�es Axiom A is proper, but not vie versa (for a proof and a oun-terexample see Baumgartner [4℄, Theorem 2.4 and Setion 3 respetively).Preservation Theorems for Proper Foring NotionsBelow, we state without proofs some preservation theorems for ountable sup-port iteration of proper foring notions. These preservation theorems will beruial in the following hapters, where we onsider ountable support itera-tions of length ω2 of various proper foring notions� usually starting with amodel in whih CH holds.The �rst of these preservation theorems states that proper foring notionsdo not ollapse ω1 and that properness is preserved under ountable supportiteration of proper foring notions (for proofs see Goldstern [6, Corollary 3.14℄and Shelah [9, III. �3℄).Theorem 20.3. (a) If P is proper and cf(δ) > ω, then 0 P cf(δ) > ω. Inpartiular, ω1 is not ollapsed.(b) If Pα is a ountable support iteration of 〈
Q
˜
β : β ∈ α

〉, where for eah
β ∈ α we have 0β β “Q

˜
β is proper�, then Pα is proper.The following lemma is in fat just a onsequene of Theorem 20.3.Lemma 20.4. Let Pα be a ountable support iteration of 〈Q

˜
β : β ∈ α

〉, wherefor eah β ∈ α we have 0β β “Q
˜
β is a proper foring notion of size ≤c�. IfCH holds in the ground model and α ≤ ω2, then for all β ∈ α, 0β β CH.



Proper foring notions and preservation theorems 383Sine, by Lemma 18.9, no new reals appear at the limit stage ω2 one anprove the following theorem� a result whih we shall use quite often in theforthoming hapters.Theorem 20.5. Let Pω2 be a ountable support iteration of 〈
Q
˜
β : β ∈ ω2

〉,where for eah β ∈ ω2 we have
0β β “Q

˜
β is a proper foring notion of size ≤c whih adds new reals� .Further, let V be a model of ZFC + CH and let G be Pω2-generi over V.Then we have(a) V[G] � c = ω2, and(b) for every set of reals F ⊆ [ω]ω ∩V[G] of size ≤ω1 there is a β ∈ ω2 suhthat F ⊆ V[G|β ].Now, let us say a few words onerning preservation of the Laver propertyand of ωω-boundedness: It an be shown that a ountable support iteration ofproper ωω-bounding foring notions is ωω-bounding (for a proof see Setion 5and Appliation 1 of Goldstern [6℄).Theorem 20.6. If Pα is a ountable support iteration of 〈Q

˜
β : β ∈ α

〉, wherefor eah β ∈ α we have 0β β “Q
˜
β is proper and ωω-bounding�, then Pα is

ωω-bounding.Further, one an show that the Laver property is preserved under ountablesupport iteration of proper foring notions whih have the Laver property (fora proof see Setion 5 and Appliation 4 of Goldstern [6℄).Theorem 20.7. If Pα is a ountable support iteration of 〈Q
˜
β : β ∈ α

〉, wherefor eah β ∈ α we have 0β β “Q
˜
β is proper and has the Laver property�,then Pα has the Laver property.Another property whih is preserved under ountable support iteration ofproper foring notions is preservation of P -points: A foring notion P is saidto preserve P -points if for every P -point U ⊆ [ω]ω,

0 P “U generates an ultra�lter over ω � ,i.e., for every set x ∈ [ω]ω in the P-generi extension there exists a y ∈ Usuh that either y ⊆ x or y ⊆ ω \ x. In partiular, if the foring notion P isproper and CH holds in the ground model, then the ultra�lter in the P-generiextension whih is generated by the P -point U is again a P -point.One an show that preservation of P -points is preserved under ountablesupport iteration of proper foring notions (for a proof see Blass and Shelah [5℄or Bartoszy«ski and Judah [2, Theorem 6.2.6℄).Theorem 20.8. If Pα is a ountable support iteration of 〈Q
˜
β : β ∈ α

〉, wherefor eah β ∈ α we have 0β β “Q
˜
β is proper and preserves P -points�, then

Pα preserves P -points.



384 20 Properties of Foring ExtensionsThere are many more preservation theorems for ountable support itera-tion of proper foring notions. However, what we presented here is all that weshall use in the forthoming hapters.NotesThe notion of properness, whih is slightly more general than Axiom A (intro-dued by Baumgartner [3℄), was disovered and investigated by Shelah [8, 9℄, whorealised that properness is a property that is preserved under ountable supportiteration and that allows to prove several preservation theorems (see for exampleShelah [9, VI. ��1�2℄, where one an �nd also proofs of the preservation theoremsgiven above). For a brief introdution to proper foring we refer the reader to Gold-stern [6℄ and for appliations of the Proper Foring Axiom, whih is a generalisationof Martin's Axiom, see Baumgartner [4℄.Related Results105. Reals of minimal degree of onstrutibility. Let P = (P,≤) be a foring notionand let g be a real in some P-generi extension of V. Then g is said to be ofminimal degree of onstrutability, or just minimal, if g does not belong to Vand for every real f in V[g] we have either f ∈ V or g ∈ V[f ], where V[f ]is the smallest model of ZFC ontaining f and V. In the latter ase we saythat f reonstruts g. For example no Cohen real is minimal. Indeed, if c ∈ ωωis a Cohen real over V, then the real c′ ∈ ωω ∩ V[c] de�ned by stipulating
c′(n) := c(2n) (for all n ∈ ω) is also a Cohen real over V. Moreover, c is even
C-generi over V[c′], whih implies that c does not belong to V[c′].106. Alternative de�nitions of properness. The notion of properness an also bede�ned in terms of games or with stationary sets (see for example Jeh [7,Part III℄ or Baumgartner [4, Setion 2℄).107. Preservation of ultra�lters. In general, a foring notion whih adds reals doesnot preserve all ultra�lters. More preisely, for any foring notion whih adds anew real, say r, to the ground model V, there exists an ultra�lter U in V whihdoes not generate an ultra�lter in V[r]. (see Bartoszy«ski, Goldstern, Judah,and Shelah [1℄ or Bartoszy«ski and Judah [2, Theorem 6.2.2℄).Further, one an show that any foring notion whih adds Cohen, dominating,or random reals, does not preserve P -points (see Bartoszy«ski and Judah [2,Theorem 7.2.22℄). Referenes1. Tomek Bartoszy«ski, Martin Goldstern, Haim Judah, and SaharonShelah, All meager �lters may be null , Proeedings of the Amerian Math-ematial Soiety, vol. 117 (1993), 515�521.2. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the struture ofthe real line, A.K.Peters, Wellesley, 1995.
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21Cohen Foring revisited
Properties of Cohen ForingSine Cohen foring is ountable, it satis�es , hene, Cohen foring isproper. Furthermore, sine foring notions with the Laver property do notadd Cohen reals, Cohen foring obviously does not have the Laver property.Not so obvious are the fats that Cohen foring adds unbounded andsplitting, but no dominating reals.Cohen Foring adds Unbounded but no Dominating RealsLemma 21.1. Cohen foring adds unbounded reals.Proof. Consider Cohen foring C =

(⋃
i∈ω

iω, ⊆
), whih is � as we have seenin Chapter 18� equivalent to the foring notion (⋃

i∈ω
i2, ⊆

). Let c ∈ ωω be
C-generi over some ground model V and let c

˙
be the anonial C-name for

c. We show that the funtion c is not dominated by any funtion g ∈ ωω ∩V.Firstly notie that for every C-ondition p we have
p C c

˙
|dom(p) = p

˙
.Let g ∈ ωω be any funtion in the ground model V (i.e., g ∈ ωω ∩V) and let

n ∈ ω. Then there exist k ≥ n and a C-ondition q ≥ p suh that k ∈ dom(q)and q(k) > g(k). This implies that for every n ∈ ω, the set of C-onditions qsuh that
q C ∃k ≥ n

(
g(k) < c

˙
(k)

)is open dense in ⋃
i∈ω

iω. Hene, there is no C-ondition whih fores that c isdominated by some funtion g ∈ ω2∩V. Consequently, c is not dominated byany funtion from the ground model, or in other words, the funtion c ∈ ωωis unbounded. ⊣



388 21 Cohen Foring revisitedLemma 21.2. Cohen foring does not add dominating reals.Proof. Consider Cohen foring C =
(
Fn(ω, 2), ⊆

). Let c ∈ ω2 be C-generiover some ground model V. Further, let f ∈ ωω be an arbitrary but �xedfuntion in V[c] and let f
˜
be a C-name for f . In order to show that f is notdominating we have to �nd a funtion g ∈ ωω ∩V suh that for every n ∈ ωthere is a k ≥ n suh that g(k) ≥ f(k). Let {pk : k ∈ ω} be an enumerationof Fn(ω, 2), i.e., {pk : k ∈ ω} = Fn(ω, 2). For every k ∈ ω de�ne

g(k) = min
{
n : ∃q ≥ pk

(
q C f

˜
(k) = n

)}
.For every C-ondition p and every n ∈ ω there is a k ≥ n suh that pk ≥ p,and we �nd a q ≥ pk suh that q C f

˜
(k) = g(k). Consequently, for every

n ∈ ω, the set of C-onditions q suh that
q C ∃k ≥ n

(
f
˜
(k) = g(k)

)is open dense in Fn(ω, 2). Hene, g ∈ ωω ∩V is not dominated by f ∈ V[c],and sine f was arbitrary, this shows that there are no dominating funtionsin V[c], or in other words, Cohen foring does not add dominating reals. ⊣Cohen Foring adds Splitting RealsLemma 21.3. Cohen foring adds splitting reals.Proof. Consider Cohen foring C =
(⋃

n∈ω
i2, ⊆

). We show that any real cwhih is C-generi over some ground model V generates a splitting real: Let
σc :=

{
k ∈ ω : c(k) = 1

} and let σc
˙
be its anonial C-name. Then for anyin�nite set x ∈ [ω]ω ∩V and any n ∈ ω, the set of C-onditions p suh that

p C |x ∩ σc
˙
| > n ∧ |x \ σc

˙
| > nis open dense, and therefore, σc splits every real in the ground model V, or inother words, σc is a splitting real. ⊣Cohen Reals and the Covering Number of Meagre SetsBelow, we shall give a topologial haraterisation of Cohen reals, but beforewe introdue a topology on ωω and show how to enode �basi� meagre setsby reals.For eah �nite sequene s = 〈n0, . . . , nk−1〉 of natural numbers, i.e., s ∈

seq(ω), de�ne the basi open set
Os = {f ∈ ωω : f |k = s} .A set A ⊆ ωω is said to be open (in ωω) if there is a family S ⊆ seq(ω)of �nite sequenes in ω suh that A =

⋃{Os : s ∈ S }. In partiular, ∅ as



Cohen reals and the overing number of meagre sets 389well as ωω are open. Notie that a set A ⊆ ωω is open i� for all x ∈ A thereexists an s ∈ seq(ω) suh that x ∈ Os ⊆ A. Furthermore, a set A ⊆ ωω isalled losed (in ωω) if ωω \A is open. Evidently, arbitrary unions and �niteintersetions of open sets are open; or equivalently, arbitrary intersetions and�nite unions of losed sets are losed. On the other hand, an intersetion ofountably many open sets is not neessarily open, and a union of ountablymany losed sets is not neessarily losed (see below). Now, intersetions ofountably many open sets are alled Gδ sets, and unions of ountably manylosed sets are alled Fσ sets. Notie that every open (losed) set is a Gδ set(Fσ set), and that by De Morgan laws, eah Fσ set is the omplement of a
Gδ set and vie versa. For example the set C0 ⊆ ωω of eventually onstantfuntions (i.e., f ∈ C0 i� there is an n ∈ ω suh that f |ω\n is onstant) is an
Fσ set whih is neither losed nor open.A subset of ωω is dense (in ωω) if it meets every non-empty open subsetof ωω. For example C0 is dense in ωω. Notie that every dense subset of ωωmust be in�nite. On the other hand, A ⊆ ωω is alled nowhere dense if
ωω \ A ontains an open dense set. Notie that every nowhere dense set isontained in a losed nowhere dense set (i.e., the losure of a nowhere denseset is nowhere dense).Now, a subset of ωω is alled meagre if it is ontained in the union ofountably many nowhere dense sets. For example C0 is meagre. Sine thelosure of a nowhere dense set is nowhere dense, we get that every meagre setis ontained in some meagre Fσ set, and that the omplement of a meagre setontains a o-meagre Gδ set. Moreover, we have the following result.Theorem 21.4 (Baire Category Theorem). The intersetion of ount-ably many open dense sets is dense. In partiular, the omplement of meagreset is always dense.Proof. Let 〈Dn : n ∈ ω be a sequene of open dense subsets of ωω. We haveto show that D =

⋂
n∈ωDn is dense, i.e., we have to show that for eah basiopen set Os, D ∩ Os 6= ∅. Let Os0 be an arbitrary but �xed basi open set.By indution on n ∈ ω we onstrut a sequene t0 ⊆ t1 ⊆ . . . of elementsof seq(ω) suh that ⋂n∈ω Otn ⊆ D ∩ Os0 . In fat, we just have to make surethat ⋃n∈ω tn ∈ ωω and that for all n ∈ ω, Otn ⊆ Dn. Sine D0 is open dense,there exists a t0 ∈ seq(ω) suh that s0 ⊆ t0 and Ot0 ⊆ (D0 ∩ Os0). Assumethat tn ∈ seq(ω) is already onstruted for some n ∈ ω. Then, sine Dn+1is open dense, there is a tn+1 ∈ seq(ω) suh that Otn+1 ⊆ (Dn+1 ∩ Otn) and

|tn+1| ≥ n + 1. Now, by onstrution, the sequene t0 ⊆ t1 ⊆ . . . has therequired properties. ⊣By de�nition, subsets of meagre sets as well as ountable unions of meagresets are meagre. Thus, the olletion of meagre subsets of ωω, denoted by M ,is an ideal on P
(
ωω

). By the Baire Category Theorem 21.4, ωω /∈ M butfor every f ∈ ωω we have {f} ∈ ωω, and therefore the set ωω an be overedby c meagre sets. This observation leads to the following ardinal number.



390 21 Cohen Foring revisitedDefinition. The overing number of M , denoted ov(M ), is the smallestnumber of sets in M with union ωω; more formallyov(M ) = min
{
|C | : C ⊆ M ∧⋃

C = ωω
}
.Sine ountable unions of meagre sets are meagre, and sine we an over ωωby c meagre sets, we obviously have ω1 ≤ ov(M ) ≤ c. Moreover, we anshow slightly more:Theorem 21.5. p ≤ ov(M ).Proof. Let {Aα ⊆ ωω : α ∈ κ < p} be any in�nite family of ardinality κ < pof meagre subsets of ωω. We have to show that ⋃α∈κAα 6= ωω, or equivalently,we have to show that for any family D = {Dα : α ∈ κ < p} of open densesubsets of ωω we have ⋂

D 6= ∅. Notie the similarity with the proof of theBaire Category Theorem 21.4. Let ν : seq(ω) → ω be a bijetion. Forevery s ∈ seq(ω) and every α ∈ κ, let
Is,α =

{
t ∈ seq(ω) : s ⊆ t ∧Ot ⊆ Dα

}
.Sine Dα is open dense, the set ys,α :=

{
ν(t) : t ∈ Is,α

} is an in�nite subsetof ω.For the moment, let s be an arbitrary but �xed element of seq(ω). Thenfor any �nitely many ordinals α0, . . . , αk−1 in κ we get that ⋂i∈k ys,αi
∈ [ω]ω.Consider the family Fs = {ys,α : α ∈ κ} ⊆ [ω]ω. Obviously, Fs has the strong�nite intersetion property, and sine κ < p, Fs has a pseudo-intersetion, say

xs. Thus, for every α ∈ κ there exist a k ∈ ω suh that xs \ k ⊆ ys,α.Now, for eah α ∈ κ de�ne hα : seq(ω) → ω by stipulating hα(s) :=
min{k ∈ ω : xs \ k ⊆ ys,α}, and let gα ∈ ωω be suh that for all n ∈ ω,
gα(n) := hα

(
ν−1(n)

). Sine κ < p and p ≤ b, there is a funtion f ∈ ωωwhih dominates eah gα. By onstrution,
U =

⋃

s∈seq(ω)

{
Ot ⊆ ωω : ν(t) ∈ xs \ f

(
ν(s)

)}is an open dense subset of ωω whih has the property that for eah α ∈ κ thereis a �nite set Eα ∈
[
seq(ω)

]<ω suh that UEα
⊆ Dα, where for E ⊆ seq(ω),

UE =
⋃

s∈seq(ω)

{
Ot ⊆ ωω : ν(t) ∈ xs \ f

(
ν(s)

)
∧ t /∈ E

}
.Notie that for eah E ∈

[
seq(ω)

]<ω, UE is open dense, and sine there areonly �nitely many �nite subsets of seq(ω), by the Baire Category Theo-rem 21.4 we get that
T =

⋂{
UE : E ∈ [seq(ω)]<ω

}is dense, and sine T is ontained in eah Dα we have T ⊆ ⋂
α∈κDα. ⊣



Cohen reals and the overing number of meagre sets 391With a produt of Cohen foring we shall onstrut a model in whih
p < ov(M ) (see Corollary 21.11). The ruial point in the onstrutionwill be the fat that Cohen reals overV are not ontained in any meagre Fσ setwhih an be enoded (explained later) by a real r ∈ ωω whih belongs to theground model V. For this, we have to show the relationship between Cohenreals and meagre sets and have to explain how to enode meagre Fσ sets byreal numbers; but �rst we give the relationship between Cohen reals and opendense subsets of ωω.Consider Cohen foring C =

(⋃
n∈ω

nω, ⊆
). To every C-ondition s weassoiate the open set Os ⊆ ωω. Similarly, to every dense set D ⊆ ⋃

n∈ω
nωwe assoiate the set

O(D) =
⋃{

Os ⊆ ωω : s ∈ D
}
,whih is an open dense subset of ωω. On the other hand, if O ⊆ ωω is an opendense subset of ωω, then the set

D(O) =
{
s ∈

⋃

n∈ω

nω : Os ⊆ O
}is an open dense subset of ⋃

n∈ω
nω. Notie that for every open dense set

O ⊆ ωω there is a dense set D ⊆ ⋃
n∈ω

nω suh that O = O(D). Hene, if
c ∈ ωω is a Cohen real over V, then in V[c] we have

V[c] � c ∈
⋂{

O(D) : D is dense in ⋃

n∈ω

nω ∧D ∈ V
}
.Considering the dense set D ⊆ ⋃

n∈ω
nω as the ode for the open dense set

O(D) ⊆ ωω, we get the followingFat 21.6. A real c ∈ ωω is a Cohen real over V if and only if c is ontainedin every open dense subset of ωω whose ode belongs to V.In order to make the notion of odes more preise, we show how one anenode meagre Fσ sets by real numbers r ∈ ωω. For this, take two bijetions
h1 : ω → seq(ω) and h2 : ω × ω → ω, and for r ∈ ωω let

ηr : ω × ω −→ seq(ω)

〈n,m〉 7−→ h1
(
r
(
h2(n,m)

))
.For every Fσ set A =

⋃
m∈ω

⋂
n∈ω

ωω \ Osn,m
, there is a real r ∈ ωω, alledode of A, suh that for all n,m ∈ ω we have ηr(n,m) = sn,m. On the otherhand, for every real r ∈ ωω let Ar ⊆ ωω be de�ned by

Ar =
{
f ∈ ωω : ∃m ∈ ω ∀n ∈ ω

(
ηr(n,m) * f

)}
.As a ountable union of losed sets, Ar is an Fσ set. Thus, every real r ∈ ωωenodes an Fσ set, and vie versa, every Fσ set an be enoded by a real
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r ∈ ωω. Now, an Fσ set A =

⋃
m∈ω

⋂
n∈ω

ωω \Osn,m
is meagre i� ⋃

n∈ω Osn,mis dense for eah m ∈ ω. So, for r ∈ ωω we have
Ar is meagre i� ∀s ∈ seq(ω)∀m ∈ ω ∃n ∈ ω

(
s ⊆ ηr(n,m) ∨ ηr(n,m) ⊆ s

)
.The way we have de�ned Ar, it does not only depend on the real r, butalso on the model in whih we onstrut Ar from r (notie that this fat alsoapplies to the sets Os). So, in order to distinguish the sets Ar onstruted indi�erent models, for models V of ZFC and r ∈ ωω ∩V we write

AV

r =
{
f ∈ ωω ∩V : ∃m ∈ ω ∀n ∈ ω

(
ηr(n,m) * f

)}
.By Fat 21.6 we get that if c ∈ ωω is a Cohen real over V, then c is notontained in any meagre Fσ set AV

r with r ∈ ωω ∩V. Now, let V and V′ betwo transitive models of ZFC. Then, for every real r ∈ ωω whih belongs toboth models V and V′ we have
V � AV

r is meagre i� V′
� AV

′

r is meagre .As a onsequene we get the following haraterisation of Cohen reals:Proposition 21.7. Let V be a model of ZFC, let P be a foring notion in
V, and let G be P-generi over V. Then the real c ∈ ωω ∩V[G] is a Cohenreal over V if and only if c does not belong to any meagre Fσ set AV[G]

r withode r in V.Proof. (⇒) If c ∈ ωω ∩V[G] belongs to some meagre Fσ set AV[G]
r with ode

r in V, then c ∈ ⋃
m∈ω

⋂
n∈ω

ωω \ Oηr(n,m). Thus, there is an m0 ∈ ω suhthat c does not belong to the open dense set ⋃n∈ω Oηr(n,m0). Now, onsiderCohen foring C =
(⋃

i∈ω
iω, ⊆

) and let D := {ηr(n,m0) : n ∈ ω}. Then D isan open dense subset of ⋃i∈ω
iω whih belongs to the model V. On the otherhand we have {c|n : n ∈ ω} ∩D = ∅ whih shows that c is not a Cohen realover V.(⇐) Firstly, reall that every meagre set is ontained in some meagre Fσ setand that AV

r is meagre i� A
V[G]
r is meagre, and seondly, notie that AV

r ⊆
A

V[G]
r . Hene, a real c ∈ ωω ∩ V[G] whih does not belong to any meagre

Fσ set AV[G]
r with ode r in V does belong to every open dense subset of ωωwhose ode belongs to V, and therefore, by Fat 21.6, c is a Cohen real over

V. ⊣Corollary 21.8. Let P be a foring notion whih does not add Cohen realsand let G be P-generi over V, where V is a model of ZFC + CH. Then
V[G] � ov(M ) = ω1, in partiular, V[G] � p = ω1.Proof. In V, let C = {r ∈ ωω : Ar is meagre}. Then |C| = ω1 and weobviously have ⋃

r∈C Ar = ωω. In other words, the set of meagre sets {Ar :
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r ∈ C} is of ardinality ω1 whih overs ωω. Now, sine P does not add Cohenreals, inV[G] we have ωω\⋃r∈C A

V[G]
r = ∅. Hene,V[G] �

⋃
r∈C A

V[G]
r = ωω,and sine ov(M ) is unountable we get V[G] � ov(M ) = ω1. In partiular,by Theorem 21.5, V[G] � p = ω1. ⊣We have seen that ov(M ) ≤ c and by Theorem 21.5 we know that

p ≤ ov(M ). So, ov(M ) is an unountable ardinal number whih is lessthan or equal to c. Below, we shall ompare the overing number ov(M )with other ardinal harateristis of the ontinuum and give a model of ZFCin whih p < ov(M ).A Model in whih a < d = r = ov(M )The following lemma will be ruial in our proof that ω1 < r = ov(M ) = c isonsistent with ZFC (f. Lemma 18.1 and Chapter 18 |Related Result 97).Lemma 21.9. Let α be an ordinal number, let Cα+1 be the �nite supportprodut of α + 1 opies of Cohen foring C =
(
Fn(ω, 2), ⊆

), and let Gbe Cα+1-generi over some model V of ZFC. Then G(α) is C-generi over
V[G|α], in partiular, ⋃G(α) is a Cohen real over V[G|α].Proof. Firstly notie that sine Fn(ω, 2) ontains only �nite sets, for all tran-sitive models V′,V′′ of ZFC we have Fn(ω, 2)V′ = Fn(ω, 2)V

′′ , i.e., Fn(ω, 2) isthe same in all transitive models of ZFC, and onsequently we get CV
′

= CV
′′ .In partiular, CV[G|α] = CV.To simplify the notation, let us work with the foring notion Cα =

(
Fn(ω×

α, 2), ⊆
) instead of Cα (reall that by Proposition 18.3, Cα ≈ Cα). Now,in the model V[G], �x an arbitrary dense set D ⊆ Fn(ω, 2) and let D

˜
be a

Cα-name for D. Further, let p0 ∈ G|α be suh that
p0 C “D˜

is dense in Fn(ω, 2)� ,and let
E =

{
〈q0, q1〉 ∈ Fn(ω × α, 2)× Fn(ω, 2) : q0 ≥ p0 ∧ q0 C q1

˙
∈ D

˜
}
.We leave it as an exerise to the reader to show that E, whih is a subset of

Fn(ω × α, 2) × Fn(ω, 2), is dense above 〈p0, ∅〉. Thus, sine 〈p0, ∅〉 ∈
(
G|α ×

G(α)
), there is some 〈q0, q1〉 ∈ (

G|α×G(α
)
∩E. So, q0 C q1

˙
∈ D

˜
where q0 ∈

G|α, and sine q1 ∈ G(α) we get that q1 ∈ D whih shows that G(α)∩D 6= ∅.Sine D ⊆ Fn(ω, 2) was hosen arbitrarily, we �nally get that G(α) is C-generi over V[G|α], or in other words, ⋃G(α) is a Cohen real over V[G|α].
⊣Proposition 21.10. ω1 < d = r = ov(M ) = c is onsistent with ZFC.



