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Abstract

For given natural numbers n and r, α(n, r) denotes the maximum cardinality of
a subset of Zn which does not contain any non-constant arithmetic progression
(modulo n) of length r. The function α(n, r) is investigated for several values
of n and r. In particular, it is shown that α(n, n) = n

(
1 − 1

p

)
, where p is the

smallest prime dividing n, and that for any prime number p we have α(p2, p) =
(p− 1)2.

0. Introduction

Van der Waerden’s Theorem tells us that for any colouring of the positive integers
with two colours, there are arbitrarily long non-constant arithmetic progressions in
one colour, i.e., for every length ` there are positive integers a and d such that all
the numbers a, a + d, a + 2d, . . . , a + `d have the same colour. Such arithmetic
progressions are called monochromatic. As a consequence, for any positive integer r
there exists a positive integer n such that each colouring of the numbers 1, 2, . . . , n
with two colours contains a monochromatic non-constant arithmetic progression of
length r. In other words, we cannot avoid arithmetic progressions of length r in both
colours simultaneously.

Let us try to colour the numbers 1, 2, . . . , 9 with two colours in such a way that
neither colour contains an arithmetic progression of length 3. Let d and t denote the
two colours respectively. Without loss of generality we may assume that 1 is coloured
t. We now proceed by colouring successively the numbers 2, 3, . . . such that neither
colour contains an arithmetic progression of length 3. This leads to the following
graph:
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Firstly this graph shows that it is possible to colour the numbers 1, 2, . . . , 8 with
two colours such that neither colour contains a non-constant arithmetic progression of
length 3. Secondly we see that no matter how we colour the numbers 1, 2, . . . , 9 with
two colours, there is always a monochromatic non-constant arithmetic progression of
length 3.

For given positive integers n and r we can always ask how large a subset of
{1, 2, . . . , n} may be such that it does not contain any arithmetic progression of
length r. To find optimal upper bounds for the cardinality (i.e., size) of such a set
is still an open problem, even in the case of r = 3. In order to make the prob-
lem more symmetric and to avoid “boundary effects”, we shall consider the cyclic
set

(
Z/nZ

)
= Zn, instead of the linear set 1, 2, . . . , n, and ask for the maximum

cardinality of a subset in Zn which does not contain any non-constant arithmetic
progression of a given length. More precisely, a non-constant arithmetic progression
with respect to Zn of length r is a non-constant sequence in the cyclic group (Zn, +)
(i.e., modulo n) of the form a, a + d, a + 2d, . . . , a + (r − 1)d, where a ∈ Zn and
1 ≤ d < n. Notice that we do not require all elements of the sequence to be different.
Seeking for large sets in cyclic groups which do not contain arithmetic progressions
of a given length leads to the following question:

Given a cyclic group Zn and a positive integer r. What is the maximum
cardinality of a set A ⊆ Zn such that A does not contain any non-
constant arithmetic progression with respect to Zn of length r?

In order to give partial answers to this question we shall use finite affine planes, a
result in finite geometry, hypergraphs (a general form of graphs), a result for the
linear case, as well as some combinatorics.
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First we like to reformulate our question above in terms of hypergraphs, but before
we can do so, we have to introduce some terminology.

A hypergraph H = (V, E) is a finite set V of “vertices” together with a finite set E
of “edges” (sometimes called “hyperedges”), which are arbitrary non-empty subsets
of V (for a systematic study of hypergraphs we refer the reader to [Be89]). If all
edges of a hypergraph H have the same cardinality r, then the hypergraph H is
called r-uniform. In particular, a graph without loops is a 2-uniform hypergraph.
A hypergraph is called regular if all vertices belong to the same number of edges.
A set of vertices of a hypergraph H which does not (completely) contain any edge of
H is called an independent set. The complement of an independent set is a set of
vertices which meets each edge of the hypergraph. Such a set is called a transversal.
For a hypergraph H, the independence number α(H) (in the literature also called
stability number) is the maximum cardinality of an independent set of H (see [Be89]).
The transversal number τ(H) of a hypergraph H is the smallest cardinality of a
transversal of H. If each vertex of H is contained in at least one edge of H, then
the complement of a maximal independent set (i.e., an independent set which is not
properly contained in another independent set) is a minimal transversal (i.e., does
not properly contain another transversal) and vice versa. In particular we get that
α(H) + τ(H) is equal to the number of vertices of H.