394 21 Cohen Foring revisitedProof. Let V be a model of ZFC + CH, let κ ≥ ω2 be a regular ardinal,and let G be Cκ-generi over V. Sine κ is regular and by Proposition 18.3
CCκ ≈ Cκ, by Theorem 14.21 we have V[G] � c = κ. Thus, it remains toshow that V[G] is a model in whih d = r = ov(M ) = c.By Lemma 18.9, for every real x in V[G] there is an αx ∈ κ suh that
x ∈ V[G|αx

]. Moreover, sine κ is regular, for every set of reals X ∈ V[G]with |X | < κ we get that ⋃{αx : x ∈ X} ∈ κ.Let E ,C ⊆ ωω ∩ V[G] and F ⊆ [ω]ω ∩ V[G] be three families in V[G],eah of ardinality stritly less than κ. Then there is an ordinal γ ∈ κ suhthat all three families E , C , and F , belong to V[G|γ ].Sine Cohen foring adds splitting reals (by Lemma 21.3) and sine G(γ)is C-generi overV[G|γ ] (by Lemma 21.9), in V[G|γ+1] there is a real s ∈ [ω]ωwhih is a splitting real over V[G|γ ]. Hene, the family F , whih belongs to
V[G|γ ], is not a reaping family, and sine F was arbitrary, we must have
V[G] � r = c. Similarly, sine Cohen foring adds unbounded reals (byLemma 21.1), in V[G|γ+1] there is a funtion f ∈ ωω whih is unboundedover V[G|γ ]. Hene, the family E , whih belongs to V[G|γ ], is not a dominat-ing family, and sine E was arbitrary, we must have V[G] � d = c.Assume now that C is a set of odes of meagre Fσ sets, i.e., for every r ∈ C ,
A

V[G]
r ⊆ ωω is a meagre Fσ set. Again, sine G(γ) is C-generi over V[G|γ ],⋃
G(γ) ∈ ⋂

r∈C

(
ω \AV[G|γ ]

). Hene, in V[G] we get ⋃r∈C
AV[G] 6= ωω, andsine C was arbitrary, we must have V[G] � ov(M ) = c. ⊣As an immediate onsequene of Proposition 18.5 and Proposition 21.10(using the fat that Cκ ≈ Cκ), we get the following onsisteny result.Corollary 21.11. ω1 = a < d = r = ov(M ) = c is onsistent with ZFC.In partiular, sine p ≤ a, we get that p < ov(M ) is onsistent with ZFC.A Model in whih s = b < dThe idea is to start with a modelV in whih we have ω1 < p = c (in partiular,

V � s = b = d = c), and then add ω1 Cohen reals to V. It is not hard toverify that in the resulting model we have ω1 = s = b. Slightly more di�ultto prove is the fat that we still have d = c, whih is a onsequene of thefollowing result.Lemma 21.12. Let P = (P,≤) be a foring notion and let G be P-generi oversome model V of ZFC. If V � |P | < b, then for every funtion f ∈ ωω∩V[G]we an onstrut a funtion gf ∈ ωω∩V suh that for all h ∈ ωω∩V we have
h <∗ f → h <∗ gf ,i.e., whenever the funtion h is dominated by f (in the model V[G]), it isalso dominated by the funtion gf from the ground model V. In partiular, if

V � b > ω1 and G is Cω1-generi over V, then V[G] � d ≥ dV.



Notes 395Proof. Let f ∈ ωω ∩V[G] and let f
˜
be a P-name for f (in the ground model

V) suh that 0 P f
˜
∈ ωω

˜
. For every P-ondition p ∈ P de�ne the funtion

fp ∈ ωω ∩V by stipulating
fp(n) = min

{
k ∈ ω : ∃q ≥ p

(
q P f

˜
(n) = k

)}
.Consider the family F = {fp : p ∈ P} ⊆ ωω. Sine |P | < b, there exists afuntion gf ∈ ωω (in the ground model V) whih dominates eah member of

F . Thus, whenever p P h <
∗ f
˜
we have h <∗ fp <

∗ gf , whih shows that gfdominates h.In order to see that V[G] � d ≥ dV whenever V � b > ω1 and G is
Cω1-generi over V, reall that Cω1 ≈ Cω1 and notie that ∣∣Fn(ω ×ω1, ω)

∣∣ ≤∣∣ fin(ω × ω1 × ω)
∣∣ = ω1. ⊣The proof of the following result will be ruial in the proof of Proposi-tion 27.9.Proposition 21.13. ω1 = s = b < d = c is onsistent with ZFC.Proof. Let V be a model of ZFC + c = p > ω1 and let G = 〈cα : α ∈ ω1〉 be

Cω1-generi over V, where we work with C =
(⋃

n∈ω
nω, ⊆

). We shall showthat V[G] � ω1 = s = b < d = c = cV.Sine Cω1 satis�es , all ardinals are preserved and we obviously have
V[G] � c = cV > ω1. Furthermore, by Lemma 18.9, for all f ∈ ωω and
x ∈ [ω]ω whih belong to V[G] there is a γ0 ∈ ω1 suh that f and x belongto V[〈cα : α ∈ γ0〉].Sine Cohen foring adds unbounded reals (by Lemma 21.1) and sine cγ0is C-generi over V[G|γ0 ] (by Lemma 21.9), cγ0 ∈ ωω is not dominated by anyfuntion in V[〈cα : α ∈ γ0〉], in partiular, cγ0 is not bounded by f . Thus,in V[G], the family {cα : α ∈ ω1} is an unbounded family of ardinality ω1,whih shows that V[G] � ω1 = b.Similarly, let σγ0 be the splitting real over V[〈cα : α ∈ γ0〉] we get fromthe Cohen real cγ0 using the onstrution in the proof of Lemma 21.3. Then
σγ0 every in�nite subset of ω, in partiular, σγ0 splits x. Thus, in V[G], thefamily {σα : α ∈ ω1} is a splitting family of ardinality ω1, whih shows that
V[G] � ω1 = s.Finally, by Lemma 21.12 we have V[G] � d = dV > ω1 whih shows that

V[G] � ω1 = s = b < d = c .
⊣NotesThe results presented in this hapter are all lassial and most of them an befound in textbooks like Kunen [8℄ or Bartoszy«ski and Judah [3℄ (for example themodel in whih c > a = ω1 as well as the orresponding proofs are taken fromKunen [8, Chapter VIII, �2℄ and Lemma 21.12 is just Lemma 3.3.19 of Bartoszy«skiand Judah [3℄).



396 21 Cohen Foring revisitedRelated Results108. A ombinatorial haraterisation of ov(M ). Bartoszy«ski [2℄ (see also Bar-toszy«ski and Judah [3, Theorem 2.4.1℄) showed that ov(M ) is the ardinalityof the smallest family F ⊆ ωω with the following property: For eah g ∈ ωωthere is an f ∈ F , suh that for all but �nitely many n ∈ ω we have f(n) 6= g(n).For another haraterisation of ov(M ) see Chapter 13 |Related Result 80.109. p ≤ add(M ). The additivity of M , denoted add(M ), is the smallest numberof meagre sets suh that the union is not meagre. Notie that we obviously haveadd(M ) ≤ ov(M ). Piotrowski and Szyma«ski showed in [12℄ that p ≤ add(M )whih follows from the fat that add(M ) = min{ov(M ), b} (see Miller [10℄and Truss [16℄, or Bartoszy«ski and Judah [3, Corollary 2.2.9℄). For possible(i.e., onsistent with ZFC) relations between add(M ) and ov(M ) and otherardinal harateristis of the ontinuum we refer the reader to Bartoszy«skiand Judah [3, Chapter 7℄.110. Cohen-stable families of subsets of integers. Kurili showed in [9℄ that adding aCohen real destroys a splitting family S if and only if S is isomorphi to a split-ting family on the set of rational numbers whose elements have nowhere denseboundaries. Consequently, |S | < ov(M ) implies the Cohen-indestrutibilityof S . Further, he showed that for a mad family in order to remain maximalin any Cohen extension, it is neessary and su�ient that every bijetion from
ω to the set of rational numbers must have a somewhere dense image on somemember of the family.A foring notion, introdued by Solovay [13, 14℄, whih is losely related to Cohenforing C is the so-alled random foring, denoted B, whih is de�ned as follows:

B-onditions are losed sets A ⊆ R of positive Lebesgue measure, and for two B-onditions A and B let A ≤ B ⇐⇒ A ⊆ B. Further, if G is B-generi (over somemodel V), then r = ⋂
G is alled a random real.111. Properties of random foring. Obviously, random foring satis�es , andtherefore, random foring is proper. Furthermore, random foring is ωω-bounding(see Jeh [5, Part I, Lemma 3.3.(a)℄), hene, random foring does not add Co-hen reals. For more properties of random foring see Bartoszy«ski and Judah [3,Setion 3.2℄ or Blass [4, Setion 11.4℄.112. Random reals versus Cohen reals. Let c be a Cohen real over V and let r be arandom real over V[c]. Then, in V[c][r], there is a Cohen real (but no randomreal) over V[r] (see Pawlikowski [11, Corollary 3.2℄).113. On partitions of ωω into ω1 disjoint losed sets. If CH holds, then the set ofsingletons {

{x} : x ∈ ωω
} is obviously a partition of ωω into ω1 disjoint losedsets. However, if CH fails, then the existene of a partition of ωω into ω1 disjointlosed sets is independent of ZFC:Now, Stern [15, �1℄ showed that if G is Cω2-generi over V, where V � GCH,then, in V[G], there is no partition of ωω into ω1 disjoint losed sets. On theother hand, Stern [15, �2℄ also showed that adding ω2 random reals to a modelin whih GCH holds, yields a model in whih CH fails, but in whih suh apartition of ωω still exists.
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22Silver-Like Foring Notions
On the one hand, we have seen that every foring notion whih adds domi-nating reals also adds splitting reals (see Fat 20.1). On the other hand, wehave seen in the previous hapter that Cohen foring is a foring notion whihadds splitting reals, but whih does not add dominating reals. However, Cohenforing adds unbounded reals and as an appliation we onstruted a modelin whih s = b < d = r. One might ask whether there exists a foring notionwhih is even ωω-bounding but still adds splitting reals. In this hapter, weshall present suh a foring notion and as an appliation we shall onstrut amodel in whih s = b = d < r.Below, let E be an arbitrary but �xed P -family (introdued in Chapter 10).For a set x ⊆ ω, let x2 denote the set of all funtions form x to {0, 1}. Silver-like foring with respet to E , denoted SE = (SE ,≤), is de�ned as follows:

SE =
⋃{

x2 : x ∈ E
}where x := ω \ x, and for p, q ∈ SE we stipulate

p ≤ q ⇐⇒ dom(p) ⊆ dom(q) ∧ q|dom(p) = p .If E = [ω]ω, then we all SE just Silver foring, and if E is a P -point, then
SE is usually alled Grigorie� foring.As in the ase of Cohen foring we an identify every SE -generi �lterwith a real g ∈ ω2, alled Silver real, whih is in fat just the union of thefuntions whih belong to the generi �lter. More formally, if G is SE -generiover some model V, then the orresponding Silver real g ∈ ω2 is de�ned by

g =
⋃{

f ∈ SE : f ∈ G
}
.On the other hand, from a Silver real one an always reonstrut the orre-sponding generi �lter, and therefore, V[G] = V[g] (we leave the reonstru-tion as an exerise to the reader). Furthermore, Silver reals an be hara-terised as follows: A real g ∈ ω2 is a Silver real over a model V of ZFC i� forevery open dense subset D ⊆ SE there is a p ∈ D suh that g|dom(p) = p.



400 22 Silver-Like Foring NotionsProperties of Silver-Like ForingSilver-Like Foring is Proper and ωω-boundingBefore we show that Silver-like foring SE is proper and ωω-bounding, let usintrodue the following notation: For a ondition p ∈ SE (i.e., p : x → {0, 1}where x ∈ E ) and a �nite set t ⊆ dom(p) let
p˜t =

{
q ∈ SE : dom(q) = dom(p) ∧ q|dom(q)\t = p|dom(p)\t

}
.Lemma 22.1. Silver-like foring SE is proper.Proof. As desribed in Chapter 20, let χ be a su�iently large regular ar-dinal. We have to show that for all ountable elementary submodels N =

(N,∈) ≺ (Hχ,∈) whih ontain SE , and for all onditions p ∈ SE ∩N , thereexists an SE -ondition q ≥ p (in V) whih is N-generi (i.e., if g ∈ ω2 is aSilver real over V and q ⊆ g, then g is also a Silver real over N).So, let N = (N,∈) be an arbitrary ountable elementary submodel of
(Hχ,∈) and let p ∈ SE ∩N be an arbitrary SE -ondition whih belongs to N.We shall onstrut in V an SE -ondition q ≥ p whih is N-generi by usingthe fat that E is a P -family. Firstly, let {Dn : n ∈ ω} be an enumeration(in V) of all open dense subsets of SE whih belong to N and hoose (in V)some well-ordering �≺ � on SE ∩ N . We onstrut the sought SE -ondition
q ≥ p by running the game G∗

E
: The Maiden starts the game by playing

x0 := dom(q0)
, where q0 ∈ N is the ≺-least ondition suh that q0 ≥ p and

q0 ∈ D0, and Death responds with some �nite set s0 ⊆ x0. Assume that forsome n ∈ ω we already have xn, qn, and sn. Let t = ⋃
0≤i≤n si and y = xn \ t.Now, the Maiden plays xn+1 ⊆ y suh that xn+1 = dom(qn+1)

, where
qn+1 ∈ N is the ≺-least ondition suh that qn+1 ≥ qn and qn+1 ˜t ⊆ Dn+1,and Death responds with some �nite set sn+1 ⊆ xn+1.Sine E is a P -family, this strategy of theMaiden is not a winning strategyand Death an play so that x′ = ⋃

n∈ω sn belongs to E . For q′ = ⋃
n∈ω qnwe have x′ ⊆ dom(q′), and thus, the funtion q := q′|x′ is an SE -ondition.In addition, if g is a Silver real over V suh that q ⊆ g, then, by onstrutionof q and the properties of the qn's, for every n ∈ ω we have g|dom(qn) ∈ Dn,whih shows that g is a Silver real over N. ⊣Lemma 22.2. Silver-like foring SE is ωω-bounding.Proof. Let G be SE -generi over V, let f ∈ ωω be a funtion in V[G], and let

f
˜
be an SE -name for f . In order to show that f is bounded by some funtionin the ground model, it is enough to prove that for every SE -ondition p ∈ SEthere is a ondition q0 ≥ p and a funtion g ∈ ωω in the ground model V suhthat q0 SE

�g dominates f
˜
�.Firstly, hoose some well-ordering �≺ � on SE . We onstrut the ondition

q0 by running the game G∗
E
where theMaiden plays aording to the following



A model in whih d < r 401strategy: Let m0 ∈ ω be the smallest integer for whih there exists a ondition
r ≥ p suh that r SE

f
˜
(0) < m0 and let p0 be the least suh ondition r withrespet to the well-ordering �≺ �. Then the Maiden plays x0 = dom(p0)

.For positive integers i ∈ ω let ti = ⋃
k∈i sk, where s0, . . . , si−1 are the movesof Death, and let p0 ≤ · · · ≤ pi−1 be an inreasing sequene of onditions.Further, let mi ∈ ω be the least number for whih there exists a ondition

r ≥ pi−1 with dom(r) ⊇ dom(pi−1) ∪ ti suh that for all q ∈ r˜ti we have
r SE

f
˜
(i) < mi, and again, let pi be the least suh ondition r (with respetto �≺ �). Then the Maiden plays xi = dom(pi)

.Sine E is a P -family, Death an play so that ⋃
i∈ω si ∈ E . Let h =⋃

i∈ω pi; then h ∈ x2 for some x ⊆ ω (but h is not neessarily an SE -ondition).Now, let q0 ∈ SE be suh that dom(q0) = dom(h)\⋃i∈ω si and q0 ≡ h|dom(q0),and de�ne the funtion g ∈ ωω by stipulating g(i) := mi (for all i ∈ ω). Then
g belongs to the ground model V and by onstrution we have

q0 SE
∀i ∈ ω

(
f
˜
(i) < g(i)

)
,whih shows that q0 fores that f is dominated by g. ⊣Silver-Like Foring adds Splitting RealsLemma 22.3. Silver-like foring SE adds splitting reals.Proof. Let g ∈ ω2 be a Silver real overV. We an identify g with the funtion

f ∈ ωω by stipulating
f(n) = k ⇐⇒ g(k) = 1 ∧

∣∣{m < k : g(m) = 1
}∣∣ = n .Then the set

σf =
⋃{[

f(2n), f(2n+ 1)
)
: n ∈ ω

}splits every real in the ground model, where [a, b) := {k ∈ ω : a ≤ k < b}. Tosee this, reall that E is a free family, and notie that for eah real x ∈ [ω]ωin the ground model V and for every n ∈ ω, the set
Dx,n =

{
p ∈ SE : p SE

(
|x ∩ σf

˜
| > n ∧ |x \ σf

˜
| > n

)}is open dense in SE . ⊣A Model in whih d < rProposition 22.4. ω1 = d < r = c is onsistent with ZFC.Proof. Let V be a model of ZFC + CH, let Pω2 be an ω2-stage, ountablesupport iteration of Silver foring (i.e., Silver-like foring SE with E = [ω]ω),



402 22 Silver-Like Foring Notionsand let G be Pω2-generi over V. Sine Silver foring is of size c, by Theo-rem 20.5.(a) we get V[G] � c = ω2. Furthermore, sine Silver foring is properand ωω-bounding, by Theorem 20.6 we get that Pω2 is ωω-bounding, whihimplies that in V[G], ωω ∩ V is a dominating family of size ω1 (reall that
V � CH), and therefore we have V[G] � d = ω1. Finally, sine Silver foringadds splitting reals, by Theorem 20.5.(b) we get that no family F ⊆ [ω]ωof size ω1 an be a reaping family, thus, V[G] � r = ω2. Hene, we get
V[G] � ω1 = d < r = ω2 = c. ⊣NotesMost of the results presented here an be found in Grigorie� [10℄ and Halbeisen [11℄(see also Jeh [12, p. 21 f.℄ and Mathias [16℄).Related Results116. Silver-like foring SE is minimal. Grigorie� proved in [10℄ that SE is minimalwhenever E is a P -point and in Halbeisen [11℄ it is shown how Grigorie�'s proofan be generalised to arbitrary P -families.117. Silver-like foring has the Laver property. By similar arguments as in the proofof Lemma 22.2 one an show that Silver-like foring has the Laver property.118. n-Silver foring. For integers n ≥ 2, the n-Silver foring notion Sn onsistsof funtions f : A → n, where A ⊂ ω and ω \ A is in�nite. Sn is ordered byinlusion, i.e., f ≤ g i� g extends f . Notie that S2 is the same as Silver foring.If G is Sn-generi, then the funtion ⋃

G : ω → n is alled an Sn-generi real. Asa orollary of a more general result, it is shown in Rosªanowski and Stepr	ans [18℄that no ountable support iteration of S2 adds an S4-generi real.119. Another model in whih d < r. A model in whih ω1 = a = d < r = ω2 = cwe get if we add ω2 random reals to a model V of ZFC + CH (see for exampleBlass [2, Setion 11.4℄).A foring notion, introdued by Saks [19℄, whih is somewhat similar to Silver-like foring, is the so-alled Saks foring, denoted S,. To show the similarity toSilver-like foring we shall de�ne Saks foring in terms of perfet sets� but onean equally well de�ne Saks foring in terms of trees. We say that a set T ⊆ ω2 isperfet if for every f ∈ T and every n ∈ ω there is a g ∈ T and an integer k ≥ nsuh that g|n = f |n and f(k) 6= g(k). The set of S-onditions onsists of all perfetsets T ⊆ ω2, and for any S-onditions S and T we stipulate S ≤ T ⇐⇒ T ⊆ S.Furthermore, if G is S-generi then the real ⋂G ∈ ω2 is alled a Saks real.120. Properties of Saks foring. One an show that Saks foring has the followingproperties:
• Saks foring is proper.
• Saks foring is ωω-bounding.
• Saks foring has the Laver property.
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23Miller Foring
So far we have seen that Cohen foring adds unbounded as well as splittingreals, but not dominating reals (see Chapter 21), and that Silver foring addssplitting reals but not unbounded reals (see Chapter 22). Furthermore, it wasmentioned that Saks foring adds neither splitting nor unbounded reals (seeChapter 22 |Related Result 120). In this hapter we shall introdue a for-ing notion, alled Miller foring, whih adds unbounded reals but no splittingreals. As an appliation of that foring notion we shall onstrut a model inwhih r < d.Before we introdue Miller foring, let us �rst �x some terminology. Weshall identify seq(ω) (the set of �nite sequenes of ω) with ⋃

n∈ω
nω. Conse-quently, for s ∈ seq(ω) with |s| = n + 1 we an write s =

〈
s(0), . . . , s(n)

〉.Furthermore, for s, t ∈ seq(ω) with |s| ≤ |t| we write s 4 t if t||s| = s (i.e., s isan initial segment of t). A set T ⊆ seq(ω) is a tree, if it is losed under initialsegments, i.e., t ∈ T and s 4 t implies s ∈ T . Elements of a tree are usuallyalled nodes. Let T ⊆ seq(ω) be a tree and let s ∈ T be a node of T . Thenthe tree Ts is de�ned by
Ts = {t ∈ T : t 4 s ∨ s 4 t} .Further, the set of immediate suessors of s (with respet to T ) is de�ned bysuT (s) = {

t ∈ T : ∃n ∈ ω
(
t = s⌢n

)}
,where s⌢n denotes the onatenation of the sequenes s and 〈n〉, and �nallylet nextT (s) = {n ∈ ω : s⌢n ∈ T } .A tree T ⊆ seq(ω) is alled superperfet, if for every t ∈ T there is an

s ∈ T suh that t 4 s and |suT (s)| = ω, i.e., above every node t thereis a node s with in�nitely many immediate suessors. If T ⊆ seq(ω) is asuperperfet tree, then let



406 23 Miller Foringsplit(T ) = {
s ∈ T : |suT (s)| = ω

}
.Thus, a tree T ⊆ seq(ω) is superperfet if and only if for eah s ∈ T thereexists a t ∈ split(T )�a so-alled splitting node � suh that s 4 t. For k ∈ ωand T ⊆ seq(ω), letsplitk(T ) = {

s ∈ split(T ) : |{t ∈ split(T ) : t 4 s}| = k + 1
}
,i.e., a splitting node s ∈ split(T ) belongs to splitk(T ) if and only if there are

k splitting nodes below s.Now, Miller foring, denoted by M = (M,≤), also known as rationalperfet set foring, is de�ned as follows:
M =

{
T ⊆ seq(ω) : T is a superperfet tree} ,and for T, T ′ ∈M we stipulate

T ≤ T ′ ⇐⇒ T ′ ⊆ T .As in the ase of Cohen and Silver foring we an identify everyM-generi�lter with a real g ∈ ωω, alled Miller real, whih is in fat the union ofthe intersetion of the trees in the generi �lter. More formally, if G is M-generi over some model V, then the orresponding Miller real g ∈ ωω hasthe property that for eah n ∈ ω we have
g|n ∈

⋂{
T ∈M : T ∈ G

}
.Sine we an reonstrut the generi �lter from the orresponding Miller real,we obviously have V[G] = V[g] (we leave the reonstrution as an exerise tothe reader).Properties of Miller ForingMiller Foring is Proper and adds Unbounded RealsLemma 23.1. Miller foring is proper.Proof. As desribed in Chapter 20, let χ be a su�iently large regular ar-dinal. We have to show that for all ountable elementary submodels N =

(N,∈) ≺ (Hχ,∈) whih ontain M, and for all onditions S ∈ M ∩ N , thereexists an M-ondition T ⊆ S (in V) whih is N-generi.So, let N = (N,∈) be an arbitrary ountable elementary submodel of
(Hχ,∈) and let S ∈M ∩N be an arbitrary M-ondition whih belongs to N.We shall onstrut a superperfet tree T ⊆ S whih meets every open densesubset ofM whih belongs to N: In V, let {Dn : n ∈ ω} be an enumeration ofall open dense subsets ofM whih belong to N. Firstly, hoose a superperfet



Miller foring does not add splitting reals 407tree T 0 ⊆ S suh that T 0 ∈ (D0 ∩ N). Assume we have already onstruted
T 0 ⊇ · · · ⊇ T n suh that for eah i ≤ n, T i ∈ (Di ∩N). Let {sj : j ∈ ω} bean enumeration of splitn+1(T

n). For every j ∈ ω and for eah t ∈ suTn(sj)hoose a superperfet tree T j,t ⊆ T nt suh that T j,t ∈ (Dn+1 ∩N) and let
T n+1 =

⋃{
T j,t ∈M : j ∈ ω ∧ t ∈ suTn(sj)

}
.Then T n+1 is a superperfet tree and T n+1 ⊆ T n. In addition, if G is M-generi over V and T n+1 ∈ G, then there exists a T j,t ⊆ T n+1 whih belongsto G, and beause T j,t ∈ Dn+1, we get G∩Dn+1 6= ∅. Now, let T =

⋂
n∈ω T

n.Then T ⊆ S is a superperfet tree whih is N-generi. ⊣Lemma 23.2. Miller foring adds unbounded reals.Proof. In order to prove that Miller foring adds unbounded reals, it is enoughto show that whenever g ∈ ωω is a Miller real over some model V, then g isunbounded. Let f ∈ ωω be an arbitrary funtion in V and let
Df =

{
T ∈M : ∀s ∈ split(T )∀n ∈ nextT (s) (f(|s|) < n

)}
.We leave it as an exerise to the reader to show that Df is open dense in M ,whih shows that g �∗ f . Thus, g is not dominated by f , and sine f wasarbitrary, g is unbounded. ⊣Miller Foring does not add Splitting RealsLemma 23.3. Miller foring does not add splitting reals.Proof. Let V be a model of ZFC, let G be M-generi over V, and let Y

˜
bean M-name for a subset of ω in V[G], i.e., there is an M-ondition S ∈ Msuh that S M Y˜

⊆ ω. We shall onstrut an M-ondition S′ ⊆ S and an
X ∈ [ω]ω (in V) suh that S′

M (X ⊆ Y
˜
) ∨ (X ∩ Y

˜
= ∅), whih shows that

Y
˜

is not a splitting real.The onstrution of the superperfet tree S′ and the in�nite set X ∈ [ω]ωis done in the following three steps.Claim 1. There is an M-ondition T ⊆ S and a sequene 〈
Ys : s ∈ split(T )〉(in V) of subsets of ω, suh that for every s ∈ split(T ), eah k ∈ ω, and forall but �nitely many n ∈ nextT (s) we have

T
s
⌢
n M Y˜

∩ k = Ys ∩ k ,i.e., for every k ∈ ω there exists an nk ∈ ω suh that for all n′ ∈ nextT (s)with n′ ≥ nk, Ts⌢n′ M Y˜
∩ k = Ys ∩ k.Proof of Claim 1. We onstrut the ondition T by indution. In partiular,the superperfet tree T will be the intersetion of superperfet trees T i, where
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T 0 = S , T i+1 =

⋃

s∈spliti(T i)

T̃ is , and T̃ is ⊆ T is ,and where the superperfet trees T̃ is are onstruted as follows: Fix an i ∈ ωand a splitting node s ∈ spliti(T i). For eah n ∈ nextT i(s), hoose a super-perfet tree T̃ i
s
⌢
n
⊆ T i

s
⌢
n
suh that, for some �nite set bn ∈ fin(ω), we have

T̃ i
s
⌢
n M Y˜

∩ n = bn .For every k ∈ ω, let Fk =
{
bn ∩ k : n ∈ nextT i(s)

}. Notie that all sets
Fk are �nite, in fat, Fk ⊆ P(k). Consider now the tree T with the in�nitevertex set {

〈b, k〉 : k ∈ ω ∧ b ∈ Fk
}, where two verties 〈b, k〉 and 〈b′, k′〉are joined by an edge i� b ⊆ (b′ ∩ k) and k′ = k + 1. Notie that T isan in�nite, �nitely branhing tree. Hene, by König's Lemma, T ontains anin�nite branh, say (

〈∅, 0〉, 〈a1, 1〉, . . . , 〈ak, k〉, . . .
). Let Ys =

⋃
k∈ω ak andde�ne the stritly inreasing sequene 〈nj : j ∈ ω〉 of elements of nextT i(s) sothat for eah k ∈ ω and for all nj ≥ k we have

T̃ i
s
⌢
nj

M Y˜
∩ k = ak .Hene, for eah k ∈ ω and for all but �nitely many j ∈ ω we have

T̃ i
s
⌢
nj

M Y˜
∩ k = Ys ∩ k .Now, let T̃ is =

⋃
j∈ω T̃

i

s
⌢
nj
. Then, for eah k ∈ ω and for all but �nitely many

n ∈ nextT̃ i
s
(s) we have

T̃ i
s
⌢
n M Y˜

∩ n = Ys ∩ n .Finally, let T i+1 =
⋃{

T̃ is : s ∈ spliti(T i)}. Notie that for all j ≤ i,splitj(T i+1) = splitj(T i); thus, T =
⋂
i∈ω T

i is a superperfet tree. By on-strution, for every s ∈ split(T ), for eah k ∈ ω, and for all but �nitely many
n ∈ nextT (s) we have

T
s
⌢
n M Y˜

∩ k = Ys ∩ k ,where 〈Ys : s ∈ split(T )〉 is an in�nite sequene of subsets of ω whih belongsto the ground model V. ⊣Claim 1In the next step we prune the tree T so that the orresponding sets Ys (ortheir omplements) have the strong �nite intersetion property s�p (i.e., in-tersetions of �nitely many sets are in�nite).Claim 2. There exists a superperfet tree T ′ ⊆ T suh that(1) {
Ys : s ∈ split(T ′)

} has the s�p; or(2) {
ω \ Ys : s ∈ split(T ′)

} has the s�p.



Miller foring does not add splitting reals 409Proof of Claim 2. Let U ⊆ [ω]ω be an arbitrary ultra�lter over ω. We partitionthe set split(T ) aording to whether the set Ys belongs to U or not. Morepreisely, let U =
{
s ∈ split(T ) : Ys ∈ U

} and V =
{
s ∈ split(T ) : (ω \ Ys) ∈

U
}. Then U ∩ V = ∅ and U ∪ V = split(T ). We are in at least one of thefollowing two ases:

• There exists an s ∈ split(T ) suh that split(Ts) ⊆ U .
• For all s ∈ split(T ) there exists a t ∈ split(Ts) with t ∈ V .In the former ase, let T ′ = Ts, and in the latter ase, we an onstrut asuperperfet tree T ′ ⊆ T suh that split(T ′) ⊆ V �we leave the onstrutionof T ′ as an exerise to the reader.If split(T ′) ⊆ U , then {

Ys : s ∈ split(T ′)
} has the s�p; and if split(T ′) ⊆ V ,then {

ω \ Ys : s ∈ split(T ′)
} has the s�p. ⊣Claim 2In the last step we onstrut a set X ∈ [ω]ω whih is not split by Y

˜
.Claim 3. Let T ′ ⊆ T be a superperfet tree suh that

Y0 =
{
Ys : s ∈ split(T ′)

} or Y1 =
{
ω \ Ys : s ∈ split(T ′)

}has the s�p. Then there exists a sequene of superperfet trees 〈T i : i ∈ ω〉,where T 0 ⊆ T ′ and T i+1 ⊆ T i (for all i ∈ ω), as well as a sequene of naturalnumbers 〈mi : i ∈ ω〉, where mi < mi+1 (for all i ∈ ω), suh that ⋂i∈ω T
i isa superperfet tree and either

∀i ∈ ω
(
T i Mmi ∈ Y

˜
) or ∀i ∈ ω

(
T i Mmi /∈ Y

˜
)
.Proof of Claim 3. We just onsider the ase when Y1 has the s�p, in whihase we shall later get X ∩ Y

˜
= ∅; the other ase, in whih would later get

X ⊆ Y
˜
, is handled analogously and is left as an exerise to the reader.In order to get ⋂

i∈ω T
i ∈ M , we shall onstrut an auxiliary sequene

〈Fi : i ∈ ω〉 of inreasing �nite subsets of split(T i), i.e., for every i ∈ ω,
Fi ⊆ Fi+1 and Fi ∈ fin

(split(T i)). Moreover, we shall onstrut 〈Fi : i ∈ ω〉suh that ⋃i∈ω Fi is in�nite and ⋃
i∈ω Fi = split (⋂i∈ω T

i
).Let T−1 := T ′, m−1 := 0, and let F−1 = {s} for some s ∈ split(T ′).Assume that for some i ∈ ω, we have already onstruted a superperfet tree

T i−1 ∈M , mi−1 ∈ ω, and Fi−1 ∈ fin
(split(T i−1)

). Choose a natural number
mi > mi−1 suh that mi ∈

⋂
s∈Fi−1

(ω \ Ys). This an be done sine Y1 hasthe s�p, i.e., ⋂s∈Fi−1
(ω \ Ys) is in�nite. Now, with respet to the �nite set

Fi−1 de�ne
[Fi−1] =

{
t ∈ seq(ω) : ∃s ∈ Fi−1(t 4 s)

}
.Then [Fi−1] is a �nite subtree of T i−1. Suppose that s0 ∈ [Fi−1] is a terminalnode of [Fi−1], i.e., for all n ∈ ω, s0⌢n /∈ [Fi−1]. By onstrution of Ys0 , for allbut �nitely many n ∈ nextT i−1(s0) we have

T i−1

s0
⌢
n

M Y˜
∩ (mi + 1) = Ys0 ∩ (mi + 1) .



410 23 Miller ForingHene, sine mi /∈ Ys0 , for all but �nitely many n ∈ nextT i−1(s0) we have
T i−1

s0
⌢
n

Mmi /∈ Y
˜
.Now, we prune T i−1 by deleting the �nitely many subtrees T i−1

s0
⌢
n
with

T i−1

s0
⌢
n
/ Mmi /∈ Y

˜
.Furthermore, we do exatly the same for all other terminal nodes of the �nitetree [Fi−1]. Then, we do the same for all interior nodes of [Fi−1], exept thatwe retain all subtrees T i−1

s
⌢
n

with s⌢n ∈ [Fi−1].The resulting tree T i is superperfet and has the property that
T i Mmi /∈ Y

˜
.Notie that by onstrution, if s ∈ [Fi−1] is an interior node of [Fi−1] and

s⌢n ∈ [Fi−1] (for some n ∈ ω), then s⌢n ∈ T i. Now, hoose a �nite set Fi suhthat Fi−1 ⊆ Fi ∈ fin
(split(T i)) whih has the following property: For eah

s ∈ Fi−1, for whih there is an ns ∈ ω suh that s⌢ns ∈ T i \ [Fi−1], there existsa t ∈ Fi \ Fi−1 suh that s⌢ns 4 t. We leave it as an exerise to the reader toverify that the resulting tree ⋂
i∈ω T

i is superperfet. ⊣Claim 3Now, let X := {mi : i ∈ ω} and S′ :=
⋂
i∈ω T

i. Then, in the ase when Y1has the s�p, we have
S′

M X ∩ Y
˜

= ∅ ,and otherwise we have
S′

M X ⊆ Y
˜
.In other words, whenever G is M-generi over V, then Y

˜
[G] is not a splittingreal over V, and sine Y

˜
was an M-name for an arbitrary subset of ω, thisshows that Miller foring does not add splitting reals. ⊣As an immediate onsequene we getFat 23.4. Miller foring does not add dominating reals.Proof. By Fat 20.1 we know that every foring notion whih adds domi-nating reals also adds splitting reals. Thus, sine Miller foring does not addsplitting reals, it also does not add dominating reals. ⊣Miller Foring Preserves P -PointsBy a similar onstrution as in the proof of Lemma 23.3 we an show thatevery P -point in the ground model generates an ultra�lter in the M-generiextension.Lemma 23.5. Miller foring preserves P -points.



Miller foring preserves P -points 411Proof. Suppose that U ⊆ [ω]ω is a P -point in the ground model V and that
G is M-generi over V. We have to show that U generates an ultra�lter in
V[G], i.e., for every Y ⊆ ω in V[G] there exists an X ∈ U in V suh thateither X ⊆ Y or X ∩ Y = ∅. For this, let Y

˜
be an M-name for an arbitrarybut �xed subset of ω in V[G] (i.e., there is an M-ondition S ∈ M suh that

S M Y˜
⊆ ω). We shall onstrut anM-ondition S′ ⊆ S and an X ∈ U in Vsuh that either S′

M X ⊆ Y
˜

or S′
M X ∩ Y

˜
= ∅. Sine Y

˜
[G] is arbitrary,this would imply that the �lter in V[G], generated by U , is an ultra�lter.As in the proof of Lemma 23.3, we �rst onstrut an M-ondition T ⊆ Sand a sequene 〈

Ys : s ∈ split(T )〉 of subsets of ω, suh that for every s ∈split(T ), for eah k ∈ ω, and for all but �nitely many n ∈ nextT (s), we have
T
s
⌢
n M Y˜

∩ k = Ys ∩ k .Now, we onstrut a superperfet tree T ′ ⊆ T suh that either {
Ys : s ∈split(T ′)

}
⊆ U or {

ω \ Ys : s ∈ split(T ′)
}

⊆ U . Sine U is a P -point,there exists an X ′ ∈ U suh that for all s ∈ split(T ′), either X ′ ⊆∗ Ys or
X ′ ⊆∗ (ω \ Ys).Below we just onsider the ase when X ′ ⊆∗ Ys and leave the other aseas an exerise to the reader.In the next step we build a sequene sn ∈ split(T ′), suh that both sets,
{s2n : n ∈ ω} and {s2n+1 : n ∈ ω}, will be the splitting nodes of some M-ondition. At the same time we build a stritly inreasing sequene of naturalnumbers 〈kn : n ∈ ω〉, suh that for all n ∈ ω, X ′ \ kn ⊆ Ysn .The onstrution is by indution on n: Firstly, let s0 ∈ split0(T ′), let
s1 = s0, and let k0 = 0. If neessary, modify X ′ suh that X ′ ⊆ Ys0 = Ys1 .Assume that for some n ∈ ω, we have already onstruted s2n, s2n+1, k2n,and k2n+1. Let i, j ∈ ω be suh that

n+ 1 =
(i+ j)(i + j + 1)

2
+ i .Notie that i and j are unique and that n + 1 > i. Now, we hoose a newsplitting node s2n+2 ∈ split(T ′), i.e., s2n+2 /∈ {sl : l ≤ 2n + 1}, suh that

s2i
⌢m0 4 s2n+2 for some m0 ∈ nextT ′(s2i) with m0 > k2n+1, and

Ys2n+2 ∩ k2n+1 = Ys2i ∩ k2n+1 .In order to see that suh a splitting node s2n+2 exists, notie that 2n+2 > 2iand that for all but �nitely many m ∈ nextT ′(s2i),
T ′
s2i

⌢
m M Y˜

∩ k2n+1 = Ys2i ∩ k2n+1 .Hene, there exists an m0 ∈ nextT ′(s2i) with m0 > k2n+1, suh that for all
s2n+2 < s2i

⌢m0 we have Ys2n+2 ∩ k2n+1 = Ys2i ∩ k2n+1. Finally, we hoose
k2n+2 > k2n+1 large enough suh that

X ′ \ k2n+2 ⊆ Ys2n+2 .



412 23 Miller ForingThe splitting node s2n+3 ∈ split(T ′) (with s2i+1
⌢m0 4 s2n+3) and the integer

k2n+3 > k2n+2 are hosen similarly.Notie that by onstrution, for eah node s ∈ {s2n : n ∈ ω} there arein�nitely many nodes t ∈ {s2n : n ∈ ω} suh that s 4 t, and the same holdsfor the set {s2n+1 : n ∈ ω}. Thus, {s2n : n ∈ ω} and also {s2n+1 : n ∈ ω}are the splitting nodes of superperfet subtrees of T ′. Let S0, S1 ⊆ T ′ be suhthat split(S0) = {s2n : n ∈ ω} and split(S1) = {s2n+1 : n ∈ ω} respetively.Further, let
X0 = X ′ ∩

⋃{
[k2n, k2n+1) : n ∈ ω

}and
X1 = X ′ ∩

⋃{
[k2n+1, k2n+2) : n ∈ ω

}where [k, k′) = {m ∈ ω : k ≤ m < k′}. Without loss of generality we mayassume that X0 ∈ U . The goal is to show that S0 M X0 ⊆ Y
˜
, whih is donein the following two laims:Claim 1. For every s ∈ split(S0), X0 ⊆ Ys.Proof of Claim 1. Firstly, notie that for every s ∈ split(S0) there is an n ∈ ωsuh that s = s2n. We prove that X0 ⊆ Ys2n by indution on n: By the hoieof X ′ we have X ′ ⊆ Ys0 ; hene, X0 ⊆ Ys0 . If n > 0, then by the hoie of k2nwe have

X0 \ k2n ⊆ Ys2n ,and by the de�nition of X0 we have
X0 ∩ k2n = X0 ∩ k2n−1 .Therefore, we �nd an i < n suh that

Ys2n ∩ k2n−1 = Ys2i ∩ k2n−1 .Now, by indution we have X0 ⊆ Ys2i , thus, (X0 ∩ k2n−1) ⊆ Ys2i ∩ k2n−1.Sine (X0 ∩ k2n) = (X0 ∩ k2n−1) and (X0 \ k2n) ⊆ Ys2n , we �nally get
X0 = (X0 ∩ k2n) ∪ (X0 \ k2n) ⊆ (Ys2n ∩ k2n−1) ∪ Ys2n = Ys2n .

⊣Claim 1Claim 2. S0 M X0 ⊆ Y
˜
.Proof of Claim 2. Assume towards a ontradition that there is an M-ondition S̃ ⊆ S0 and an m ∈ X0 suh that

S̃ Mm /∈ Y
˜
.Let s ∈ split0(S̃). By onstrution of T , and sine S̃ ⊆ T , for eah k ∈ ω andfor all but �nitely many n ∈ nextS̃(s) we have S̃s⌢n M Y˜

∩ k = Ys ∩ k. Inpartiular, for k = m+ 1 and for some n0 ∈ nextS̃(s) we have



A model in whih r < d 413
S̃
s
⌢
n0

Mm ∈ Y
˜

↔ m ∈ Ys .Sine X0 ⊆ Ys and m ∈ X0, this implies
S̃s⌢n0

Mm ∈ Y
˜
,whih ontradits our assumption that S̃ Mm /∈ Y

˜
. ⊣Claim 2Thus, in the ase when for all s ∈ split(T ′), X ′ ⊆∗ Ys, there is an X ∈ U(where X is either X0 or X1) and an M-ondition S′ ⊆ T ′ (where S′ is either

S0 or S1) suh that S′
M X ⊆ Y

˜
. In the other ase (whih was left to thereader), in whih for all s ∈ split(T ′), X ′ ⊆∗ (ω \ Ys), there is an X ∈ U andan S′ ⊆ T ′ suh that S′

M X ∩ Y
˜

= ∅. So, in both ases, U generates anultra�lter in the M-generi extension, whih is what we had to show. ⊣A Model in whih r < dBelow we show that after adding ω2 Miller reals to a model V of ZFC+CH, weget a model V[G] in whih r = ω1 and d = ω2. The reason why V[G] � d = ω2is that Miller foring adds unbounded reals, and the reason whyV[G] � r = ω1is in fat a onsequene of the followingFat 23.6. If there exists an ultra�lter U whih is generated by some �lter
F ⊆ [ω]ω of ardinality κ, then r ≤ κ.Proof. Firstly notie that for all x ∈ [ω]ω, either x ∈ U or (ω \ x) ∈ U .Seondly, sine F generates U , for all x′ ∈ U there is a y ∈ F suh that
y ⊆ x′. This shows that F is a reaping family. ⊣Proposition 23.7. ω1 = r < d = c is onsistent with ZFC.Proof. Let Pω2 be a ountable support iteration of Miller foring, let V be amodel of ZFC+ CH, and let G be Pω2-generi over V.Sine Miller foring is of size c, by Theorem 20.5.(a) we getV[G] � c = ω2,and sine Miller foring adds unbounded reals, by Theorem 20.5.(b) we getthat no family F ⊆ [ω]ω of size ω1 an be a dominating family. Hene, we get
V[G] � d = ω2.Now we show that V[G] � r = ω1: Firstly, notie that CH implies thatevery ultra�lter is of ardinality ω1, and reall that CH implies the existeneof P -points. Thus, sine V � CH, there are P -points in V of ardinality
ω1. Sine Miller foring is proper and the iteration is a ountable supportiteration, by Theorem 20.8 we get that every P -point F (of ardinality ω1)in the ground model V generates an ultra�lter U ⊆ [ω]ω in V[G]. Thus, byFat 23.6, we have V[G] � r = ω1. ⊣



414 23 Miller ForingNotesAll non-trivial results presented in this hapter are essentially due to Miller and anbe found in [14℄. In that paper, he introdued what is now alled Miller foring, butwhih he alled rational perfet set foring. Miller thought about this foring notionwhen he worked on his paper [13℄, where he used a fusion argument whih involvedpreserving a dynamially hosen ountable set of points (see [13, Lemmata 8&9℄).This led him to perfet sets in whih the rationals in them are dense, and shortlyafter, he realised that this is equivalent to foring with superperfet trees. Eventhough superperfet trees appeared �rst in papers of Kehris [10℄ and Louveau [12℄,Miller was the �rst who investigated the orresponding foring notion.Related Results124. Charaterising Miller reals. By the proof of Lemma 23.2 we know that everyMiller real g is unbounded. On the other hand, one an show that every funtion
f ∈ ωω in theM-generi extension V[g] whih is unbounded (i.e., not dominatedby any funtion in V) is a Miller real (see Miller [14, Proposition 2℄). Further-more, one an show that Miller foring is minimal (see Miller [14, p. 147℄).125. Miller foring has the Laver property. One an show that Miller foring has theLaver property (see Bartoszy«ski and Judah [1, Theorem 7.3.45℄) and thereforedoes not add Cohen reals. Sine the Laver property is preserved under ountablesupport iterations, there are no Cohen reals in the model onstruted in theproof of Proposition 23.7.126. Miller foring does not add Cohen, dominating, or random reals. Sine everyforing notion whih preserves P -points does not add Cohen, dominating, orrandom reals (see Chapter 20 |Related Result 107), Miller foring adds nei-ther Cohen, nor dominating, nor random reals.127. M ×M adds splitting reals. Even though Miller foring does not add splittingreals, a produt of Miller foringM×M always adds splitting reals (see Miller [14,Remark, p. 151℄ and ompare with Chapter 22 |Related Result 121).128. Miller foring satis�es Axiom A. Miller foring is not just proper, it even sat-is�es the slightly stronger Axiom A (see Bartoszy«ski and Judah [1, p. 360℄).129. Miller foring preserves MA(σ-entred). If V � MA(σ-entred) and g is a Millerreal over V, then V[g] � MA(σ-entred) (see Brendle [5℄). Reall that by Chap-ter 13 |Related Result 79, MA(σ-entred) ⇐⇒ p = c, and ompare thisresult with Theorem 19.4, whih says that Cohen foring preserves p = c.130. Cardinal harateristis in Miller's model. In Miller's model, whih is the modelonstruted in the proof of Proposition 23.7, we also have ω1 = a = s (see forexample Blass [2, Setion 11.9℄). Furthermore, the proof of Proposition 23.7shows that in Miller's model we even have u < d (see also Blass and Shelah [3℄).Another foring notion with superperfet trees as onditions, whih was introduedby Laver in [11℄, is the so-alled Laver foring, denoted L: L-onditions are ordered