Let us now turn back to our question:

For a positive integer n, we identify the elements of the cyclic group Zn with the
set {0, 1, . . . , n − 1}. For a positive integer r with r ≤ n, let Hn,r = (Vn, Er) be
the hypergraph defined as follows: Vn := Zn and a finite set e ⊆ Vn belongs to
Er if and only if there is a non-constant arithmetic progression P in Zn of length
r, so that the elements appearing in P are exactly the elements of e. Since Zn is
completely symmetric, Hn,r is always a regular hypergraph, but in general Hn,r is
not r-uniform, e.g., H4,3 =

{
{0, 1, 2}, {1, 2, 3}, {2, 3, 0}, {3, 0, 1}, {0, 2}, {1, 3}

}
. On

the other hand, Hn,r is always r-uniform for n ≥ r and n prime. To see this, let
(a1, a2, . . . , ar) be an arithmetic progression with respect to Zn, where n ≥ r and n
prime. Let d = a2 − a1 and assume that ak = a` for some 1 ≤ k < ` ≤ r. Then
(k − `)d ≡ 0 mod n, and since n is prime, this implies that d = 0 or d = n, and
therefore, the sequence (a1, a2, . . . , ar) is constant in Zn.

Since the set of edges of Hn,r correspond to the set of all non-constant arithmetic
progressions in Zn of length r, it is easy to see that α

(
Hn,r

)
is equal to the maximum

cardinality of a set A ⊆ Zn such that A does not contain any non-constant arithmetic
progression of length r. So, to keep the notation short, let α(n, r) := α

(
Hn,r

)
.

For small numbers n and r, the value α(n, r) can be easily calculated by com-
puter, using for example a fast Prolog program. However, for general statements like
α(p2, p) = (p− 1)2 (for p prime) we have to seek combinatorial proofs. The following
result for hypergraphs gives us a lower bound on α(n, r) for n > r and n prime.

If n > r and Hn,r is r-uniform, e.g., if n is prime, a lower bound for α(n, r) is given
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by the formula

α(n, r) ≥ n

m
(
Hn,r

)1/r
,

where m
(
Hn,r

)
denotes the number of edges of Hn,r (see [Be 89, p. 136]). Let us

give some examples: For n = 7 and r = 3 we get α(7, 3) ≥ 7
211/3 ≈ 2.54, therefore,

α(7, 3) ≥ 3, and indeed, α(7, 3) = 3. However, for n = 25 and r = 5 we get α(25, 5) ≥
25

2551/5 ≈ 8.25 and therefore α(25, 5) ≥ 9, but we will see later that α(25, 5) = 16.

In the next section we will give some other lower bounds for α(n, r) and in the last
section we will compute exact values of α(n, r) for certain numbers n and r. As a
matter of fact we like to mention that α(n, r) is increasing in r, i.e., if r ≥ r′ ≥ 1,
then α(n, r) ≥ α(n, r′). But on the other hand, α(n, r) is not increasing in n. For
example, α(19, 3) = 6 but α(20, 3) = 5.

1. Lower Bounds

For positive integers n, a, r let (n, a, r) be the following statement: There is a
set A ⊆ Zn of cardinality a which does not contain any non-constant arithmetic
progression of length r. As mentioned above, α(n, r) denotes the largest integer a
with (n, a, r).

A set A ⊆ Zn of cardinality a witnesses (n, a, r) if it does not contain any non-
constant arithmetic progression of length r.

Remark. If B ⊆ Zn witnesses (n, b, r) and α(n, r) ≥ a > b, then in general it
is not true that there exists a set A ⊇ B which witnesses (n, a, r); or in terms
of hypergraphs, not every maximal independent set of Hn,r must have cardinality
α(Hn,r). For example, B = {0, 1, 3, 4, 11, 20} witnesses (27, 6, 3), α(27, 3) = 8, but
there is no A ⊇ B which witnesses (27, 7, 3). A witness for (27, 8, 3) is for example
the set {0, 1, 3, 4, 9, 10, 12, 13}.

Theorem 1.1. For all positive integers n, m, a, b and r we have:

(n, a, r) and (m, b, r) implies (nm, ab, r) .