Related Results 415pairs (s, T ), where T ⊆ seq(ω) is a superperfet tree, s ∈ T , and for all t ∈ T wehave either t 4 s or s 4 t ∧ t ∈ split(T ) (i.e., Ts = T and every node t < s is asplitting node of T ). For L-onditions (s, T ) and (s′, T ′) let (s, T ) ≤ (s′, T ′) ⇐⇒
s 4 s′ ∧ T ′ ⊆ T . Furthermore, for ultra�lters U ⊆ [ω]ω we de�ne restritedLaver foring, denoted LU , as follows: A pair (s, T ) is an LU -ondition if it is an
L-ondition whih has the property that for all t ∈ split(T ) we have nextT (t) ∈ U .131. Laver foring and Borel's onjeture. A set X ⊆ R has strong measure zeroif for every sequene of positive reals {εn : n ∈ ω} there exists a sequeneof intervals {In : n ∈ ω}, suh that for all n ∈ ω, µ(In) ≤ εn, and X ⊆⋃

n∈ω In. Furthermore, Borel's onjeture is the statement that there are nounountable strong measure zero sets (see Borel [4℄). Now, Goldstern, Judah,and Shelah [6℄ showed that b = ω1 implies that Borel's onjeture fails. On theother hand, using Laver foring, Laver showed in [11℄ that Borel's onjeture isonsistent with ZFC+ c = ω2 (f. Bartoszy«ski and Judah [1, Setion 8.3℄).132. Combinatorial properties of Laver foring. Laver foring satis�es Axiom A (seeBartoszy«ski and Judah [1, Lemma 7.3.27℄), and therefore, Laver foring isproper. Sine Laver foring has the Laver property (see Bartoszy«ski and Ju-dah [1, Theorem 7.3.29℄), it does not add Cohen reals. However, Laver foringadds dominating reals (see Bartoszy«ski and Judah [1, Lemma 7.3.28℄), andtherefore, Laver foring adds splitting reals. Furthermore, one an show thatLaver foring is minimal (see Gray [8℄).133. L× L adds Cohen reals. Even though Laver foring does not add Cohen reals,by a similar argument as in the proof of Fat 24.9, one an show that a produtof Laver foring L× L always adds Cohen reals.134. Two Laver reals added iteratively always fore CH. Brendle [5, Theorem 3.4℄showed that Laver foring ollapses d to ω1, and Goldstern, Repiký, Shelah,and Spinas [7, Theorem 2.7℄ showed that Laver foring (as well as Miller foring)ollapses c to a ardinal ≤ h. Thus, two Laver reals added iteratively always foreCH (f. Chapter 24 |Related Result 139).135. On the onsisteny of s < b. An ω2-stage iteration with ountable supportof Laver foring, starting in a model of ZFC + CH, yields a model in whih
ω1 = s < b = c (see Blass [2, Setion 11.7℄).136. Combinatorial properties of restrited Laver foring LU . If U ⊆ [ω]ω is anultra�lter, then restrited Laver foring LU obviously satis�es . It is not hardto show that restrited Laver foring LU adds dominating reals and thereforeadds splitting reals. Furthermore, sine restrited Laver foring LU has puredeision (see Judah and Shelah [9, Theorem 1.7℄), by a similar argument as inthe proof of Corollary 24.8, one an show that LU has the Laver property.137. Restrited Laver foring LU ollapses d to ω1. Brendle [5, Corollary 3.10.(a)℄showed that restrited Laver foring LU ollapses d to ω1 (f. Related Re-sult 134).138. On the onsisteny of hom < c. Judah and Shelah showed in [9, Theorem 1.16℄that if a real r ∈ [ω]ω is LU -generi over V, then for eah olouring π : [ω]2 → 2in the ground model there exists an n ∈ ω suh that π|[r\n]2 is onstant. Now,



416 23 Miller Foringlet Pω1 = 〈Qα : α ∈ ω1〉 be an ω1-stage iteration with �nite support, where foreah α ∈ ω1, Qα is restrited Laver foring LU (for some ultra�lter U ⊆ [ω]ω).Further, let V be a model of ZFC in whih c > ω1 and let G be Pω1-generi over
V. Then V[G] is a model in whih ω1 = hom < c.Referenes1. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the struture ofthe real line, A.K.Peters, Wellesley, 1995.2. Andreas Blass, Combinatorial Cardinal Charateristis of the Continuum,in Handbook of Set Theory, Volume 1 (Matthew Foreman and AkihiroKanamori, eds.), Springer-Verlag, Berlin, 2010, pp. 395�490.3. Andreas Blass and Saharon Shelah, Near oherene of �lters III: A sim-pli�ed onsisteny proof , Notre Dame Journal of Formal Logi, vol. 30(1989), 530�538.4. Émile Borel, Sur la lassi�ation des ensembles de mesure nulle, Bulletinde la Soiété Mathématique de Frane, vol. 47 (1919), 97�125.5. Jörg Brendle, Combinatorial properties of lassial foring notions, Annalsof Pure and Applied Logi, vol. 73 (1995), 143�170.6. Martin Goldstern, Haim Judah, and Saharon Shelah, Strong measurezero sets without Cohen reals, The Journal of Symboli Logi, vol. 58 (1993),1323�1341.7. Martin Goldstern, Miroslav Repiký, Saharon Shelah, and OtmarSpinas, On tree ideals, Proeedings of the Amerian Mathematial So-iety, vol. 123 (1995), 1573�1581.8. Charles W. Gray, Iterated Foring from the Strategi Point of View ,Ph.D. thesis (1990), University of California, Berkeley (USA).9. Haim Judah and Saharon Shelah, ∆1
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24Mathias Foring
In this hapter we investigate a foring notion whih is losely related toRamsey's Theorem 2.1 and to Ramsey ultra�lters (de�ned in Chapter 10).So, it is not surprising that also Ramsey families (also de�ned in Chapter 10)are involved.With respet to an arbitrary but �xed Ramsey family E we de�ne Math-ias foring ME = (ME ,≤) as follows:

ME =
{
(s, x) : s ∈ fin(ω) ∧ x ∈ E ∧ max(s) < min(x)

}

(s, x) ≤ (t, y) ⇐⇒ s ⊆ t ∧ y ⊆ x ∧ t \ s ⊆ xIf E = [ω]ω, then we write just M instead ofME . The �nite set s of a Mathiasondition (s, x) is alled the stem of the ondition. Eah ME -generi �lter Gorresponds to a generi real m ∈ [ω]ω, alled Mathias real, whih is in fatjust the union of the stems of the onditions whih belong to the generi �lter
G, i.e., m =

⋃{
s ∈ fin(ω) : ∃x ∈ E

(
(s, x) ∈ G

)}.Properties of Mathias ForingMathias Foring adds Dominating RealsLemma 24.1. Mathias foring ME adds dominating reals.Proof. We show that a Mathias real is always dominating: Let m be ME -generi over the ground model V, let p = (s, x) be an arbitraryME -ondition,and let g ∈ ωω ∩V be an arbitrary funtion in V. It is enough to show thatthere exists an ME -ondition q ≥ p suh that q ME
�m
˙
dominates g �. Inorder to onstrut the ondition q we run the game G

E
where the Maidenplays aording to the following strategy: The Maiden's �rst move is

x0 = x \
(
g(n0)

+
)
,



418 24 Mathias Foringwhere n0 = |s|, and for i ∈ ω she plays
xi+1 = xi \max

{
g(n0 + i)+, a+i

}
,where ai is the ith move of Death. Sine E is a Ramsey family, this strategyis not a winning strategy for the Maiden and Death an play suh that

y := {ai : i ∈ ω} ∈ E . Now, by onstrution we get that (s, y) ≥ p and
(s, y) ME

∀k ≥ n0

(
m
˙
(k) > g(k)

)
,whih shows that m is a dominating real over V. ⊣Together with Fat 20.1 we getCorollary 24.2. Mathias foring ME adds splitting reals.Mathias Foring is Proper and has the Laver PropertyProperness of Mathias foring and that it has the Laver property follow quiteeasily from the fat that for every ondition (s, x) and every sentene ϕ of theforing language there is a (s, y) whih deides ϕ. This property of Mathiasforing is known as pure deision and is one of the main features of Mathiasforing.Theorem 24.3. Let (s, x) be an ME -ondition and let ϕ be a sentene ofthe foring language. Then there is an (s, y) ≥ (s, x)�with the same stemas (s, x)� suh that either (s, y) ME

ϕ or (s, y) ME
¬ϕ (i.e., (s, y) deidesthe sentene ϕ).Before we an prove the theorem, we have to introdue some terminologyand prove some auxiliary results: For every ME -ondition (s, x) ∈ME let

[s, x]ω =
{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}
.Notie that the sets [s, x]ω agree with the sets of the base for the Ellentuktopology whih was introdued in Chapter 9.For a (�xed) open set O ⊆ ME let Ō :=

⋃{
[s, x]ω : (s, x) ∈ O

}. An
ME -ondition (s, x) is alled good (with respet to O), if there is a ondition
(s, y) ≥ (s, x) suh that [s, y]ω ⊆ Ō; otherwise it is alled bad. Furthermore,the ondition (s, x) is alled ugly if (s ∪ {a}, x \ a+

) is bad for all a ∈ x.Notie that if (s, x) is ugly, then (s, x) is bad, too. Finally, (s, x) is alledompletely ugly if (s ∪ {a0, . . . , an}, x \ a+n
) is bad for all {a0, . . . , an} ⊆ xwith a0 < . . . < an.Lemma 24.4. If an ME -ondition (s, x) is bad, then there is a ondition

(s, y) ≥ (s, x) whih is ugly.



Mathias foring is proper and has the Laver property 419Proof. We run the game G
E

where the Maiden plays aording to the fol-lowing strategy: She starts the game by playing x0 := x, and then, for i ∈ ω,she plays xi+1 ⊆ (xi \ a+i ) suh that [s ∪ {ai}, xi+1]
ω ⊆ Ō if possible, and

xi+1 = (xi \a+i ) otherwise. Stritly speaking we assume that E is well-orderedand that xi+1 is the �rst element of E with the required properties. However,sine this strategy is not a winning strategy for theMaiden, Death an playso that z := {ai : i ∈ ω} ∈ E . Now, let y =
{
ai ∈ z : [s ∪ {ai}, xi+1]

ω ⊆ Ō
}.Beause E is a free family, by Lemma 10.2 we get that y or z \ y belongs to

E . If y ∈ E , then [s, y]ω ⊆ Ō whih would imply that (s, x) is good, but thisontradits the premise of the lemma. Hene, z \ y ∈ E , whih implies that
(s, z \ y) is ugly. ⊣Lemma 24.5. If an ME -ondition (s, x) is ugly, then there is a ondition
(s, y) ≥ (s, x) suh that (s, y) is ompletely ugly.Proof. This follows by an iterative appliation of Lemma 24.4. In fat, forevery i ∈ ω, the Maiden an play a set xi ∈ E suh that for eah t ⊆
{a0, . . . , ai−1}, either the ondition (s ∪ t, xi) is ugly or [s ∪ t, xi]ω ⊆ Ō. NowDeath an play suh that y := {ai : i ∈ ω} ∈ E . Assume that there exists a�nite set t ⊆ y suh that (s ∪ t, y \max(t)+) is good. Notie that sine (s, x)was assumed to be ugly, t 6= ∅. Now let t0 be a smallest �nite subset of y suhthat q0 = (s ∪ t0, y \ max(t0)

+) is good and let t−0 = t0 \ {max(t0)}. Thenby de�nition of t0, the ondition q−0 =
(
s ∪ t−0 , y \max(t0)

) is not good, andhene, by the strategy of the Maiden, it must be ugly, but if q−0 is ugly, then
q0 is bad, whih is a ontradition to our assumption. Thus, there is no �niteset t ⊆ y suh that (s ∪ t, y \max(t)+) is good, whih implies that all theseonditions are ugly, and therefore (s, y) is ompletely ugly. ⊣Now we are ready to prove that Mathias foring ME has pure deision:Proof of Theorem 24.3. Let (s, x) be an ME -ondition and let ϕ be a sen-tene of the foring language. With respet to ϕ we de�ne O1 := {q ∈ ME :
q ME

ϕ} and O2 := {q ∈ME : q ME
¬ϕ}. Clearly O1 and O2 are both openand O1∪O2 is even dense inME . By Lemma 24.5 we know that for any (s, x)there exists (s, y) ≥ (s, x) suh that either [s, y]ω ⊆ Ō1 or [s, y]ω ∩ Ō1 = ∅.In the former ase we have (s, y) ME
ϕ and we are done. In the latter asewe �nd (s, y′) ≥ (s, y) suh that [s, y′]ω ⊆ Ō2. (Otherwise we would have

[s, y]ω ∩ (Ō1 ∪Ō2) = ∅, whih is impossible by the density of O1∪O2.) Hene,
(s, y′) ME

¬ϕ. ⊣As a onsequene of Theorem 24.3 we an show that eah in�nite subsetof a Mathias real is a Mathias real.Corollary 24.6. If m ∈ [ω]ω is a Mathias real over V and m′ is an in�nitesubset of m, then m′ is a Mathias real over V too.



420 24 Mathias ForingProof. Let D ⊆ ME be an arbitrary open dense subset of ME whih belongsto V and let D′ be the set of all onditions (s, z) ∈ME suh that for all t ⊆ s,
[t, z]ω ⊆ D̄. Notie that D′ belongs to V.First we show that D′ is a dense (and by de�nition also open) subset of
ME : For this take an arbitrary ondition (s, x) ∈ D and let {ti : 0 ≤ i ≤ h} bean enumeration of all subsets of s. Beause D is open dense in ME we �nd aondition (t0, y0) suh that y0 ⊆ x and [t0, y0]

ω ∈ D̄. Moreover, for eah i < hwe �nd a ondition (ti+1, yi+1) suh that yi+1 ⊆ yi and [ti+1, yi+1]
ω ∈ D̄.Now, let y := yh. Then (s, y) ∈ D′, whih implies that D′ is dense in ME .Let m ∈ [ω]ω be a Mathias real over V and let m′ be an in�nite subsetof m. Sine D′ is an open dense subset of ME and m is an ME -generi real,there exists a ondition (s, x) ∈ D′ suh that s ⊆ m ⊆ s ∪ x. For t = m′ ∩ swe get t ⊆ m′ ⊆ t ∪ x, and by de�nition of D′ we have [t, x]ω ⊆ D̄. Thus, m′meets the open dense set D, and sine D was arbitrary, this ompletes theproof. ⊣As a onsequene we get properness of Mathias foring:Corollary 24.7. Mathias foring ME is proper.Proof. Let V be a model of ZFC. Further, let N = (N,∈) be a ountableelementary submodel of (Hχ,∈) whih ontains ME , and let (s, x) ∈ME ∩N .Sine N is ountable (in V), there exists a Mathias real m ∈ [s, x]ω ∩V over

N. Notie that (s,m \ s) ≥ (s, x) and that (s,m \ s) belongs to V. Now, byCorollary 24.6, every m′ ∈ [s,m \ s]ω is a Mathias real over N, and hene,the ME -ondition (s,m \ s) is N-generi. ⊣In Chapter 21 we have seen that Cohen foring adds unbounded reals,but not dominating reals. Now we shall show that Mathias foring ME , eventhough it adds dominating reals, it does not add Cohen reals (but see alsoFat 24.9):Corollary 24.8. Mathias foring ME has the Laver property and thereforedoes not add Cohen reals.Proof. Let f ∈ ωω∩V be an arbitrary funtion whih belongs to V and let g
˜be an ME -name for a funtion in ωω suh that 0 ME

∀n ∈ ω
(
g
˜
(n) ≤ f(n)

).Further, let F be the set of all funtions S : ω → fin(ω) suh that for every
n ∈ ω, |S(n)| ≤ 2n. We have to show that 0 ME

∃S ∈ F ∩V ∀n ∈ ω
(
g
˜
(n) ∈

S(n)
). In other words, we have to show that for every ME -ondition (s, x)there exists an (s, y) ≥ (s, x) and an S ∈ F ∩V suh that (s, y) ME

∀n ∈
ω
(
g
˜
(n) ∈ S(n)

).By Theorem 24.3, and sine g
˜
is bounded by f(n), for everyME -ondition

(t, z) and for every n ∈ ω there exists a ondition (t, z′) ≥ (t, z) whih deides
g
˜
(n), i.e., (t, z′) ME

g
˜
(n) = k for some k ≤ f(n). Let (s, x) be any ME -ondition. We run the game G

E
where the Maiden plays aording to thefollowing strategy: She starts the game by playing x0 ⊆ x suh that (s, x0)



Mathias foring is proper and has the Laver property 421deides g
˜
(0), and we de�ne S(0) :=

{
k ≤ f(0) : (s, x0) ME

g
˜
(n) = k

}.Notie that |S(0)| = 1 = 20. In general, for n ∈ ω, the Maiden plays xn+1 ⊆
(xn \ a+n ) suh that for every ā ⊆ {a0, . . . , an}, (s ∪ ā, xn+1) deides g

˜
(n+ 1),and we de�ne S(n + 1) as the set of all k ≤ f(n + 1) suh that, for some

ā ⊆ {a0, . . . , an}, (s ∪ ā, xn+1) ME
g
˜
(n + 1) = k. Notie that |S(n + 1)| ≤

|P
(
{a0, . . . , an}

)
= 2n+1. Sine this strategy is not a winning strategy forthe Maiden, Death an play suh that y := {an : n ∈ ω} ∈ E . Now, byonstrution, S ∈ F ∩V and for eah n ∈ ω we have (s, y) ME

g
˜
(n) ∈ S(n).Thus, the set S and the ME -ondition (s, y) have the required properties,whih ompletes the proof. ⊣Sine Mathias foring has the Laver property and is proper, a ountablesupport iteration of Mathias foring notions does not add Cohen reals. How-ever, the next result shows that this is not true for a produt of Mathiasforing (ompare with Chapter 23 |Related Result 127 and with Chap-ter 22 |Related Result 121):Fat 24.9. The produt of any two Mathias foring notions always adds Co-hen reals.Proof. Let G1 ×G2 be ME ×ME -generi over some model V of ZFC and let

m1 and m2 be the orresponding Mathias reals (reall that m1,m2 ∈ [ω]ω).Further, let m̄1, m̄2 ∈ ωω be the (unique) stritly inreasing funtions whihmap ω ontom1 andm2 respetively (i.e., for i ∈ {1, 2}, m̄i is stritly inreasingand m̄i[ω] = mi). We shall show that cm1,m2 ∈ ω2, de�ned by stipulating
cm1,m2(k) =

{
0 if m̄1(k) ≤ m̄2(k),
1 otherwise,is a Cohen real over V.For s ∈ fin(ω) we de�ne s̄ ∈ |s|ω similarly, i.e., s =

{
s̄(k) : k ∈ |s|

} andfor all k, l ∈ |s| with k < l we have s̄(k) < s̄(l). Further, for s, t ∈ fin(ω) with
|s| = |t| let γs,t ∈ |s|ω be suh that

γs,t(k) =

{
0 if s̄(k) ≤ t̄(k),
1 otherwise.Now, let

E =
{〈

(s, x), (t, y)
〉
∈ME ×ME : |s| = |t|

}and onsider the following funtion:
Γ : E −→ ⋃

n∈ω

n2

〈
(s, x), (t, y)

〉
7−→ γs,tObviously, whenever D ⊆ ⋃

n∈ω
n2 is open dense, then Γ−1[D] =

{
p ∈ME ×

ME : Γ (p) ∈ E
} is dense inME ×ME , and sine 〉m1,m2〉 isME ×ME -generiover V, we get that cm1,m2 is a Cohen real over V. ⊣



422 24 Mathias ForingA Model in whih p < hBefore we onstrut a model in whih p < h, we shall show that M ≈ U∗MU
˙
,where U =

(
[ω]ω/ fin,≤

) (whih was introdued in Chapter 14). To simplifythe notation we write ∗ω instead of [ω]ω/ fin.Lemma 24.10. M ≈ U ∗MU
˙
, where U

˙
is the anonial U-name for the U-generi ultra�lter.Proof. Firstly, reall that every (U∗MU

˙
)-ondition is of the form 〈

[z ]̃ , (t, y)
˜

〉,where
[z ]̃ U �(t, y)

˜
is an MU

˙
-ondition�,in partiular, [z ]̃ U y

˜
∈ U

˙
. Furthermore, sine U does not add new reals, forevery U-name (t, y)

˜
for anMU

˙
-ondition, and for every U-ondition [z ]̃ , thereis an M-ondition (s, x) in the ground model and a U-ondition [z′]̃ ≥ [z ]̃suh that

[z′]̃ U (s, x)
˙

= (t, y)
˜

.With these fats one an show that the funtion
h : M −→ ∗

ω ×MU

˜
(s, x) 7−→

〈
[x]̃ , (s, x)

˙

〉is a dense embedding�we leave the details as an exerise to the reader.Hene, by Fat 14.3, we get that Mathias foring M is equivalent to the two-step iteration U ∗MU
˙
. ⊣As a side-result of Lemma 24.10 we get that whenever m ∈ [ω]ω is a Mathiasreal over V, then the set U = {x ⊆ ω : m ⊆∗ x} is U-generi over V, inpartiular, U is a Ramsey ultra�lter in V[U ]. The following fat is just areformulation of this observation.Fat 24.11. If m is a Mathias real over V, then m is almost homogeneousfor all olourings π : [ω]2 → 2 whih belong to V.Proposition 24.12. p = ov(M) < h is onsistent with ZFC.Proof. By Theorem 21.5, and sine ω1 ≤ p, it is enough to show that ω1 =ov(M) < h = ω2 is onsistent with ZFC.First we show that a ω2-iteration with ountable support of Mathias for-ing, starting from a model V of ZFC+ CH, yields a model in whih h = ω2.Let Pω2 =

〈
Q
˜
α : α ∈ ω2

〉 be a ountable support iteration of Mathiasforing, i.e., for all α ∈ ω2 we have 0α Pα “Q
˜
α is Mathias foring�. ByLemma 24.10 we may assume that for all α ∈ ω2 we have

0α Pα “Q
˜
α is the two-step iteration U ∗MU

˙
� .



A model in whih p < h 423Let V be a model of ZFC + CH and let G be Pω2 -generi over V. SineMathias foring is proper, by Theorem 20.5.(a) we have V[G] � c = ω2. Inorder to show that V[G] � h = ω2 it is enough to show that in V[G], theintersetion of any family of size ω1 of open dense subsets of ∗ω is non-empty.Claim 1. If eah family {Dν : ν ∈ ω1} of open dense subsets of ∗
ω whihbelongs to V[G] has non-empty intersetion, then h > ω1.Proof of Claim 1. The proof is by ontraposition. Assume that H = {Aν :

ν ∈ ω1} is a shattering family. For every ν ∈ ω1 let
Dν =

{
y ∈ [ω]ω : ∃z ∈ Aν (y ⊆∗ z)

}
.Sine H is shattering, for every x ∈ [ω]ω there is a ν0 ∈ ω1 suh that x hasin�nite intersetion with at least two distint members of Aν0 , whih impliesthat x /∈ Dν0 and shows that ⋂{Dν : ν ∈ ω1} = ∅. ⊣Claim 1The following laim is a kind of re�etion priniple (f. Theorem 15.2).Claim 2. Let {Dν : ν ∈ ω1} be a family of open dense subsets of ∗

ω whihbelongs to V[G]. Then there is an α ∈ ω2 suh that for every ν ∈ ω1 the set
Dν ∩V[G|α] belongs to V[G|α] and is open dense in ∗

ω
V[G|α].Proof of Claim 2. It is enough to �nd an ordinal α ∈ ω2 suh that for every ν ∈

ω1, Dν∩V[G|α] belongs toV[G|α] and is dense in ∗
ω
V[G|α] � that Dν∩V[G|α]is open in ∗

ω
V[G|α] follows from the fat that V[G|α] is transitive.Sine Mathias foring is proper and V � CH, by Lemma 20.4 we get thatfor eah γ ∈ ω2, V[G|γ ] � CH. For every γ ∈ ω2 let {xγη : η ∈ ω1} be anenumeration of [ω]ω ∩ V[G|γ ]. Sine no new reals are added at limit stagesof unountable o�nality (see Lemma 18.9), for all η, ν ∈ ω2 there is a leastordinal γνη > γ, γνη ∈ ω2, suh that there is a set yνη ∈ Dν ∩ V[G|γν

η
] with

yνη ⊆∗ xγη . Let β(γ) = ⋃{
γνη : 〈η, ν〉 ∈ ω1 × ω1

} and for ξ ∈ ω1 let
βξ(0) =






⋃
ξ′∈ξ β

ξ′(0) if ξ is a limit ordinal,
β
(
βξ
′

(0)
) if ξ = ξ′ + 1.Then α =

⋃{
βξ(0) : ξ ∈ ω1

}, whih is a limit ordinal below ω2 of o�nality
ω1, has the required properties. ⊣Claim 2For every ν ∈ ω1 let D′

ν = Dν ∩ V[G|α]. Further, let Uα be the U-generiRamsey �lter over V[G|α], determined by G. In the model V[G|α][Uα], Uαmeets every D′
ν (i.e., for every ν ∈ ω1, Uα ∩ D′

ν 6= ∅). Now, for mα, the
MUα

-generi Mathias real over V[G|α][Uα] (i.e., the seond omponent of thedeomposition of Mathias foring), we have mα ∈ ⋂{D′
ν : ν ∈ ω1} whihshows that ⋂{D′

ν : ν ∈ ω1} is non-empty. Thus, by Claim 1 and sine V[G] �
c = ω2, V[G] � h = ω2.It remains to show that V[G] � ω1 = ov(M). For this, reall thatMathias foring has the Laver property and therefore, by Proposition 20.2,



424 24 Mathias ForingMathias foring does not add Cohen reals. Now, sine the Laver prop-erty is preserved under ountable support iteration of proper foring no-tions (see Theorem 20.7), a ountable support iteration of Mathias foringdoes not add Cohen reals to the ground model. Hene, by Corollary 21.8(whih says that ov(M) is preserved if no Cohen reals are added) we have
V[G] � ω1 = ov(M). ⊣NotesMathias foring restrited to happy families (whih are slightly more general thanRamsey families) was introdued and investigated by Mathias in [11℄. However, mostof the results presented in this hapter an be found in Halbeisen [5℄.Related Results139. Mathias foring ollapses c to h and d to ω1. The fat that Mathias foringollapses c to h is just a onsequene of Lemma 24.10 and the fat that ultra�lterforing U ollapses c to h (see Chapter 25 |Related Result 144). Furthermore,Brendle [2, Corollary 3.10.()/(d)℄ showed that Mathias foring ollapses d to

ω1, and sine h ≤ d, one gets that two Mathias reals added iteratively alwaysfore CH (f. Chapter 23 |Related Result 134).140. Mathias foring and Borel's onjeture. By adding random reals to the modelonstruted in the proof of Proposition 24.12, Judah, Shelah, and Woodin [10℄showed that Borel's onjeture is onsistent with c being arbitrarily large(f. Chapter 23 |Related Result 131), and see also Bartoszy«ski and Judah [1,Theorem 8.3.7℄).141. Restrited Mathias foring whih does not add dominating reals. Canjar showedin [3℄ that under the assumption d = c, there exists an ultra�lter U over ωsuh that MU does not add dominating reals. Further, he showed that suh anultra�lter is neessarily a P -point.142. Between Laver and Mathias foring. If U is an ultra�lter, then restrited Math-ias foring MU is equivalent to restrited Laver foring LU if and only if Uis a Ramsey ultra�lter (see Judah and Shelah [8, Theorem 1.20℄). On the otherhand, if U is not a Ramsey ultra�lter, then MU and LU an be quite di�erent(see Judah and Shelah [9℄).143. The Ramsey property of projetive sets∗. The hierarhy of projetive subsetsof [ω]ω is de�ned as follows: Let A ⊆
(
[ω]ω)k be a k-dimensional set (for somepositive integer k). Then A is a Σ

1
1-set if A the projetion along [ω]ω of a losedset C ⊆

(
[ω]ω)k+1, and A is a Π

1
1-set if it is the omplement of a Σ

1
1-set. Ingeneral, for integers n ≥ 1, A is a Σ

1
n+1-set if A the projetion along [ω]ω of a

(k + 1)-dimensional Π1
n
-set, and A is a Π

1
n+1-set if it is the omplement of a

Σ
1
n+1-set. Furthermore, we say that A is a ∆

1
n
-set if A is a Σ

1
n
-set as well asa Π

1
n
-set. Below, Σ1

n
, Π1

n
, and ∆

1
n
, denote the olletions of the orrespondingsubsets of [ω]ω. The sets A ⊆ [ω]ω belonging to one of the olletions Σ

1
n
, Π1

n
,



Referenes 425or ∆1
n
, are alled projetive sets. With respet to inlusion, we get the followingdiagram:

Σ
1
1 Σ

1
2 Σ

1
3

      

∆
1
1 ∆

1
2 ∆

1
3

. . .

 
 

 
 

 
 

Π
1
1 Π

1
2 Π

1
3If all Σ1

n
-sets A ⊆ [ω]ω have the Ramsey property (de�ned in Chapter 9), thenwe shall writeΣ1

n
(R); the notationsΠ1

n
(R) and∆

1
n
(R) are de�ned aordingly.It is natural to ask whether all projetive sets have the Ramsey property. Eventhough the answer to this question is not deidable in ZFC, one an show thefollowing fats:

• For all n ∈ ω: Σ1
n
(R) ⇐⇒ Π

1
n
(R) (trivial).

• ∆
1
2(R) ⇐⇒ Σ

1
2(R) (see Judah and Shelah [8, Theorem 2.7℄).

• ZFC ⊢ Σ
1
1(R) (see Silver [13℄ or Ellentuk [4℄).

• L 2∆
1
2(R) (f. Judah and Shelah [8, Lemma 2.2℄).

• Con(ZFC) ⇒ Con
(ZFC+∆

1
3(R)

) (see Judah [7, Theorem 0.8℄).Furthermore, Mathias showed in [11, Setion 5℄ � using Mathias foring� thatif ZFC+ �there is a strongly inaessible ardinal � is onsistent (where κ isstrongly inaessible if κ is a regular limit ardinal and for all λ < κ, 2λ < κ),then so is ZFC+ �every projetive set has the Ramsey property �. However, itis still open whether one an take �Mathias' inaessible� away, i.e., whetherone an onstrut a model of ZFC in whih all projetive sets have the Ram-sey property without assuming the existene of a strongly inaessible ardinal(f. Shelah [12℄). Moreover, it is not even known whether Σ
1
3(R) implies theexistene of a strongly inaessible ardinal. For partial results see Halbeisenand Judah [6, Theorem 5.3℄ and Brendle [2, Proposition 4.3℄.Referenes1. Tomek Bartoszy«ski and Haim Judah, Set Theory: on the struture ofthe real line, A.K.Peters, Wellesley, 1995.2. Jörg Brendle, Combinatorial properties of lassial foring notions, Annalsof Pure and Applied Logi, vol. 73 (1995), 143�170.3. R. Mihael Canjar, Mathias foring whih does not add dominating re-als, Proeedings of the Amerian Mathematial Soiety, vol. 104 (1988),1239�1248.4. Erik Ellentuk, A new proof that analyti sets are Ramsey , The Journalof Symboli Logi, vol. 39 (1974), 163�165.5. Lorenz Halbeisen, A playful approah to Silver and Mathias forings, inFoundations of the Formal Sienes V: In�nite Games (Stefan Bold,Benedikt Löwe, Thoralf Räsh, and Johan van Benthem, eds.), Papers of a Con-ferene held in Bonn, November 26�29, 2004, [Studies in Logi, vol. 11], CollegePubliations, London, 2007, pp. 123�142.6. Lorenz Halbeisen and Haim Judah, Mathias absoluteness and the Ramseyproperty , The Journal of Symboli Logi, vol. 61 (1996), 177�193.
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2-sets of reals, Annals of Pure andApplied Logi, vol. 42 (1989), 207�223.9. , Foring minimal degree of onstrutibility , The Journal of SymboliLogi, vol. 56 (1991), 769�782.10. Haim Judah, Saharon Shelah, and W. Hugh Woodin, The Borel onje-ture, Annals of Pure and Applied Logi, vol. 50 (1990), 255�269.11. Adrian Rihard David Mathias, Happy families, Annals of Mathemati-al Logi, vol. 12 (1977), 59�111.12. Saharon Shelah, Can you take Solovay's inaessible away? , Israel Journalof Mathematis, vol. 48 (1984), 1�47.13. Jak Silver, Every analyti set is Ramsey , The Journal of Symboli Logi,vol. 35 (1970), 60�64.



25On the Existene of Ramsey Ultra�lters
So far we have seen that p = c implies the existene of Ramsey ultra�lters (seeProposition 10.9). In partiular, if we assume CH, then Ramsey ultra�ltersexist. Moreover, by Proposition 13.9 we know that MA(ountable) impliesthe existene of 2c mutually non-isomorphi Ramsey ultra�lters. Furthermore,by Theorem 21.5 we know that p ≤ ov(M), and Chapter 13 |Related Re-sult 80 tells us that MA(ountable) is equivalent to ov(M) = c. Hene,ov(M) = c is a su�ient ondition for the existene of Ramsey ultra�ltersand it is natural to ask whether ov(M) = c is neessary, too. In the �rstsetion of this hapter we shall give a negative answer to this question by on-struting a model of ZFC+ov(M) < c in whih there is a Ramsey ultra�lter.Sine in that model we have h = c and h is related to the Ramsey property(f. Chapter 9), one might think that perhaps h = c implies the existene ofa Ramsey ultra�lter; but this is not the ase, as we shall see in the seondsetion of this hapter.There may be a Ramsey Ultra�lter and ov(M ) < cIn the proof of Proposition 24.12 we have onstruted a model V of ZFC,usually alled Mathias' model, in whih ov(M ) < c. Furthermore, Propo-sition 14.18 states that if G is U-generi over V, where U =

(
[ω]ω/ fin,≤

),then ⋃
G is a Ramsey ultra�lter in V[G]; in partiular, ultra�lter foring Uadds a Ramsey ultra�lter to V. Reall that [ω]ω/ fin =

{
[x]̃ : x ∈ [ω]ω

} and
[x]̃ ≤ [y]̃ ⇐⇒ y ⊆∗ x. So, at �rst glane we just have to fore with Uover Mathias' model. However, in order to get a model in whih there existsa Ramsey ultra�lter and ov(M ) < c, it has to be shown that ultra�lter for-ing U does not ollapse c to ov(M )� for this, we �rst show that ultra�lterforing U does not ollapse c to any ardinal below h.Lemma 25.1. If G is U-generi over V, then V[G] � c ≥ hV, in other words,ultra�lter foring U does not ollapse c to any ardinal κ < hV.



428 25 On the Existene of Ramsey Ultra�ltersProof. Let G be U-generi over some modelV of ZFC. Sine the foring notion
U is σ-losed (by the proof ofTheorem 8.1), and sine σ-losed foring notionsdo not add reals (by Lemma 14.17), ultra�lter foring U does not add any newreals to the ground model V. In partiular we have V[G] � c ≤ cV. Thus, inorder to show that V[G] � c ≥ hV, it is enough to prove that in V[G] there isno surjetion from some κ < hV onto c (whih implies c ≮ hV).Let κ be a ardinal with V � κ < h and let g ∈ V[G] be a funtion from κto c. In order to prove that g fails to be surjetive, it is enough to show that
g is in the ground model V�notie that this would imply V � c ≤ κ < h,ontraditing the fat that h ≤ c. Let g

˜
be a U-name for g and let x0 ∈ [ω]ωbe suh that [x0 ]̃ U g

˜
: κ→ c. For eah α ∈ κ let

Dα =
{
[y]̃ : |y ∩ x0| < ω ∨

(
y ⊆∗ x0 ∧ ∃γ ∈ c ([y]̃ U g

˜
(α) = γ)

)}
.Eah Dα is open dense. Thus, for eah α ∈ κ we an hoose a mad family

A ⊆ ⋃
Dα. Now, by Lemma 8.14 there is a mad family A ⊆ [ω]ω suh that

∀α ∈ κ ∀y ∈ Aα ∃x ∈ A (x ⊆∗ y) .Furthermore, let D =
{
[y]̃ : ∃x ∈ A (y ⊆∗ x)

}. Then D is open dense andtherefore G ∩ D is non-empty. For [y0 ]̃ ∈ (G ∩ D) we get [y0 ]̃ ≤ [x0 ]̃ , inpartiular, [y0 ]̃ U g
˜
: κ→ c. Moreover, by onstrution of D,
∀α ∈ κ ∃γ ∈ c

(
[y0 ]̃ U g

˜
(α) = γ

)
.Let g0 : κ → c be suh that for all α ∈ κ, [y0 ]̃ U g

˜
(α) = g0(α). Then g0belongs to the ground model V and in addition we have [y0 ]̃ U g

˜
= g0. Now,sine [y0 ]̃ ∈ G, this shows that g = g

˜
[G] belongs to V. ⊣With this result, we easily an onstrut a model with a Ramsey ultra�lter inwhih cov(M ) < c.Proposition 25.2. The existene of a Ramsey ultra�lter is onsistent withZFC+ ov(M ) < c.Proof. Let V be Mathias' model (i.e., the model onstruted in the proof ofProposition 24.12), and let G be U-generi over V. Then we have

V � ω1 = ov(M ) < h = c = ω2 ,and by Lemma 25.1 we get V[G] � hV = c, in partiular,
V[G] � ov(M ) < c .Finally, by Proposition 14.18 we get that ⋃

G is a Ramsey ultra�lter in
V[G], and therefore, V[G] is a model with a Ramsey ultra�lter in whih
cov(M ) < c. ⊣



There may be no Ramsey ultra�lter and h = c 429There may be no Ramsey Ultra�lter and h = cThe goal of this setion is to show that there are no Ramsey ultra�lters inMathias' model � whih is a model of h = c. In fat we prove that not evenrapid �lters exist in that model. For this we �rst prove a few auxiliary resultsonerning ω2-iterations of Mathias foring. Then we reall the de�nition ofrapid �lters (f. Chapter 10 |Related Result 70) and show that every Ram-sey ultra�lter is a rapid �lter; and �nally we prove that there are no rapid�lters in Mathias' model.Let us start by realling some terminology of Mathias foringM = (M,≤)and by introduing some notation: Let (s, x) and (t, y) be two M-onditions.Reall that
(s, x) ≤ (t, y) ⇐⇒ s ⊆ t ∧ y ⊆ x ∧ t \ s ⊆ x .Now, let us de�ne
(s, x) ≤0 (t, y) ⇐⇒ (s, x) ≤ (t, y) ∧ s = t .In order to de�ne �≤n � for positive integers n ∈ ω, we write sets x ∈ [ω]ω ininreasing order, i.e., x = {ak : k ∈ ω} where k < k′ → ak < ak′ . By abuseof notation we shall just write x = {a0 < a1 < · · · }. Now, for n ∈ ω and

x = {a0 < a1 < · · · } we de�ne
(s, x) ≤n (t, y) ⇐⇒ (s, x) ≤0 (t, y) ∧ ∀k ∈ n (ak ∈ y) .In this notation, the fat that Mathias foring has pure deision (see The-orem 24.3) an be expressed as follows: Let p ∈ M be an M-ondition andlet ϕ be a sentene of the foring language. Then there exists a q ∈ M with

p ≤0 q suh that either q M ϕ or q M ¬ϕ.In order to get familiar with this notation we prove the following fat.Notie that this fat was already used impliitly in the previous hapter (e.g.,in the proof of Corollary 24.8).Fat 25.3. Let g
˜
be an M-name for a funtion g ∈ ωω and let n0 ∈ ω be a�xed integer. Further, let p ∈M and k ∈ ω be suh that

p M g
˜
(n0) ∈ k .Then there are q ∈M and l0 ∈ k suh that p ≤0 q and

q M g
˜
(n0) = l0 .Proof. Sine Mathias foring has pure deision (see Theorem 24.3), there isa q0 ∈M with p ≤0 q0 suh that

q0 M g
˜
(n0) = 0 or q0 M

∨

0<l<k

g
˜
(n0) = l ,



430 25 On the Existene of Ramsey Ultra�lterswhere ∨0<l<k ϕl is an abbreviation for ϕ1 ∨ · · · ∨ ϕk−1. In the latter ase, bypure deision we �nd a q1 ∈M with q0 ≤0 q1 suh that
q1 M g

˜
(n0) = 1 or q1 M

∨

1<l<k

g
˜
(n0) = l .Proeeding this way, we �nally �nd a q ∈ M with p ≤0 q and an l0 ∈ k suhthat q M g

˜
(n0) = l0. ⊣To prove the following lemma, we just have to iterate this proedure.Lemma 25.4. Let g

˜
be an M-name for a funtion g ∈ ωω and let n0 ∈ ω be a�xed integer. Further, let p ∈M and k ∈ ω be suh that

p M g
˜
(n0) ∈ k .Then, for every i ∈ ω, there are qi ∈ M and Ii ⊆ k suh that p ≤i qi,

|Ii| ≤ i+ 1, and
qi M

∨

l∈Ii

g
˜
(n0) = l .Proof. The proof is by indution on i: For i = 0, this is just Fat 25.3. So,let us assume that the lemma holds for some i ∈ ω. In other words, there are

qi ∈M and Ii ⊆ k suh that p ≤i qi, |Ii| ≤ i+ 1, and qi M
∨
l∈Ii

g
˜
(n0) = l.Let p = (s, x) and qi = (s, yi), where x = {a0 < a1 < · · · } and yi = {b0 <

b1 < · · · } respetively. Notie that for all j ∈ i, aj = bj . If ai = bi, then, for
Ii+1 := Ii and qi+1 := qi, we get

qi+1 M

∨

l∈Ii+1

g
˜
(n0) = l .Otherwise, we have ai < bi (sine p ≤i qi), and by Fat 25.3, we �nd y′ ⊆ y\aiand li+1 ∈ k suh that

(
s ∪ {aj : j ≤ i}, y′

)
M g
˜
(n0) = li+1 .Now, for Ii+1 := Ii ∪ {li+1} and qi+1 :=

(
s ∪ {aj : j ≤ i}, y′

) we get
qi+1 M

∨

l∈Ii+1

g
˜
(n0) = l ,where by onstrution, p ≤i+1 qi+1 and |Ii+1| ≤ i+ 2. ⊣The next result uses the fat that Mathias foring is proper (see Corol-lary 24.7).



There may be no Ramsey ultra�lter and h = c 431Lemma 25.5. Let V be a model of ZFC, let {α
˜
k : k ∈ ω} be a ountable setof M-names for ordinals, suh that for some p ∈M we have

p M ∀k ∈ ω (α
˜
k ∈ ω2) .Then, for every i ∈ ω, there is a ountable set A ⊆ ω2 in V, as well as a

q ∈M with p ≤i q, suh that
q M ∀k ∈ ω (α

˜
k ∈ A) .Proof. Let N = (N,∈) be a ountable elementary submodel of (Hχ,∈) whihontains M, {α

˜
k : k ∈ ω}, and p, where p = (s, x). Sine N is ountable(in V), there exists a Mathias real mG ∈ [s, x]ω ∩ V over N. Notie that

(s,mG \ s) ≥ (s, x) and that (s,mG \ s) belongs to V. By Corollary 24.6,every m′
G ∈ [s,mG \ s]ω is a Mathias real over N, and hene, the M-ondition

q = (s,mG \ s) is N-generi. Now, for A := N ∩ ω2, whih is ountable in
V, we get that q M ∀k ∈ ω (α

˜
k ∈ A), whih proves the lemma in the asewhen i = 0. For i > 0, we an proeed as in the proof of Lemma 25.4� thedetails are left as an exerise to the reader. ⊣In the following result we introdue what is alled a fusion argument:Fat 25.6. Let 〈pn : n ∈ ω〉 be a sequene of M-onditions suh that for all

n ∈ ω, pn ≤ pn+1. Further assume that there is an m0 ∈ ω suh that for all
n ≥ m0, pn ≤n pn+1. Then there exists an M-ondition pω suh that for all
n ≥ m0, pn ≤n pω.Proof. For n ∈ ω, let pn = (sn, xn) where xn = {xn(0) < xn(1) < · · · }, andde�ne

pω =
(
sm0 ∪ {xm0(i) : i ∈ m0}, {xi(i − 1) : m0 ∈ i ∈ ω}

)
.We leave it as an exerise to the reader to show that pω has the requiredproperties. ⊣Below we shall generalise the previous results to ountable support itera-tions of Mathias foring, but �rst let us introdue some notations: Let V bea model of ZFC, let Pω2 = 〈Qγ : γ ∈ ω2〉 be the ountable support iteration oflength ω2 of Mathias foring M, and let G = 〈G(γ) : γ ∈ ω2〉 be Pω2-generiover V. Furthermore, for β ≤ ω2, K ∈ fin(β), Pβ-onditions p and q, and

n ∈ ω, de�ne
p ≤nK q ⇐⇒ p ≤ q ∧ ∀γ ∈ K

(
q|γ Pγ p(γ) ≤n q(γ)

)
.The next result shows how fusion arguments work in ountable supportiterations of Mathias foring.



432 25 On the Existene of Ramsey Ultra�ltersLemma 25.7. Let β be an ordinal with 1 ≤ β ≤ ω2 and let 〈pn : n ∈ ω〉 bea sequene of Pβ-onditions. Furthermore, let 〈Kn : n ∈ ω〉 be an inreasinghain of �nite subsets of β (i.e., n < n′ → Kn ⊆ Kn′) suh that
⋃

n∈ω

Kn =
⋃

n∈ω

supp(pn) and ∀n ∈ ω (pn ≤nKn
pn+1) .Then there is a Pβ-ondition pω suh that for eah n ∈ ω, pn ≤nKn

pω.Proof. For every γ ∈ β, pn(γ) is a Pγ-name for anM-ondition. Thus, pn(γ) =
(s
˜
n, x
˜
n) where x

˜
n = {x

˜
n(0) < x

˜
n(1) < · · · }. For γ ∈ ⋃

n∈ωKn, let m0 =
min{n ∈ ω : γ ∈ Kn} and de�ne

pω(γ) =
(
s
˜
m0 ∪ {x

˜
m0(i) : i ∈ m0}, {x

˜
i(i − 1) : m0 ∈ i ∈ ω}

)
.In the ase when γ /∈ ⋃

n∈ωKn de�ne pω(γ) = 0γ . We leave it as an exeriseto the reader to show that pω has the required properties. ⊣In order to state the next result, we have to introdue again some notation:For ordinals α < β ≤ ω2 we say that q is a Pαβ-ondition i� there is a Pω2-ondition p = 〈p(γ) : γ ∈ ω2〉 suh that q = 〈p(γ) : α ≤ γ < β〉. In partiular,
P0β-onditions are the same as Pβ-onditions.Lemma 25.8. Let β be an ordinal with 1 ≤ β ≤ ω2 and let p be a Pβ-ondition. Furthermore, let K = {α1 < · · · < αi} be a �nite subset of β (i.e.,
i ∈ ω) and let n ∈ ω.(a) Let {α

˜
k : k ∈ ω} be a ountable set of Pβ-names for ordinals suh that

p Pβ ∀k ∈ ω (α
˜
k ∈ ω2) .Then there is a ountable set A ⊆ ω2 in V and a Pβ-ondition p′ with p ≤nK p′suh that

p′ Pβ ∀k ∈ ω (α
˜
k ∈ A) .(b) Let δ be an ordinal, where β < δ ≤ ω2, and assume that for some Pβ-name

r
˜
we have

p Pβ “r
˜
is a Pβδ-ondition�.Then there is a Pβ-ondition p′ with p ≤nK p′ and a Pβδ-ondition q suh that

p′ Pβ r
˜
= q .In partiular, p′ ∪ q is a Pδ-ondition (whih is in general not the ase for

p′ ∪ r
˜
).() Let g

˜
be a Pβ-name for a funtion g ∈ ωω and let n0 ∈ ω be a �xedinteger. Further, assume that for some k ∈ ω,

p Pβ g
˜
(n0) ∈ k .