Proof. For a sequence z̄ = (z0, . . . , zn−1) of 0’s and 1’s, let χz̄ := {i : zi = 1} ⊆ Zn.
Further, let 0n = (0, . . . , 0)︸ ︷︷ ︸

n−times

. Suppose that x̄ = (x0 . . . , xn−1) and ȳ = (y0, . . . , ym−1)

are such that χx̄ and χȳ witness (n, a, r) and (m, b, r) respectively, then χB̄, where

B̄ = (By0 , . . . , Bym−1) with Byi
=

{
x̄ if yi = 1,
0n otherwise,

witnesses (nm, ab, r). Indeed, if χB̄ contains an arithmetic progression (a1, . . . , ar)
of length r, then, since χx̄ witnesses (n, a, r), the sequence (a1 mod n, . . . , ar mod n)
is constant. Thus, for every 1 ≤ i ≤ r we have ai = ki · n + c, where 0 ≤ ki < m and
0 ≤ c < n. By construction, the ki’s belong to χȳ and since χȳ witnesses (m, b, r), all
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the ki’s must be equal, and therefore, the sequence (a1, . . . , ar) is constant. Hence,
χB̄ witnesses (nm, ab, r), which completes the proof. a

As an immediate consequence of Theorem 1.1 we get the following:

Corollary 1.2. For all positive integers n,m, and r we have

α(nm, r) ≥ α(n, r) · α(m, r) .

Remark. In general, the lower bound for α(nm, r) given in Corollary 1.2 is not sharp.
For example, α(4, 4) = 2, but α(16, 4) = 6, witnessed by {0, 1, 2, 4, 5, 7}; and α(6, 3) =
2, but α(36, 3) = 8, witnessed by {0, 1, 3, 4, 9, 10, 12, 13}. Moreover, this lower bound
is not even sharp if n and m are two distinct prime numbers. For example, α(5, 3) = 2
and α(7, 3) = 3, but α(35, 3) = 9, witnessed by {0, 1, 3, 4, 10, 12, 22, 26, 28}.

For any positive integers n and r ≥ 3, another lower bound for α(n, r) is given by
the following:

Proposition 1.3. For any positive integers n and r, where r ≥ 3, we have

α(n, r) >
bn/2c

bn/2cc(s)/(lnbn/2c)s/s+1
,

where bn/2c is the greatest integer which is less than or equal to n/2, s is a positive
integer such that 2s < r ≤ 2s+1 and c(s) > 0 is a constant depending only on s.

Proof. Let m = bn/2c, [m] = {0, 1, . . . ,m − 1} and let νr(m) be the cardinality
of a largest set A ⊆ [m], so that A does not contain any non-constant arithmetic
progression with respect to [m] of length r. Now, Robert Rankin proved in [Ra61]

that νr(m) > m1−c(s)/(ln m)s/s+1
, where s is such that 2s < r ≤ 2s+1 and c(s) is a

constant depending only on s. Hence, if A ⊆ [m] is such that A does not contain
any non-constant arithmetic progression with respect to [m] of length r, then, since
n ≥ 2m, A does not contain any non-constant arithmetic progression with respect to
Zn of length r, which completes the proof. a

2. Exact Values

The following table shows some exact value of α(n, r) for some small numbers n
and for r = 3 and r = 5, respectively. The values of α(n, r) as well as the witnesses
we found with the help of the programming language Prolog.
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n r α(n, r) witness

9 3 4 {0, 1, 3, 4}
10 3 4 {0, 1, 3, 4}
11 3 4 {0, 1, 3, 4}
12 3 4 {0, 1, 3, 4}
17 3 5 {0, 1, 3, 7, 8}
18 3 5 {0, 1, 3, 7, 8}
19 3 6 {0, 1, 3, 12, 14, 15}
20 3 5 {0, 1, 3, 4, 9}
24 3 6 {0, 1, 3, 4, 9, 10}
25 3 7 {0, 1, 3, 4, 9, 10, 12}
27 3 8 {0, 1, 3, 4, 9, 10, 12, 13}
9 5 5 {0, 1, 2, 3, 5}

10 5 5 {0, 1, 2, 4, 8}
11 5 6 {0, 1, 2, 3, 5, 6}
12 5 6 {0, 1, 2, 3, 5, 10}
17 5 9 {0, 1, 2, 3, 5, 6, 7, 8, 10}
18 5 8 {0, 1, 2, 3, 5, 6, 7, 8}
19 5 10 {0, 1, 2, 3, 5, 6, 7, 8, 10, 12}
20 5 10 {0, 1, 2, 4, 5, 7, 8, 9, 13, 16}
24 5 11 {0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 21}
25 5 16 {0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18}
27 5 15 {0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 25}

In the following we compute the exact value of α(n, r) for certain positive integers n
and r. Let us begin with the case n = r.