There may be no Ramsey ultra�lter and h = c 433Then there is an I ⊆ k with |I| ≤ (n+1)i and a Pβ-ondition p0 with p ≤nK p0suh that
p0 Pβ

∨

l∈I

g
˜
(n0) = l .Proof. (a) Firstly reall that sine Mathias foring is proper, also Pδ, as aountable support iteration of proper foring notions, is proper (see Theo-rem 20.3.(b)). Thus, let N = (N,∈) be a ountable elementary submodel of

(Hχ,∈) whih ontains Pδ, {α
˜
k : k ∈ ω}, p, and r

˜
. Now, by similar argumentsas in the proof of Lemma 25.5 we an onstrut a Pβ-ondition p′ with therequired properties� the details are left as an exerise to the reader.(b) As a onsequene of (a), there is a Pβ-ondition p′ with p ≤nK p′ as wellas a ountable set A ⊆ [β, δ) in V suh that

p′ Pβ supp(r
˜
) ⊆ A .For γ ∈ [β, δ) \A, let q(γ) := 0γ . Otherwise, for γ ∈ A, let q(γ) := r

˜
(γ). Then

q ∈ Pβδ and p′ Pβ r
˜
= q , as required.() The proof is by indution on β, where 1 ≤ β ≤ ω2: Thus, we have toonsider the ase when β = 1, whih we have already done in Lemma 25.4,the ase when β is a suessor ordinal, and the ase when β is a limit ordinal.For β = δ+1, where 1 ≤ δ, we just onsider the ase when δ = αi and leavethe other ase� whih is similar to the ase when β is a limit ordinal� asan exerise to the reader. For p(δ) = (s

˜
, x
˜
), where x

˜
= {x

˜
(0) < x

˜
(1) < · · · },and for every j ≤ n let

r
˜
j =

(
s
˜
∪ {x

˜
(i) : i ∈ j}, {x

˜
(i) : j ≤ i ∈ ω}

)
.Notie that r

˜
j is a Pδ-name for an M-ondition. In partiular, if p|δ ∈ G|δ,where G|δ is Pδ-generi over V, then V[G|δ] � “r

˜
j [G|δ] is an M-ondition�.Sine Lemma 25.4 holds in V[G|δ], there is a Pδ-name r

˜
′
j for an M-onditionsuh that

p|δ Pδ

(
r
˜
j ≤0 r

˜
′
j ∧ ∃l ∈ k

(
r
˜
′
j M g

˜
(n0) = l

))
.In partiular, if p|δ ∈ G|δ, then, for some l ∈ k,V[G|δ] � r

˜
′
j [G|δ] M g

˜
(n0) = l.Now, by indution on j, where 0 ≤ j ≤ n, we an onstrut Pδ-onditions qj ,

Pδ-names for M-onditions r
˜
′
j , as well as subsets Ij ⊆ k, whih satisfy thefollowing onditions:

• p|δ ≤nK∩δ q0 ≤nK∩δ · · · ≤nK∩δ qn,
• for eah j ≤ n we have |Ij | ≤ (n+ 1)i−1,
• for eah j ≤ n, qj Pδ r

˜
′
j M g

˜
(n0) ∈ Ij (for this, enode r

˜
′
j M g

˜
(n0) = lby a funtion g

˜
r
˜
′
j
, stipulating g

˜
r
˜
′
j
(n0) = l ⇔ r

˜
′
j M g

˜
(n0) = l, and applyLemma 25.4),

• r
˜
′
n is suh that qn ∪ r

˜
′
n Pβ g

˜
(n0) ∈

⋃
j≤n Ij .



434 25 On the Existene of Ramsey Ultra�ltersThen, for p0 := qn ∪ r
˜
′
n and I :=

⋃
j≤n Ij we have p ≤nK p0, |I| ≤ (n + 1)i,and p0 Pβ

∨
l∈I g

˜
(n0) = l, as required.Assume now that β is a limit ordinal and that the lemma is true for αi+1(notie that αi + 1 < β). Let r

˜
be a Pαi+1-name for some Pαi+1β-onditionsuh that

p|αi+1 Pαi+1

(
p|[αi+1β) ≤ r

˜
∧ ∃l ∈ k

(
r
˜

Pαi+1β
g
˜
(n0) = l

))
.Applying part (b) of the lemma to αi + 1, we get a Pαi+1-ondition p′ with

p|αi+1 ≤nK p′ and a Pαi+1β-ondition q suh that
p′ Pαi+1 r

˜
= q .By indution hypothesis, there is a Pαi+1-ondition q′ with p′ ≤nK q′ and an

I ⊆ k with |I| ≤ (n+ 1)i, suh that
q′ Pαi+1 ∃l ∈ I

(
q Pαi+1β

g
˜
(n0) = l

)
.Finally, let p0 = q′ ∪ q. Then p0 has the required properties. ⊣The next result, whih will be ruial in the proof that there are no rapid�lters in Mathias' model, onludes our investigation of ω2-stage ountablesupport iterations of Mathias foring.Lemma 25.9. Let V be a model of ZFC, let Pω2 be the ountable supportiteration of length ω2 of Mathias foring M, and let G = 〈G(γ) : γ ∈ ω2〉 be

Pω2-generi over V. Furthermore, let f
˜
be an M-name for the �rst Mathiasreal, more preisely, f

˜
is the name for a stritly inreasing funtion in ωω suhthat

0ω2 Pω2

{
f
˜
(i) : i ∈ ω

}
=

⋃{
s : ∃x ∈ [ω]ω

(
(s, x) ∈ G

˙
(0)

)}
.If g

˜
is a Pω2 -name for a stritly inreasing funtion in ωω suh that for some

Pω2-ondition p we have
p Pω2

∀i ∈ ω
(
f
˜
(i) < g

˜
(i)

)
,then there are in�nite sets I0,I1 ⊆ ω in V, where I0 ∩ I1 is �nite, and

Pω2-onditions p̂0, p̂1, where p̂0 ≥ p ≤ p̂1, suh that
p̂0 Pω2

g
˜
[ω] ⊆ I0 and p̂1 Pω2

g
˜
[ω] ⊆ I1 .Proof. Before we an start the proof, we have to introdue some notations:Firstly notie that if q is a Pω2 -ondition, then q(0) is an M-ondition, i.e.,

q(0) = (s, x) where s ∈ fin(ω) and x ∈ [ω]ω. We all s the stem of q(0)and write s = stem
(
q(0)

). Let q be a Pω2-ondition suh that the stem of
q(0) is empty, i.e., q(0) = (∅, x) for some x ∈ [ω]ω. For every t ∈ fin(x) let
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q(0)t := (t, x\t̄+), where t̄+ = max(t)+1. Notie that q(0)t is anM-ondition,
stem

(
q(0)t

)
= t, and q(0) ≤ q(0)t.Now, let us begin with the proof: Assume that for some Pω2-ondition pwe have

p Pω2
∀i ∈ ω

(
f
˜
(i) < g

˜
(i)

)
.By indution on n we shall onstrut an in�nite sequene 〈pn : n ∈ ω〉 of

Pω2-onditions suh that p = p0 and for every n ∈ ω we have pn ≤nKn
pn+1,where the �nite sets Kn ⊆ ω2 are suh that 0 ∈ K0, n < n′ → Kn ⊆ Kn′ , and⋃

n∈ωKn =
⋃
n∈ω supp(pn) (the onstrution of the Kn's with the requiredproperties is left as an exerise to the reader).For the sake of simpliity, let us assume that the stem of p(0) is empty(i.e., p = (∅, x) for some x ∈ [ω]ω), whih implies that the stems of the pn'sare empty, too. This way we even get in�nite sets I0,I1 ⊆ ω suh that

I0 ∩ I1 = ∅. We leave it as an exerise to the reader to verify that the asewhen the stem of p(0) is non-empty yields in�nite sets I0 and I1 suh thatthe intersetion I0 ∩ I1 is still �nite.The goal is that for eah n ∈ ω and for eah t = {k0 < · · · < kn+1} ⊆ xn+1,where pn+1(0) = (∅, xn+1), we have
pn+1(0)t

⌢pn+1|[1,ω2) Pω2
g
˜
[ω] ∩ [kn, kn+1) ⊆ It ,where It ⊆ [kn, kn+1) is suh that |It| ≤ (n + 1) · (n + 1)|Kn|. The in�nitesequene 〈pn : n ∈ ω〉 is onstruted as follows: Assume that we have alreadyonstruted pn for some n ∈ ω (reall that p0 = p). So, pn = (∅, xn) for some

xn ∈ [ω]ω. Let t = {k0 < · · · < kn+1} ⊆ xn be an arbitrary but �xed subsetof xn of ardinality n+ 2 and let pt := pn(0)t
⌢pn|[1,ω2). Then, for eah i ≤ n,we obviously have

pt Pω2
g
˜
(i) ≥ kn+1 ∨

∨

l∈kn+1

g
˜
(i) = l .Notie that sine pt Pω2

∀i ≤ n + 1
(
f
˜
(i) = ki

), and sine g
˜
is stritly in-reasing, pt Pω2

∀i > n
(
g
˜
(i) > kn+1

). Hene, by applying Lemma 25.8.()
(n + 1)-times (for eah i ≤ n), we �nd a Pω2-ondition qt with pt ≤nKn

qt, aswell as a set It ⊆ [kn, kn+1), suh that |It| ≤ (n+ 1) · (n+ 1)|Kn| and
qt Pω2

g
˜
[ω] ∩ [kn, kn+1) ⊆ It .Sine t was arbitrary, for eah t ∈ fin(xn) of ardinality n + 2 we �nd a qtwith pt ≤nKn

qt suh that qt Pω2
g
˜
[ω] ∩ [kn, kn+1) ⊆ It, where It is as above.Moreover, by indution on max(t) (similar to the proof of Claim below),we an onstrut a Pω2-ondition pn+1 suh that pn+1(0) = (∅, xn+1) and

pn ≤nKn
pn+1, and for every �nite set t = {k0 < · · · < kn+1} ⊆ xn+1 ofardinality n+ 2 we have

pn+1(0)t M pn+1|[1,ω2) = qt|[1,ω2)
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pn+1(0)t

⌢pn+1|[1,ω2) Pω2
g
˜
[ω] ∩ [kn, kn+1) ⊆ It .Thus, pn+1 has the required properties, whih ompletes the onstrution ofthe sequene 〈pn : n ∈ ω〉.By Lemma 25.7, let pω be the fusion of the pn's. Sine p ≤0 pω, the stemof pω is empty, and therefore pω = (∅, z) for some z ∈ [ω]ω. By onstrution,for eah t = {k0 < · · · < km+1} ∈ fin(z), where m ∈ ω, we have

pω(0)t
⌢pω|[1,ω2) Pω2

g
˜
[ω] ∩ [km, km+1) ⊆ It .It remains to onstrut in�nite sets I0,I1 ⊆ ω in V, where I0 ∩I1 is �nite,and Pω2-onditions p̂0, p̂1, where p̂0 ≥ pω ≤ p̂1, suh that p̂0 Pω2

g
˜
[ω] ⊆ I0and p̂1 Pω2

g
˜
[ω] ⊆ I1. For this, we �rst prove the followingClaim. Let pω(0) = (∅, z) (for some z ∈ [ω]ω), and for every x ∈ [z]ω, let

Ix :=
⋃{

It : t ∈ fin(x)}, where It is as above. Then there are in�nite sets
x̂, ŷ ∈ [z]ω suh that Ix̂ ∩ Iŷ is �nite. Moreover, sine we assumed that
stem

(
pω(0)) = ∅, we even get Ix̂ ∩ Iŷ = ∅.Proof of Claim. By onstrution, for every t = {k0 < · · · < kn+1} ∈ fin(z),

It ⊆ [kn, kn+1) and |It| ≤ (n+1)|Kn|+1. Notie that the size of It depends on
|t|, but not on the partiular set t. For every n ∈ ω, let F (n) := (n+1)|Kn|+1.Then, for every non-empty t ∈ fin(z) we have |It| ≤ F (|t|) (notie that forevery k0 ∈ z, I{k0} = ∅). For eah non-empty set s = {k0 < · · · < kn} ∈ fin(z)let suz(s) = {

t ∈ fin(z) : t = {k0 < · · · < kn < kn+1}
}
,i.e., t ∈ suz(s) i� t = s ∪ {kn+1} for some kn+1 ∈ z with kn+1 > kn.Then, for eah non-empty set s = {k0 < · · · < kn} ∈ fin(z) we get that

Es =
{
It : t ∈ suz(s)} is an in�nite set of �nite subsets of [kn, ω), wherethe ardinality of the �nite sets It ∈ Es is bounded by F (|s|+ 1

). By similararguments as in the proof of the ∆-System Lemma 13.2, for eah non-emptyset s = {k0 < · · · < kn} ∈ fin(z) we an onstrut an in�nite set z′ ∈ [z]ω anda �nite set ∆s ⊆ [kn, ω), suh that for any distint t, t′ ∈ suz′(s) we have
It ∩ It′ ⊆ ∆s. In other words, for any distint t, t′ ∈ suz′(s), It \ ∆s and
It′ \∆s are disjoint. Moreover, we an onstrut an in�nite set z0 ∈ [z]ω, andfor every non-empty s = {k0 < · · · < kn} ∈ fin(z0) a �nite set ∆s ⊆ [kn, ω),suh that for any distint t, t′ ∈ suz0(s) we have

It ∩ It′ ⊆ ∆s . (∆)Now, we are ready to onstrut the sets x̂ and ŷ in [z]ω with the requiredproperties: Firstly, let x0 and y0 be two disjoint in�nite subsets of z0. Let
k0 = min(x0) and let l0 ∈ y0 be suh that l0 > max

(
∆{k0}

). By (∆) we �ndsets x1 ∈ [x0]
ω and y1 ∈ [y0]

ω suh that for all t ∈ sux1({k0}) and all t′ ∈suy1({l0}), It ∩ It′ = ∅. Now, hoose k1 ∈ x1 suh that k1 > k0, and l1 ∈ y1suh that l1 > max
{
max(∆{k1}),max(∆{k0,k1})

}. Again by (∆) we �nd sets
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x2 ∈ [x1]

ω and y2 ∈ [y1]
ω suh that for all t ∈ sux2({k1})∪ sux2({k0, k1})and all t′ ∈ suy2({l1}) ∪ suy2({l0, l1}), It ∩ It′ = ∅. Proeeding this way,we �nally get x̂, ŷ ∈ [z0]
ω suh that for all t ∈ fin(x̂) and all t′ ∈ fin(ŷ) wehave It ∩ It′ = ∅, and hene, Ix̂ ∩ Iŷ = ∅. ⊣ClaimNow, let p̂0 := (∅, x̂)⌢pω|[1ω2) and p̂1 := (∅, ŷ)⌢pω|[1ω2). Then p̂0 ≥ p ≤ p̂1,and by onstrution of x̂ and ŷ we have

p̂0 Pω2
g
˜
[ω] ⊆ Ix̂ and p̂1 Pω2

g
˜
[ω] ⊆ Iŷ ,where Ix̂ ∩ Iŷ = ∅, whih ompletes the proof. ⊣Before we show that every Ramsey ultra�lter is rapid, let us brie�y reallthe notion of rapid �lters (given in Chapter 10 |Related Result 70), as wellas the notion of Q-points (also given in Chapter 10):A free �lter F ⊆ [ω]ω is alled a rapid �lter if for eah f ∈ ωω thereexists an x ∈ F suh that for all n ∈ ω, ∣∣x ∩ f(n)

∣∣ ≤ n. Furthermore, a freeultra�lter U ⊆ [ω]ω is a Q-point if for eah partition of ω into �nite piees
{In ⊆ ω : n ∈ ω}, (i.e., for eah n ∈ ω, In is �nite), there is an x ∈ U suhthat for eah n ∈ ω, |x ∩ In| ≤ 1. The following fat is just a onsequene ofthese de�nitions.Fat 25.10. Every Q-point is a rapid �lter.Proof. Let U ⊆ [ω]ω be a Q-point and let f ∈ ωω be any stritly inreasingfuntion. Let I0 :=

[
0, f(0)

), and for n ∈ ω let In+1 :=
[
f(n), f(n+1)

). Then
{In ⊆ ω : n ∈ ω} is obviously a partition of ω into �nite piees. Sine Uis a Q-point (in partiular a free ultra�lter), there is an x ∈ U suh that
x∩f(0) = ∅ and for eah n ∈ ω, |x∩In| ≤ 1, i.e., for all n ∈ ω, |x∩f(n)| ≤ n.Thus, U is a rapid �lter. ⊣By Fat 10.10 we know that every Ramsey ultra�lter is a Q-point, and there-fore, every Ramsey ultra�lter is rapid.Now, we are ready to prove the main result of this setion.Proposition 25.11. It is onsistent with ZFC+h = c that there are no rapid�lters. In partiular, sine every Ramsey ultra�lter is rapid, it is onsistentwith ZFC+ h = c that there are no Ramsey ultra�lters.Proof. Sine h = c in Mathias' model, it is obviously enough to prove thatthere are no rapid �lters in Mathias' model. So, let Pω2 = 〈Qγ : γ ∈ ω2〉 bethe ountable support iteration of length ω2 of Mathias foring M, starting ina model V of ZFC+CH. Furthermore, let F

˜
be a Pω2-name for a �lter in the

Pω2-generi extension of V (i.e., 0ω2 Pω2
“F
˜

is a �lter�) and let G be Pω2-generi over V. Then, similar to Claim 2 in the proof of Proposition 24.12,there is an α < ω2 suh that F
˜
[G] ∩V[G|α] ∈ V[G|α].Let us work in the model V[G|α], i.e., we onsider V[G|α] as the ground
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˜
be an M-name in V[G|α] for the next Mathias real,i.e., f

˜
is the M-name for a stritly inreasing funtion in ωω suh that
0αω2 Pαω2

{
f
˜
(n) : n ∈ ω

}
=

⋃{
s : ∃x ∈ [ω]ω

(
(s, x) ∈ G

˙
(α)

)}
.Assume towards a ontradition that F

˜
is rapid. Then there is a Pαω2-name

g
˜
for a stritly inreasing funtion in ωω and a Pαω2-ondition p, suh that

p Pαω2
∀n ∈ ω

(
g
˜
(n) > f

˜
(n)

)
∧ g
˜
[ω] ∈ F

˜
. (∗)By Lemma 25.9 (with respet to the ground model V[G|α]), there are Pαω2-onditions p̂0 and p̂1 with p̂0 ≥ p ≤ p̂1, and almost disjoint sets I0,I1 ∈ [ω]ωin V[G|α], suh that

p̂0 Pαω2
g
˜
[ω] ⊆ I0 and p̂1 Pαω2

g
˜
[ω] ⊆ I1 .In partiular, if p̂0 Pαω2

g
˜
[ω] ∈ F

˜
[G|α], then p̂1 Pαω2

g
˜
[ω] /∈ F

˜
[G|α], andvie versa. Hene, p / Pαω2

g
˜
[ω] ∈ F

˜
[G|α], whih is a ontradition to (∗).Thus, sine F

˜
was arbitrary, there are no rapid �lters in V[G]. ⊣NotesUsing results of Laver's ([7, Lemmata 5&6℄), Miller [8℄ showed that there are norapid �lters in Laver's model (f. Related Result 146). In the proof that there areno rapid �lters in Mathias' model given above, we essentially followed Miller's proofby translating the orresponding results of Laver's to iterations of Mathias foring.Related Results144. Ultra�lter foring U ollapses c to h. By Lemma 25.1 we already know thatultra�lter foring U does not ollapse c to any ardinal κ < h, i.e., if G is U-generi over V, thenV[G] � c ≥ hV. Thus, in order to show thatV[G] � c = hV,it is enough to show that V[G] � c ≤ hV. In partiular, it is enough to showthat there is a surjetion in V[G] whih maps hV onto c: Let us work in themodel V. By the Base Matrix Lemma 2.11 of Balar, Pelant, and Simon [1℄(see Chapter 8 |Related Result 51), there exists a shattering family H0 ={

Aξ ⊆ [ω]ω : ξ ∈ h
} whih has the property that for eah x ∈ [ω]ω there is a

ξ ∈ h and an A ∈ Aξ suh that A ⊆∗ x. Now, for eah A ∈ [ω]ω let CA ⊆ [A]ωbe an almost disjoint family of ardinality c and let hA : CA ։ c be a surjetion.Furthermore, we de�ne the U-name f
˜
for a funtion from some subset of h to cby stipulating

f
˜
=

{〈
〈ξ, γ〉

˙
, [x]̃

〉
: ξ ∈ h ∧ γ ∈ c ∧ ∃A ∈ Aξ

(
x ∈ CA ∧ hA(x) = γ

)}
.In partiular, if 〈〈ξ, γ〉

˙
, [x]̃

〉
∈ f
˜
, then

[x]̃ U f
˜
(ξ) = γ .
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Dγ =
{
[x]̃ : [x]̃ U ∃ξ ∈ c

(
f
˜
(ξ) = γ
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˜
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26Combinatorial Properties of Sets of Partitions
In this hapter we shall investigate ombinatorial properties of sets of par-titions of ω, where we try to ombine as many topis or voies (to use amusial term) as possible. As explained in Chapter 11, partitions of ω are tosome extent the dual form of subsets of ω. Thus, we shall use the term �dual�to denote the partition forms of Mathias foring, of Ramsey ultra�lters, ofardinal harateristis, et etera. Firstly, we shall investigate ombinatorialproperties of a dual form of unrestrited Mathias foring (whih was intro-dued in Chapter 24). In partiular, by using the Partition Ramsey The-orem 11.4, whih is a dual form of Ramsey's Theorem 2.1 (and whih wasthe main result of Chapter 11), we shall prove that dual Mathias foring haspure deision. Seondly, we shall dualise the shattering number h (introduedin Chapter 8 and further investigated in Chapter 9), and show how it an beinreased by iterating dual Mathias foring (f. Proposition 24.12). Finally,we shall dualise the notion of Ramsey ultra�lters (introdued and investigatedin Chapter 10), and show� using the methods developed in Part II and theprevious hapter� that the existene of these dual Ramsey ultra�lters is on-sistent with ZFC+ CH as well as with ZFC+ ¬CH.A Dual Form of Mathias ForingFirstly, let us reall some terminology� for more detailed de�nitions seeChapter 11: The set of all in�nite partitions of ω is denoted by (ω)ω, and
(N) denotes the set of all (�nite) partitions of natural numbers. For P ∈ (N)or P ∈ (ω)ω, let Min(P ) :=

{
min(p) : p ∈ P

} and Dom(P ) :=
⋃
P . Forpartitions P and Q (e.g., P ∈ (N) and Q ∈ (ω)ω) we write P ⊑ Q if Qrestrited to Dom(P ) is �ner than P . Furthermore, for partitions P and

Q, let P ⊓ Q (P ⊔ Q) denote the �nest (oarsest) partition R suh that
Dom(R) = Dom(P ) ∪ Dom(Q) and R is oarser (�ner) than P and Q. Let
S ∈ (N) and X ∈ (ω)ω. If for eah s ∈ S there exists an x ∈ X suh that
x ∩ Dom(S) = s, then we write S 4 X . Similarly, for S, T ∈ (N), where
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Dom(S) ⊆ Dom(T ), we write S 4 T if for eah s ∈ S there exists a t ∈ Tsuh that t∩Dom(S) = s. Finally, for S ∈ (N) and X ∈ (ω)ω with S ⊑ X , let

(S,X)ω =
{
Y ∈ (ω)ω : S 4 Y ⊑ X

}
.A set (S,X)ω, where S and X are as above, is alled a dual Ellentukneighbourhood.Now, we are ready to de�ne a dual form of Mathias foring (i.e., a form ofMathias foring in terms of partitions): Similar to Mathias foring M, intro-dued in Chapter 24, we de�ne dual Mathias foring M∗ = (M∗,≤) bystipulating:

M∗ =
{
(S,X) : S ∈ (N) ∧ X ∈ (ω)ω ∧ S 4 X

}

(S,X) ≤ (T, Y ) ⇐⇒ (T, Y )ω ⊆ (S,X)ωNotie that (S,X) ≤ (T, Y ) ⇐⇒ S 4 T ∧Y ⊑ X . Thus, we get dual Mathiasforing from Mathias foring by replaing subsets of ω with partitions of ω.However, as we shall see below, dual Mathias foring is muh stronger thanMathias foring (see also Related Result 151), but �rst, let us show thatdual Mathias foring is at least as strong as Mathias foring:Fat 26.1. Dual Mathias foring adds Mathias reals and onsequently it alsoadds dominating reals.Proof. Firstly, let M0 be the set of all M-onditions (s, x) for whih we have
0 ∈ s, or, in ase s = ∅, 0 ∈ x, and let M0 = (M0,≤). Obviously, the foringnotions M0 and M are equivalent. Seondly, de�ne the funtion h :M∗ →M0by stipulating

h : M∗ −→ M0

(S,X) 7−→
(
Min(S),Min(X) \Min(S)

)
.Then, the funtion h satis�es the following onditions:

• for all q0, q1 ∈M∗, if q0 ≤M∗ q1 then h(q0) ≤M h(q1),
• for all q ∈ M∗ and eah p ∈ M0 with h(q) ≤M p, there is a q′ ∈ M∗ with

q ≤M∗ q′ suh that p ≤M h(q′).We leave it as an exerise to the reader to verify that this implies that whenever
G∗ is M∗-generi, then {(

Min(S),Min(X) \ Min(S)
)
∈ M0 : (S,X) ∈ G∗

}is M0-generi. Thus, dual Mathias foring M∗ adds Mathias reals, and sineMathias reals are dominating, it also adds dominating reals. ⊣One of the main features of Mathias foring is that it has pure deision.This is also the ase for dual Mathias foring and the proof is essentially thesame as the proof for the orresponding result for Mathias foring. However,at a ruial point we have to use the Partition Ramsey Theorem 11.4�adual form of Ramsey's Theorem 2.1�whih will serve as a kind of Pigeon-Hole Priniple.



A dual form of Mathias foring 443Theorem 26.2. Let (S0, X0) be an M∗-ondition and let ϕ be a sentene ofthe foring language. Then there exists an M∗-ondition (S0, Y0) ≥ (S0, X0)suh that either (S0, Y0) M∗ ϕ or (S0, Y0) M∗ ¬ϕ (i.e., (S0, Y0) deides ϕ).Proof. We follow the proof of Theorem 24.3: For any set O ⊆ M∗ whih isopen with respet to the dual Ellentuk topology, let
Ō :=

⋃{
(S,X)ω : (S,X) ∈ O

}
.With respet to a �xed open set O ⊆M∗, we all the ondition (S,X) goodif there is a Y ∈ (S, Y )ω suh that (S,X)ω ⊆ Ō; otherwise, we all it bad.Furthermore, we all (S,X) ugly if (T ∗, X) is bad for all S 4 T ∗ ⊑ X with

|T | = |S|, where T ∗ := T ∪
{
Dom(T )

}.Claim 1. If the ondition (S,X) is bad, then there is a Y ∈ (S,X)ω suh that
(S, Y ) is ugly.Proof of Claim 1. We follow the proof of Lemma 24.4: Let Z0 := X and let
T0 := S. Assume we have already de�ned Zn−1 ∈ (ω)ω and Tn−1 ∈ (N)for some positive integer n. Let Tn be suh that S 4 Tn, |Tn| = |S| + n,and T ∗

n 4 Zn−1. Let {Ui : i ≤ m} be an enumeration of all T suh that
S 4 T ⊑ Tn, |T | = |S| and Dom(T ) = Dom(Tn). Further, let Z−1 := Zn−1.Now, hoose for eah i ≤ m a partition Zi ∈ (ω)ω suh that Zi ⊑ Zi−1,
T ∗
n 4 Zi and either (U∗

i , Ui⊓Zi
) is bad or (U∗

i , Z
i)ω ⊆ Ō, and let Zn+1 := Zm.Finally, let Z ∈ (ω)ω be the only partition suh that for all n ∈ ω, Tn 4 Z.By onstrution of Z, for all T ∈ (S,Z)(|S|)

∗, where
(S,Z)(|S|)

∗

=
{
T ∈ (N) : |T | = |S| ∧ S 4 T ∧ T ∗ ⊑ Z

}
,we have either (T ∗, Z)ω ⊆ Ō or (T ∗, Z) is bad. Now, for n = |S|, de�ne thesets C0 :=

{
T ∈ (S,Z)(n)

∗

: (T ∗, Z) is bad} and C1 :=
{
T ∈ (S,Z)(n)

∗

:

(T ∗, Z)ω ⊆ Ō
}. Then, by the properties of Z, C0 ∪C1 = (S,Z)(n)

∗. Hene, bythe Partition Ramsey Theorem 11.4, there exists a Y ∈ (S,Z) suh thateither (S, Y )(n)
∗ ⊆ C0 or (S, Y )(n)

∗ ⊆ C1. Thus, sine (S,X) is bad, (S, Y ) isugly. ⊣Claim 1Moreover, by a similar onstrution as in the proof of Lemma 24.5 we anprove the followingClaim 2. If the ondition (S,X) is bad, then there is a Y ∈ (S,X)ω suh that
(S, Y )ω ∩ Ō = ∅.Proof of Claim 2. By Claim 1, there is a Z0 ∈ (S,X)ω suh that (S,Z0)is ugly, i.e., for all T ∈ (N) with S 4 T ∗ ⊑ Z0 and |T | = |S|, (T ∗, Z0)is bad. Let T0 ∈ (N) be suh that T ∗

0 4 Z0 and |T0| = |S|. Then, sine
(S,Z0) is ugly, (T ∗

0 , Z0) is bad. Assume that for some n ∈ ω we have alreadyonstruted (Tn, Zn) ≥ (T0, Z0) with T ∗
n 4 Zn and |Tn| = |S|+ n, suh thatfor all T ∈ (N) with T0 4 T ⊑ Tn and Dom(T ) = Dom(Tn) we have either

(T ∗, T ⊓Zn) is bad or (T, Zn)ω ⊆ Ō. Let Tn+1 be suh that T ∗
n 4 T ∗

n+1 4 Zn



444 26 Combinatorial Properties of Sets of Partitionsand |Tn+1| = |Tn|+1. By applying Claim 1 to every T ∈ (N) with T0 4 T ⊑
Tn+1 and Dom(T ) = Dom(Tn+1), we �nd a Zn+1 ∈ (T ∗

n+1, Zn)
ω suh that forall T ∈ (N) with T0 4 T ⊑ Tn+1 and Dom(T ) = Dom(Tn+1), we have either

(T ∗, T ⊓Zn+1) is bad or (T, Zn+1)
ω ⊆ Ō. Let Y =

⋃
n∈ω Tn, i.e., Y is the only(in�nite) partition suh that for all n ∈ ω, Tn 4 Y .Assume towards a ontradition that (S, Y )ω ∩ Ō 6= ∅. Then there are

T ∈ (N) with S 4 T ⊑ Y suh that (T, Y )ω ⊆ Ō, i.e., (T, T ⊓ Y ) is good.Choose T0 (with S 4 T0 ⊑ Y ) of least ardinality suh that (T0, T0⊓Y ) is good.Sine (S, Y ) is ugly, |T0| > |S|. Hene, we �nd a T1 ⊑ Y with S 4 T ∗
1 4 T0and |T1| = |T0| − 1. By onstrution of Y , (T1, T1 ⊓ Y ) is either ugly or good.In the former ase, (T0, T0 ⊓ Y ) would be bad (a ontradition to the hoieof T0), and in the latter ase, T0 would not be of least ardinality (again aontradition to the hoie of T0). Thus, (S, Y )ω ∩ Ō = ∅, whih ompletesthe proof. ⊣Claim 2Now, let ϕ be a sentene of the foring language. With respet to ϕ we de�ne

O1 := {q ∈M∗ : q M∗ ϕ} and O2 := {q ∈M∗ : q M∗ ¬ϕ}. Notie that O1∪
O2 is an open dense subset of M∗. If the M∗-ondition (S0, X0) is good withrespet to Ō1, there is a Y0 ∈ (S0, X0)

ω suh that (S0, Y0)
ω ⊆ Ō1. Otherwise,if (S0, X0) is bad with respet to Ō1, by Claim 2 there is a Y0 ∈ (S0, X0)

ωsuh that (S0, Y0)
ω∩Ō1 = ∅. In the former ase we have (S0, Y0) M∗ ϕ and weare done. In the latter ase we proeed as follows: Sine (S0, Y0)

ω∩Ō1 = ∅ and
O1 ∪O2 is dense, for every (S0, Z0) ≥ (S0, Y0) there exists a (T, Z) ≥ (S0, Z0)suh that (T, Z) ∈ O2. This implies that (S0, Y0) annot be bad with respetto Ō2, sine otherwise, by Claim 2 we would �nd an (S0, Z0) ≥ (S0, Y0) suhthat (S0, Z0)

ω ∩ (O1 ∪O2) = ∅. Thus, (S0, Y0) is good with respet to Ō2 andwe �nd (S0, Y
′
0) ≥ (S0, Y0) suh that (S0, Y

′
0)
ω ⊆ Ō2, i.e., (S0, Y

′
0) M∗ ¬ϕ.

⊣Now, having Theorem 26.2 at hand, it is not hard to show that dualMathias foring is proper and has the Laver property: Firstly, notie that toeah G ⊆ M∗ whih is M∗-generi over some model V there exists a uniquein�nite partition XG ∈ (ω)ω with the property that for all S ∈ (N),
S 4 XG ⇐⇒ ∃Y ∈ (ω)ω

(
(S, Y ) ∈ G

)
.Thus, every M∗-generi set G ⊆M∗ orresponds to a unique M∗-generi par-tition XG ∈ (ω)ω, whih we all Mathias partition. Following the proof ofCorollary 24.6 we an show that if XG is a Mathias partition over V and

Y ⊑ XG is an in�nite partition, then Y is a Mathias partition overV, too. Fur-thermore, by similar arguments as in the proofs of Corollaries 24.7& 24.8,one an show that dual Mathias foring is proper and has the Laver property,in partiular, dual Mathias foring does not add Cohen reals (the details areleft as an exerise to the reader).A feature of Mathias foring is that it an be written as a two-step iter-ation. More preisely, M ≈ U ∗MU
˙
, where U

˙
is the anonial U-name for



A dual form of Mathias foring 445the U-generi ultra�lter (see Lemma 24.10). Before we an prove the orre-sponding result with respet to dual Mathias foring, we have to introdue adual form of U and have to de�ne restrited dual Mathias foring: Firstly, for
X,Y ∈ (ω)ω let Y ⊑∗ X ⇐⇒ ∃F ∈ fin(ω)

(
Y ⊓ {F} ⊑ X

); notie that {F}is a one-blok partition with domain F . Now, let U∗ =
(
(ω)ω,≤

), where
X ≤ Y ⇐⇒ Y ⊑∗ X .Stritly speaking, ((ω)ω,≤ ) is not a partially ordered set sine �≤ � is notanti-symmetri (i.e., X ≤ Y and Y ≤ X does not imply X = Y ). However, itis slightly easier to drop anti-symmetry than to work with equivalene lasses.Furthermore, for any family of in�nite partitions F ∗ ⊆ (ω)ω , let M∗

F∗
=

(M∗
F∗
,≤), where M∗

F∗
is the set of all M∗-onditions (S,X) suh that X ∈

F ∗. Now, the dual form of Lemma 24.10 reads as follows.Lemma 26.3. M∗ ≈ U∗ ∗M∗
U
˙
∗ , where U

˙
∗ is the anonial U∗-name for the

U∗-generi �lter.Before we prove Lemma 26.3, we �rst show that the foring notion U∗ is σ-losed and that it adds Ramsey ultra�lters.Lemma 26.4. The foring notion U∗ is σ-losed, and whenever U ∗ is U∗-generi over V, then there is a Ramsey ultra�lter in V [U ∗].Proof. U∗ is σ-losed: LetX0 ≤ X1 ≤ · · · be an inreasing sequene of in�nitepartitions (i.e., for all i ∈ ω, Xi+1 ⊑∗ Xi). Choose a sequene 〈Fi : i ∈ ω〉 of�nite sets of natural numbers suh that for all i ∈ ω, Xi+1 ⊓ {Fi} ⊑ Xi. ForeveryX ∈ (ω)ω, order the bloks ofX by their least element, and for k ∈ ω, let
X(k) denote the kth blok with respet to this ordering. De�ne y0 := X0(0),and for positive integers n, let yn := Xn(k), where k := n+

⋃
i∈n(

⋃
Fi). Now,let Y := {yi : i ∈ ω} ∪ (ω \⋃i∈ω yi). Then, for eah i ∈ ω we have Y ⊑∗ Xi,whih shows that U∗ is σ-losed.

U∗ adds Ramsey ultra�lters: We show that the set {Min(X)\{0} : X ∈ U ∗
}is a Ramsey ultra�lter over ω\{0}: Firstly, reall that a foring notion whih is

σ-losed does not add new reals to the ground model (see Lemma 14.17). Let
π : [ω]2 → 2 be an arbitrary olouring and let Y ∈ (ω)ω . Then, by Ramsey'sTheorem 2.1, there exists an in�nite set x ⊆ Min(Y ) with 0 /∈ x suh that πis onstant on [x]2. Now, let

X =
{
b : b ∈ Y ∧min(b) ∈ x

}
∪
⋃{

b : b ∈ Y ∧min(b) /∈ x
}
.Then X ⊑ Y , X ∈ (ω)ω, and Min(X) \ {0} = x. Consequently we get that

Dπ :=
{
X ∈ (ω)ω : π|[Min(X)\{0}]2 is onstant}is open dense, whih implies that Dπ ∩ U ∗ 6= ∅. Finally, sine the olouring

π was arbitrary, this shows that {
Min(X) \ {0} : X ∈ U ∗

} is a Ramseyultra�lter over ω \ {0}. ⊣



446 26 Combinatorial Properties of Sets of PartitionsAs a onsequene we get the followingFat 26.5. Foring with U∗ does not add new partitions to the ground model.Proof. First, notie that partitionsX an be enoded by real numbers rX ⊆ ω,for example let
rX =

{
k ∈ ω : ∃n,m ∈ ω

(
k = η{n,m} ∧ ∃l

(
{n,m} ⊆ X(l)

))}
,where η is a bijetion between ω × ω and ω, and X(l) is as above.Now, by Lemma 14.17 we know that σ-losed foring notions do not addnew reals� and therefore no new partitions� to the ground model. ⊣Now we are ready to give theProof of Lemma 26.3. Sine U∗ does not add new partitions, for every U∗-name (T, Y )

˜
for an M∗

U
˙
∗ -ondition, and for every partition Z ∈ (ω)ω, thereis an M∗-ondition (S,X) in the ground model as well as a partition Z ′ ⊑∗ Zsuh that
Z ′

U∗ (S,X)
˙

= (T, Y )
˜

.We leave it as an exerise to the reader to show that
h : M∗ −→ (ω)ω ×M∗

U ∗

˜
(S,X) 7−→

〈
X, (S,X)

˙

〉is a dense embedding. Hene, by Fat 14.3, dual Mathias foringM∗ is equiv-alent to the two-step iteration U∗ ∗M∗
U
˙
∗ . ⊣At this point, we would like to say a few words about the two-step itera-tions U ∗MU

˙
and U∗ ∗M∗

U
˙
∗ respetively: At �rst glane, the iterations lookvery similar and in both ases we start with a foring notion whih is σ-losed.However,MU

˙
satis�es , whih is not the ase forM∗

U
˙
∗ . The reason for thisis that partitions of ω� in ontrast to subsets of ω�do not have �omple-ments�, whih hanges the situation drastially, espeially when we work withpartition ultra�lters (see below).In order to investigate dual Mathias foring in greater details, we haveto de�ne �rst a dual form of the shattering ardinal h: Two partitions

X,Y ∈ (ω)ω are alled almost orthogonal, denoted X⊥∗Y , if X⊓Y /∈ (ω)ω ,otherwise they are alled ompatible. A family A ∗ ⊆ (ω)ω is alled maxi-mal almost orthogonal (mao) if A ∗ is a maximal family of pairwise almostorthogonal partitions. Furthermore, a family H ∗ of mao families of partitionsshatters a partition X ∈ (ω)ω, if there are A ∗ ∈ H ∗ and two distint par-titions Y, Y ′ ∈ A ∗ suh that X is ompatible with both Y and Y ′. Finally, afamily of mao families of partitions is shattering, if it shatters eah memberof (ω)ω . Now, the dual shattering number H is the smallest ardinality ofa shattering family; more formally
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H = min

{
|H ∗| : H

∗ is shattering} .What an we say about the size of H? Now, like for h we an show thatthe ardinal H is unountable and less than or equal to c.Fat 26.6. ω1 ≤ H ≤ c.Proof. ω1 ≤ H : Let H ∗
ω = {A ∗

n : n ∈ ω} be a ountable set of mao families.We onstrut a partition X ∈ (ω)ω whih is not shattered by H ∗
ω : Let X0 ∈

A ∗
0 , and for n ∈ ω, let Xn+1 = Xn ⊓ Yn+1, where Yn ∈ A ∗

n+1 is suh that
Xn ⊓ Yn+1 ∈ (ω)ω. Then, by the �rst part of Lemma 26.4, there exists an Xsuh that for all n ∈ ω, X ⊑∗ Xn.
H ≤ c : Reall that eah partition X ∈ (ω)ω an be enoded by a real rX .Now, for eah X ∈ (ω)ω hoose a mao family A ∗

X whih ontains two distintpartitions Y0, Y1 ∈ (ω)ω suh that both, Y0 and Y1, are ompatible with X .Then {
A ∗
X : X ∈ (ω)ω

} is a shattering family of ardinality less than or equalto c. ⊣Compared to other ardinal harateristis of the ontinuum, H is quite small,in fat we getProposition 26.7. H ≤ h.Proof. Notie �rst that for every mad family A ⊆ [ω]ω there is a mao family
A ∗ ⊆ (ω)ω onsisting of partitions X ∈ (ω)ω suh that Min(X) \ {0} isontained in some element of A . Let H = {Aξ : ξ ∈ h} be a shattering familyof mad families and let H ∗ = {A ∗

ξ : ξ ∈ h} be the orresponding family ofmao families. By ontraposition we show that if H ∗ is not shattering, thenalso H is not shattering: So, suppose that H ∗ is not shattering. Then thereis a partition X ∈ (ω)ω whih is not shattered by A ∗
ξ (for any ξ ∈ h). Thus,for every ξ ∈ h, we �nd an Xξ ∈ A ∗

ξ suh that X ⊑∗ Xξ, and therefore,
Min(X) ⊆ Min(Xξ). Hene, Min(X) is not shattered by any Aξ, whih showsthat H is not a shattering family. ⊣Another small ardinal harateristi whih is less than or equal to h is
p. So, it is natural to ompare H with p. On the one hand, one an showthat p = H < h is onsistent with ZFC (see Related Result 151). On theother hand, one an show that also H < h = p is onsistent with ZFC (seeRelated Result 152). Hene, H an be small even in the ase when p or h islarge. However, by a ountable support iteration of dual Mathias foring wean enlarge H without hanging the size of p and show that also p < H = h isonsistent with ZFC.Proposition 26.8. p = ov(M) < H = h is onsistent with ZFC.Proof (Sketh). Sine p ≤ ov(M) (by Theorem 21.5), and sine ω1 ≤ p,it is enough to show that ω1 = ov(M) < H = ω2 is onsistent with ZFC.



448 26 Combinatorial Properties of Sets of PartitionsWe an just follow Proposition 24.12 (replaing Mathias foring with dualMathias foring). Thus, let Pω2 =
〈
Q
˜
α : α ∈ ω2

〉 be a ountable supportiteration of dual Mathias foring and let G be Pω2-generi over some model
V of ZFC+ CH.Firstly, show that V[G] � H = h = ω2: For this, use the fat that dualMathias foring, like Mathias foring, is proper, that M∗ ≈ U∗ ∗M∗

U
˙
∗ , andthat H ≤ h.Seondly, show that V[G] � ω1 = ov(M): For this, use the fat that dualMathias foring, like Mathias foring, has the Laver property and thereforedoes not add Cohen reals. Furthermore, reall that the Laver property ispreserved under ountable support iteration of proper foring notions andthat ov(M) remains unhanged if no Cohen reals are added. Thus, sine

V � CH, we get V[G] � ω1 = ov(M). ⊣A Dual Form of Ramsey Ultra�ltersIn Chapter 10 we have seen several equivalent de�nitions of Ramsey ultra-�lters. For example, a �lter U ⊆ [ω]ω is a Ramsey ultra�lter if for everyolouring π : [ω]2 → 2 there is an x ∈ U suh that π|[x]2 is onstant, whihis equivalent to saying that the Maiden does not have a winning strategy inthe game G
U
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∋
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U
if and only if {ai : i ∈ ω} belongs to U .Moreover, by Chapter 10 |Related Result 71, U ⊆ [ω]ω is a Ramseyultra�lter i� the Maiden does not have a winning strategy in the game G′
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in whih the Maiden wins the game G′
U

if and only if {ai : i ∈ ω} does notbelong to U . The dual form of the latter game is in fat just the game G
U
∗whih we introdued in Chapter 11:Maiden (S0, X0)

  @
@@

@@
@@

(S1, X1)

  @
@@

@@
@@

(S2, X2)

  @
@@

@@
@@

G
U
∗ : . . .Death Y0

>>~~~~~~~
Y1

>>~~~~~~~
Y2

��



A dual form of Ramsey ultra�lters 449In that game, we require that the �rst move (S0, X0) of the Maiden is suhthat X0 ∈ U ∗ and that (S∗
0 , X0)

ω is a dual Ellentuk neighbourhood. Fur-thermore, we require that for eah n ∈ ω, the nth move of Death Yn is suhthat Yn ∈ (S∗
n, Xn)

ω and Yn ∈ U ∗, and that the Maiden plays (Sn+1, Xn+1)suh that
• S∗

n 4 Sn+1, |Sn+1| = |Sn|+ 1, S∗
n+1 ⊑ Yn, and

• Xn+1 ∈ (S∗
n+1, Yn)

ω ∩ U ∗.Finally, the Maiden wins the game G
U
∗ if and only if the (unique) in�nitepartition X ∈ (ω)ω suh that Sn 4 X (for all n ∈ ω) does not belong to thefamily U ∗.With respet to the game G

U
∗ we de�ne dual Ramsey ultra�lters as follows(for another dual form of Ramsey ultra�lters see Related Result 158): Afamily F ∗ ⊆ (ω)ω is a partition-�lter if F ∗ is losed under re�nement and�nite oarsening, and if for all X,Y ∈ F ∗ we have X⊓Y ∈ F ∗. Furthermore,a partition-�lter U ∗ ⊆ (ω)ω is a partition-ultra�lter if U ∗ is not properlyontained in any partition-�lter. Finally, a partition-ultra�lter U ∗ ⊆ (ω)ω isa Ramsey partition-ultra�lter if the Maiden does not have a winningstrategy in the game G

U
∗ .It is easy to show that every Ramsey partition-ultra�lter U ∗ ⊆ (ω)ωgenerates a Ramsey ultra�lter U ⊆ [ω]ω. In fat, if U ∗ is a Ramsey partition-ultra�lter, then {

Min(X)\{0} : X ∈ U ∗
}
⊆ [ω]ω is a Ramsey ultra�lter over

ω \ {0}. On the other hand, it is not at all lear whether Ramsey ultra�ltersalso generate Ramsey partition-ultra�lters� in fat it seems that Ramseypartition-ultra�lters are muh stronger than Ramsey ultra�lters. However,the following result shows that the existene of Ramsey partition-ultra�ltersis onsistent with ZFC.Theorem 26.9. If U ∗ is U∗-generi over V, then U ∗ is a Ramsey partition-ultra�lter in V[U ∗].Proof. Beause U ∗ is U∗-generi over V, U ∗ ⊆ (ω)ω is a partition-�lter in
V[U ∗]. Furthermore, sine U∗ is σ-losed (by Lemma 26.4), U∗ does not addnew partitions whih implies that U ∗ is a partition-ultra�lter in V[U ∗].It remains to show that in V[U ∗], the Maiden does not have a winningstrategy in the game G

U
∗ . For this, let σ

˜
be a U∗-name for a strategy for theMaiden in the game G

U
˙
∗ , i.e.,

0 U∗ “σ
˜
is a strategy for the Maiden in the game G

U
˙

∗ � ,where U
˙

∗ is the anonial U∗-name for the U∗-generi �lter. Let us assumethat the Maiden follows the strategy σ
˜
[U ∗] in the model V[U ∗]. Further-more, let Z0 ∈ (ω)ω be suh that

Z0 U∗ σ
˜
(∅) = (S

˜0, X˜ 0) .



450 26 Combinatorial Properties of Sets of PartitionsIn partiular, sine σ
˜
is the U

˙
-name for a strategy,
Z0 U∗ X˜ 0 ∈ U

˙
∗.Assume that for some n ∈ ω we have already onstruted an M∗-ondition

Zn ≥ Z0 suh that
Zn U∗ σ

˜

(
(S
˜ 0, X˜ 0), Y˜ 0, . . . , (S˜n−1, X˜ n−1), Y˜ n−1

)
= (S

˜n
, X
˜ n

) .Then, sine does not add new partitions, we �nd a U∗-ondition Z ′
n ≥ Zn(i.e., Z ′

n ⊑∗ Zn) and a dual Ellentuk neighbourhood (Sn, Xn) in V suh that
Z ′
n U∗ (S˜n

, X
˜ n

) = (Sn, Xn) .Beause Z ′
n ≥ Zn, we have

Z ′
n U∗ σ

˜

(
(S
˜ 0, X˜ 0), Y˜ 0, . . . , (S˜n−1, X˜ n−1), Y˜ n−1

)
= (Sn, Xn) .In partiular, Z ′

n U∗ Xn ∈ U
˙

∗, whih implies that Z ′
n and Xn are om-patible. Finally, Death plays a partition Yn suh that Yn ⊑∗ (Z ′

n ⊓ Xn)and Yn ∈ (S∗
n, Xn)

ω. Proeeding this way, we get an inreasing sequene
S0 4 S1 4 · · · of partitions of (N).Now, let W ∈ (ω)ω be the unique partition suh that for all n ∈ ω,
Sn 4 W . Notie that W belongs to V. Then W is an in�nite partition (i.e.,an U∗-ondition), W U∗ W ∈ U

˙
∗, and for eah n ∈ ω, W ⊑∗ (Z ′

n ⊓ Xn).Thus, by onstrution we get
W U∗ “σ

˜
is not a winning strategy for the Maiden in the game G

U
˙

∗ �,and sine σ
˜
was an arbitrary strategy, the Maiden does not have a winningstrategy at all. ⊣As a onsequene we get that the existene of Ramsey partition-ultra�ltersis onsistent with ZFC + CH (just fore with U∗ over a model in whih CHholds). Unlike for Ramsey ultra�lters, it is not known whether CH impliesthe existene of Ramsey partition-ultra�lters. On the other hand, replaing

U with U∗ in the proof that ultra�lter foring U ollapses c to h (see Chap-ter 25 |Related Result 144), one an show that the foring notion U∗ ol-lapses c to H, and sine H > ω1 is onsistent with ZFC (by Proposition 26.8),we get that the existene of Ramsey partition-ultra�lters is also onsistentwith ZFC+ ¬CH. NotesDual Mathias foring was introdued and investigated by Carlson and Simpsonin [4℄ (e.g., they showed that dual Mathias foring has pure deision). The dualshattering number was introdued and investigated by Ciho«, Krawzyk, Majher-Iwanow, and W�eglorz in [5℄ (e.g., they showed that H ≤ h). However, most of theresults presented in this hapter are taken from Halbeisen [6, 7℄.



Related Results 451Related Results150. Dualising ardinal harateristis of the ontinuum. The �rst who studied sys-tematially the dual forms of ardinal harateristis of the ontinuum were Ci-ho«, Krawzyk, Majher-Iwanow, and W�eglorz. For example they showed that
H is regular, that H ≤ h, and that R ≤ r. Before their work [5℄ was publishedin 2000, the paper was already available as a preprint in 1994 and motivated forexample the work of Brendle [2℄, Spinas [15℄ and Halbeisen [6℄.151. On the onsisteny of p = H < h. Spinas [15, Theorem 4.2℄ showed that inMathias' model, whih is the model we get after a ountable support iterationof length ω2 of Mathias foring starting in a model of ZFC + CH, we have
p = H < h. In partiular, this shows that Mathias foring does not add Mathiaspartitions; otherwise, by the proof of Proposition 26.8 (originally proved inHalbeisen [6℄), we would have H = h in Mathias' model.152. On the onsisteny of H < p. Brendle [2℄ showed that H < h is onsistent withZFC+MA. In partiular, also H < p = h is onsistent with ZFC. To some extentthis shows that dual Mathias foring is far away from being a  foring notion,even in the ase when we restrit dual Mathias foring to a partition-ultra�lter.153. Dualisations of a and t. We have seen above how one ould dualise the shatter-ing ardinal h, and we have seen that both statements, H = ω1 = H and H = ω2,are onsistent with ZFC. Now, it is somewhat surprising that the dual forms of aand t are absolute (i.e., they annot be moved). In partiular, Krawzyk provedin [5℄ that the size of a maximal almost orthogonal family (i.e., the dualisationof a mad family) is always equal to c, and Carlson proved that the dual towernumber is always equal to ω1 (see Matet [13, Proposition 43℄).154. Converse dual ardinal harateristis. If we replae the ordering �⊑� on (ω)ωwith �⊒�, we obviously get other kinds of dual ardinal harateristis: Theso-alled onverse dual ardinal harateristis were �rst introdued and in-vestigated by Majher-Iwanow [12℄, whose work was ontinued by Brendle andZhang in [3℄, where it is shown for example that the onverse dual tower numberis equal to p.155. The dual Ramsey property. In Chapter 9 we have seen that the shattering ar-dinal h is losely related to the Ramsey property. Now, one an show in a similarway that the dual shattering ardinal H is losely related to the so-alled dualRamsey property, whih was introdued and investigated by Carlson and Simp-son in [4℄, and further investigated by Halbeisen in [6, 7℄ and by Halbeisen andLöwe in [9℄.156. Ultra�lter spaes on the semilattie of partitions. There is essentially just oneway to de�ne a topology on the set of ultra�lters over ω. This topologialspae is usually denoted by βω (f. Chapter 9 |Related Result 63). On theother hand, there are four natural ways to de�ne a topology on the set ofpartition-ultra�lters. Moreover, one an show that the orresponding four spaesof partition-ultra�lters are pairwise non-homeomorphi, but still have some ofthe nie properties of βω (see Halbeisen and Löwe [10℄).157. Partition-�lters. In [14℄, Matet introdued partition-�lters assoiated withHindman's Theorem and the Milliken-Taylor Theorem respetively (see



452 26 Combinatorial Properties of Sets of PartitionsChapter 2 |Related Result 3) and investigated the existene as well as om-binatorial properties of these partition-�lters. For a slightly di�erent approahto �lters assoiated to Hindman's Theorem see Blass [1℄.158. Ramsey partition-ultra�lters versus Ramseyan ultra�lters∗. Above, we have in-trodued Ramsey partition-ultra�lters in terms of the game G
U
∗ , whih is, byChapter 10 |Related Result 71, related to Ramsey ultra�lters U ⊆ [ω]ω. Fur-thermore, we have seen that the existene of these Ramsey partition-ultra�ltersis onsistent with ZFC (see also Halbeisen [7, Theorem 5.1℄). Ramsey partition-ultra�lters have very strong ombinatorial properties (see for example Halbeisenand Matet [11℄), and it seems that they are signi�antly stronger than Ram-sey ultra�lters. For example it is not known whether CH implies the existeneof Ramsey partition-ultra�lters, whereas CH implies the existene of 2c mutu-ally non-isomorphi Ramsey ultra�lters (see Chapter 10 |Related Result 64).Now, instead of de�ning Ramsey partition-ultra�lters in terms of the game G

U
∗ ,we ould equally well take another approah: In Chapter 10 we de�ned Ramseyultra�lters in terms of olourings of [ω]2, i.e., U ⊆ [ω]ω is a Ramsey ultra�l-ter if for every olouring π : [ω]2 → 2 there is an x ∈ U suh that π|[x]2 isonstant. Dualising � and slightly strengthening� this property, we get whatis alled a Ramseyan ultra�lter. A partition-ultra�lter U

∗ ⊆ (ω)ω is a Ram-seyan ultra�lter if for every �nite olouring of (ω)(n), there is an X ∈ U
∗ suhthat (X)(n)

∗ is monohromati. Unlike for Ramsey partition-ultra�lters, it isknown that CH implies that there are 2c mutually non-isomorphi Ramseyanultra�lters (see Halbeisen [8, Theorem 2.2.1℄). Thus, it seems that Ramseyanultra�lters are somewhat weaker than Ramsey partition-ultra�lters � but it isalso possible that they are equivalent.Referenes1. Andreas Blass, Ultra�lters related to Hindman's �nite-unions theorem and itsextensions, in Logi and Combinatoris (Stephen G. Simpson, ed.), Con-temporary Mathematis, vol. 65, [Proeedings of a Summer Researh Confer-ene held August 4�10, 1985], Amerian Mathematial Soiety, Providene, RI,1987, pp. 89�124.2. Jörg Brendle, Martin's axiom and the dual distributivity number , Mathe-matial Logi Quarterly, vol. 46 (2000), 241�248.3. Jörg Brendle and Shuguo Zhang, Converse dual ardinals, The Journalof Symboli Logi, vol. 71 (2006), 22�34.4. Timothy J. Carlson and Steve G. Simpson, A dual form of Ramsey'sTheorem, Advanes in Mathematis, vol. 53 (1984), 265�290.5. Jaek Ciho«, Adam Krawzyk, Barbara Majher-Iwanow, and Bog-dan We�glorz, Dualization of the van Douwen diagram, The Journal ofSymboli Logi, vol. 65 (2000), 959�968.6. Lorenz Halbeisen, On shattering, splitting and reaping partitions, Mathe-matial Logi Quarterly, vol. 44 (1998), 123�134.7. , Symmetries between two Ramsey properties, Arhive for Mathemat-ial Logi, vol. 37 (1998), 241�260.8. , Ramseyan ultra�lters, Fundamenta Mathematiae, vol. 169 (2001),233�248.
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27Suite
In this hapter we shall demonstrate how the tools we developed in the previ-ous hapters an be used to shed new light on a lassial problem in MeasureTheory.Assuming the Continuum Hypothesis, Banah and Kuratowski proved aombinatorial theorem whih implies that a �nite measure de�ned for eahsubset of R vanishes identially if it is zero for points (for the notion ofmeasure we refer the reader to Oxtoby [3, p. 14℄). We shall onsider thisresult� whih will be alled Banah-Kuratowski Theorem� from a set-theoretial point of view, and among others it will be shown that the Banah-Kuratowski Theorem is equivalent to the existene of a K-Lusin set of size
c and that the existene of suh a set is independent of ZFC+ ¬CH.The original proof of the Banah-Kuratowski Theorem is due to Ba-nah and Kuratowski [1℄, Theorem 27.1 is due to Halbeisen, and the non-lassial results of this hapter are all due to Bartoszy«ski. Referenes andsome more results related to the Banah-Kuratowski Theorem an befound in Bartoszy«ski and Halbeisen [2℄.PreludeHistorial bakground. In a paper of 1929, Banah and Kuratowski in-vestigated the following problem in Measure Theory: Does there exist a non-vanishing �nite measure de�ned for eah subset of R whih is zero for points?They showed that suh a measure does not exist if one assumes CH. In fat,assuming CH, they proved the following ombinatorial theorem and showedthat it implies the non-existene of suh a measure (notie that it is su�ientto onsider just measures on subsets of the unit interval [0, 1]).Theorem of Banah and Kuratowski. If CH holds, then there is anin�nite matrix Aik ⊆ [0, 1], where i, k ∈ ω, suh that:(a) For eah i ∈ ω, [0, 1] = ⋃

k∈ω A
i
k.



456 27 Suite(b) For eah i ∈ ω, if k 6= k′ then Aik ∩ Aik′ = ∅.() For every in�nite sequene 〈k0, k1, . . . , ki, . . .〉 of natural numbers,
⋂

i∈ω

(
Ai0 ∪Ai1 ∪ . . . ∪Aiki

) is ountable .Below, we all an in�nite matrix Aik ⊆ [0, 1] (where i, k ∈ ω) for whih (a),(b), and () hold a BK-Matrix.Conerning the measure-theoretial problem we would like to mention thatUlam [4℄ proved the following generalisation of the Banah-KuratowskiTheorem: If no ardinal less than or equal to c is weakly inaessible, thenevery �nite measure de�ned for all subset of R whih is zero for points vanishesidentially. For further results in this ontext we refer the reader to Oxtoby [3,Chapter 5℄.AllemandeA ardinal harateristi alled l. Before we give a slightly modi�edversion of the original proof of the Banah-Kuratowski Theorem we in-trodue the following notion.Reall that for funtions f, g ∈ ωω, f ≤ g ⇐⇒ f(n) ≤ g(n) for all
n ∈ ω. Now, for F ⊆ ωω, let λ(F ) denote the least ardinality suh that foreah g ∈ ωω, the ardinality of the set {f ∈ F : f ≤ g} is stritly less than
λ(F ). For any family F ⊆ ωω we obviously have λ(F ) ≤ c+. Furthermore,for families F ⊆ ωω of size c one an easily show that ω1 ≤ λ(F ). Thus,for families F ⊆ ωω of size c we have ω1 ≤ λ(F ) ≤ c+, whih leads to thefollowing de�nition:

l = min
{
λ(F ) : F ⊆ ωω ∧ |F | = c

}If one assumes CH, then one an easily onstrut a family F ⊆ ωω of ardi-nality c suh that λ(F ) = ω1, hene, CH implies l = ω1.In our notation, the ruial point in the original proof of Banah andKuratowski reads as follows.Theorem 27.1. The existene of a BK-Matrix is equivalent to l = ω1.Proof. (⇐) Let F ⊆ ωω be a family of ardinality c with λ(F ) = ω1. Inpartiular, for eah g ∈ ωω, the set {f ∈ F : f ≤ g} is at most ountable.Sine the interval [0, 1] has ardinality c, there is a one-to-one funtion h from
[0, 1] onto F . For x ∈ [0, 1], let nxi := h(x)(i). Now, for i, k ∈ ω, de�ne thesets Aik ⊆ [0, 1] as follows:

x ∈ Aik ⇐⇒ k = nxi .



Courante 457We leave it as an exerise to the reader to hek that these sets satisfythe onditions (a) and (b) of a BK-Matrix. For (), take any sequene
〈k0, k1, . . . , ki, . . .〉 of ω and pik an arbitrary x ∈ ⋂

i∈ω(A
i
0 ∪ Ai1 ∪ . . . ∪ Aiki).By de�nition, for eah i ∈ ω, x is in Ai0 ∪ Ai1 ∪ . . . ∪ Aiki . Hene, for eah

i ∈ ω we get nxi ≤ ki, whih implies that for g ∈ ωω with g(i) := ki we have
h(x) ≤ g. Now, sine λ(F ) = ω1, h(x) ∈ F and x was arbitrary, the set{
x ∈ [0, 1] : h(x) ≤ g

}
=

⋂
i∈ω

(
Ai0 ∪ Ai1 ∪ . . . ∪ Aiki

) is at most ountable.(⇒) Let Aik ⊆ [0, 1], where i, k ∈ ω, be a BK-Matrix and let F ⊆ ωω be thefamily of all funtions f ∈ ωω suh that ⋂
i∈ω A

i
f(i) is non-empty. Is is easyto see that F has ardinality c. Now, for any sequene 〈k0, k1, . . . , ki, . . .〉 ofnatural numbers, the set ⋂i∈ω(A

i
0∪Ai1∪ . . .∪Aiki) is at most ountable, whihimplies that for g ∈ ωω with g(i) := ki, the set {f ∈ F : f ≤ g} is at mostountable. Hene, λ(F ) = ω1. ⊣CouranteLusin and K-Lusin sets. Before we an de�ne the notions of Lusin andK-Lusin sets respetively, we have to introdue the notion of a ompat set (forthe notions open, losed, dense, andmeagre we refer the reader to Chapter 21).A set X ⊆ ωω is ompat if for every set S ⊆ seq(ω) of �nite sequenes in ωsuh that X ⊆ ⋃

s∈S
Os, there exists a �nite subset {s0, . . . sm−1} ⊆ S suhthat X ⊆ ⋃

i∈mOsi . In other words, X ⊆ ωω is ompat if every open overof X has a �nite subover.The following lemma gives a ombinatorial haraterisation of ompatsubsets of ωω.Lemma 27.2. The losure of a set A ⊆ ωω is ompat if and only if there is afuntion f0 ∈ ωω suh that A ⊆ {f ∈ ωω : f ≤ f0}.Proof. For A ⊆ ωω let TA =
{
g|n : g ∈ A∧n ∈ ω

}. Then (TA,⊆) is obviouslya tree. Notie that if Ā denotes the losure of A, then TA = TĀ. Now, (TA,⊆)is �nitely branhing if and only if for eah n ∈ ω, {g(n) : g ∈ A
} is �nite; inwhih ase we an de�ne f0 ∈ ωω by stipulating f0(n) := max

{
g(n) : g ∈ A

}(and get that for all g ∈ A, g ≤ f0). Thus, it is enough to prove that a losedset A is ompat if and only if (TA,⊆) is �nitely branhing.(⇒) If (TA,⊆) is not �nitely branhing, then there is an n0 ∈ ω suh that
Sn0 = {g|n0

: g ∈ A} is in�nite. On the one hand, A ⊆ ⋃{
Os : s ∈ Sn0

},but on the other hand, for any �nite subset {s0, . . . sm−1} ⊆ Sn0 we have
A *

⋃
i∈mOsi , hene, A is not ompat.(⇐) Assume that (TA,⊆) is �nitely branhing. Let S ⊆ seq(ω) be suhthat A ⊆ ⋃

s∈S
Os and let T̃A =

{
g|n : g ∈ A ∧ n ∈ ω ∧ ∀k ≤ n(g|k /∈

S )
}
. First we show that T̃A is �nite: Assume towards a ontradition that

T̃A is in�nite. Then, by König's Lemma, (T̃A,⊆) ontains an in�nite branh,



458 27 Suitesay g0 ∈ ωω. Now, g0 belongs to A (sine A is losed), but by onstrution
g0 /∈ ⋃

s∈S
Os, a ontradition. We say that t ∈ T̃A is a leaf of T̃A if forall n ∈ ω, t⌢n /∈ T̃A. Let L(T̃A) denote the �nite set of leaves of T̃A. Now,let S0 =

{
t
⌢
n : t ∈ T̃A ∧ n ∈ ω ∧ t

⌢
n ∈ TA

}. Notie that S0 ∩ T̃A = ∅.Then, sine (TA,⊆) is �nitely branhing, S0 is �nite, and by de�nition weget S0 ⊆
{
t
⌢
n : t ∈ T̃A ∧ n ∈ ω ∧ t⌢n ∈ S

}. Moreover, A ⊆ ⋃{Os : s ∈ S0},whih shows that A is ompat. ⊣An unountable set X ⊆ ωω is a Lusin set if for eah meagre set M ⊆ ωω,
X ∩M is ountable; and an unountable set X ⊆ ωω is a K-Lusin set if foreah ompat set K ⊆ ωω, X ∩K is ountable.Fat 27.3. Every Lusin set is a K-Lusin set.Proof. By Lemma 27.2, every ompat set K ⊆ ωω is meagre (even nowheredense), and therefore, every Lusin set is a K-Lusin set. ⊣Let Q be a ountable dense subset of ωω. Then X ⊆ ωω is onentratedon Q if every open subset of ωω ontaining Q, ontains all but ountablymany elements of X . Finally, a subset of ωω is alled onentrated if it isonentrated on some ountable dense subset of ωω.Proposition 27.4. The following statements are equivalent:(a) There exists a K-Lusin set of ardinality c.(b) There exists a onentrated set of ardinality c.Proof. (b)⇒(a) Let X ⊆ ωω be onentrated on some ountable dense set
Q ⊆ ωω. One an show that there exists a homeomorphism between ωω \ Qand ωω, i.e., there exists a bijetion h : ωω \ Q → ωω whih maps open setsto open sets and losed sets to losed sets (the details are left to the reader).Let K be an arbitrary ompat subset of ωω. Then h−1[K] is also ompat,and therefore ωω \ h−1[K] is an open set ontaining Q. Thus, sine X isonentrated on Q, ωω \ h−1[K] ontains all but ountably many elements of
X and onsequently h[X ] ∩K is ountable; and sine K was arbitrary, thisimplies that the image under h of a set onentrated on Q of ardinality c isa K-Lusin set of the same ardinality.(a)⇒(b) Similarly, if Q ⊆ ωω is a ountable dense set and h : ωω \Q→ ωω isa homeomorphism, then the pre-image under h of a K-Lusin set of ardinality
c is a onentrated set of the same ardinality. ⊣SarabandeThe ardinal l and the existene of large K-Lusin sets. The followingresult� even though it follows quite easily from the de�nitions� is in fatthe heart of our set-theoretial investigation of the Banah-KuratowskiTheorem.



Gavotte I& II 459Theorem 27.5. l = ω1 if and only if there is a K-Lusin set of ardinality c.Proof. (⇒) Assume l = ω1 and let F ⊆ ωω be a set of ardinality c suhthat for eah g ∈ ωω, {f ∈ F : f ≤ g} is ountable. By Lemma 27.2, foreah losed and ompat set K ⊆ ωω there is a funtion gK ∈ ωω suh that
K ⊆ {g ∈ ωω : g ≤ gK}. Thus, for every losed and ompat set K we have
F ∩ K ⊆ {f ∈ F : f ≤ gK} is ountable, hene, F is a K-Lusin set ofardinality c.(⇐) Let X ⊆ ωω be a K-Lusin set of ardinality c. By Lemma 27.2, foreah g ∈ ωω the set Kg = {f ∈ ωω : f ≤ g} is losed and ompat. Thus,
X ∩Kg = {f ∈ X : f ≤ g} is ountable. Hene, λ(X) = ω1 and sine |X | = cwe have l = ω1. ⊣Gavotte I& II
K-Lusin sets and the ardinals b and d.Proposition 27.6. The existene of a K-Lusin set of ardinality c implies
b = ω1 and d = c.Proof. Let X ⊆ ωω be a K-Lusin set of ardinality c. On the one hand, everyunountable subset of X is unbounded, so, b = ω1. On the other hand, everyfuntion g ∈ ωω dominates only ountably many elements of X . Hene, nofamily F ⊆ ωω of ardinality stritly less than c an dominate all elements of
X , and thus, d = c. ⊣By the de�nition of K-Lusin sets we get that K-Lusin sets are exatly those(unountable) subsets of ωω all whose unountable subsets are unbounded,whih explains thatK-Lusin sets are also alled strongly unbounded; K-Lusinsets play an important role in preserving unbounded families in iterations ofproper foring notions.The existene of K-Lusin sets of ardinality c.Lemma 27.7. If G is Cc-generi over V, then

V[G] � �there is a Lusin set of ardinaltiy c� .Proof. With G we an onstrut a set C =
{
cα : α ∈ c

} of Cohen reals ofardinality c. Further, let r
˜
be a Cc-name for the ode of a meagre Fσ set

Ar ∈ V[G] and let I = supp(r
˜
) (f. Chapter 21). Clearly, I ⊆ c is ountable,and by Proposition 21.7, for eah α ∈ c \ I we have V[G] � cα /∈ Ar. Hene,

C ∩Ar is ountable in V[G], and sine Cc preserves ardinalities and Ar wasarbitrary, V[G] � �C is a Lusin set of ardinaltiy c� .Theorem 27.8. The existene of aK-Lusin set of ardinality c is independentof ZFC+ ¬CH. Equivalently, the existene of a BK-Matrix is independent ofZFC+ ¬CH.



460 27 SuiteProof. Firstly, notie that by Theorem 27.1 and Theorem 27.5 the existeneof a BK-Matrix is equivalent to the existene of a K-Lusin set of ardinality
c. Now, by Lemma 27.7 and Fat 27.3 it is onsistent with ZFC that thereis a K-Lusin set (even a Lusin set) of ardinality c. On the other hand, it isonsistent with ZFC that b > ω1 or that d < c (f. Chapter 18). Therefore, byProposition 27.6, it is onsistent with ZFC that there are no K-Lusin setsof ardinality c. ⊣

K-Lusin sets and the ardinals b and d. As an immediate onsequeneof Proposition 27.6 and Theorem 27.8 we get that ω1 = b < d = c isonsistent with ZFC. Sine Cohen reals are unbounded and sine Cohen foringdoes not add dominating reals (see Chapter 21), Proposition 27.6 is in fatjust a onsequene of Lemma 27.7.In the next setion, a very similar onstrution will be used to show thatthe onverse of Proposition 27.6 is not provable in ZFC.GigueA model without K-Lusin sets in whih b = ω1 and d = c.Proposition 27.9. It is onsistent with ZFC that b = ω1 and d = c, butthere is no K-Lusin set of ardinality c.Proof. Let V be a model of ZFC in whih p = c = ω2. Let G =
〈
cα : α ∈ ω1

〉be Cω1-generi over V. In the resulting model V[G] we have b = ω1 and
d = ω2 (see Proposition 21.13). On the other hand, there is no K-Lusin setof ardinality c in V[G]. Why? Suppose X ⊆ ωω has ardinality ω2. Take aountable ordinal α and a subset X ′ ⊆ X of ardinality ω2 suh that X ′ ⊆
V[G|α], where G|α =

〈
cβ : β ∈ α

〉. Now, V[G|α] = V[c] for some Cohen real c(by Fat 18.4), and V[c] � p = c (by Theorem 19.4), and sine p ≤ b we have
V[c] � b = ω2. Thus, there is a funtion whih dominates unountably manyelements of X ′. Hene, by the remark after Proposition 27.6, X annot bea K-Lusin set. ⊣

One after another, the bells jangled into silene,lowered their shouting mouths and were at peae.Dorothy L. SayersThe Nine Tailors, 1934
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