Fact 2.1. If p is prime, then α(p, p) = p− 1.

Proof. Obviously we have α(p, p) < p. On the other hand, since p is prime, the set
{0, 1, . . . , p− 2} witnesses (p, p− 1, p). a

Theorem 2.2. If n = m · p, where p is the smallest prime number dividing n, then
α(n, n) = m(p− 1) = n(1− 1/p).

Proof. For each h with 0 ≤ h < m, let eh := {h + mi : 0 ≤ i < p}. Notice that
each eh is equal to the set h + mZp = {h + mi : i ∈ Zp}, which gives us an arith-
metic preserving bijection between Zp and eh, and thus, each eh is an arithmetic
progressions preserving copy of Zp. Therefore, each eh is an infinite non-constant
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arithmetic progression in Zn with common difference d = m. Consider the hyper-
graph Hn,n = (Zn, En), where En is the set of all arithmetic progressions of length n
in Zn. Since each eh has p elements and p ≤ n, eh ∈ En. Further, since p is prime,
by Fact 2.1 we have α(p, p) = p− 1, which implies that for any j with 0 ≤ j ≤ p− 1,
eh \ {h + mj} /∈ En. Finally, since there are m edges eh and the eh’s are pairwise
disjoint, we get α(n, n) ≤ m(p− 1).

On the other hand, the set A = {0, 1, . . . , m(p − 1) − 1} witnesses (n, m(p − 1), n).
Indeed, assume that (a1, . . . , an) is a non-constant arithmetic progression with com-
mon difference d < n, built with elements of A. Since |A| = m(p− 1), the arithmetic
progression uses at least one element of A twice. Let 1 < k0 ≤ n be the least num-
ber such that a1 = ak0 = a1 + (k0 − 1)d. Then (k0 − 1)d = `n, which implies that
{a1 + k d

`
: 0 ≤ k < k0} = {ai : 1 ≤ i ≤ k0}. Because of the gap of length m in A,

d
`

> m, but since m is the greatest proper divisor of n, this is a contradiction.

Therefore we have α(n, n) = m(p− 1), which completes the proof. a

As an immediate consequence of Theorem 2.2 we get the following:

Corollary 2.3. For any positive integer m we have α(2m, 2m) = m.

Moreover, combining Fact 2.1 and Corollary 1.2 we get the following:

Corollary 2.4. For any prime number p and any non-negative integer k, α(pk, p) ≥
(p− 1)k.

Moreover, by Proposition 1.3, for large numbers k and for prime numbers p > 2

we have α(pk, p) > (p − 1)k. To see this, let ε(k) = c(s)

( ln b pk

2
c)s/s+1

and note that

since limk→∞ ln bpk

2
c

s/s+1
→ ∞ we get limk→∞ ε(k) → 0. Therefore, by taking the

logarithm on both sides of the following expression, one verifies that for k large enough
we have (⌊pk

2
⌋)1−ε(k)

> (p− 1)k ,

and since α(pk, p) >
(
bpk

2
c
)1−ε(k)

(by Proposition 1.3), it follows that for k large

enough we have α(pk, p) > (p − 1)k. Thus, the lower bound for α(pk, p) given in
Corollary 2.4 is in general not sharp. On the other hand, this lower bound is sharp
for k = 2. Before we can prove this result we have to introduce some terminology.

An affine plane of order p, where p is prime, is a set P containing p2 points,
together with p + 1 so-called parallel classes consisting of subsets of P which are
called lines, such that the following hold:

(i) Each parallel class contains p pairwise disjoint lines.
(ii) Each line contains p points of P .
(iii) For any two distinct points of P , there is exactly one line in some parallel

class which contains these two points.
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Theorem 2.5. For any prime number p we have α(p2, p) = (p− 1)2.

Proof. By Corollary 2.4 we get α(p2, p) ≥ (p − 1)2. Now, Robert Jamison in [Ja77]
and Andries Brouwer and Alexander Schrijver in [BS78] have shown that a set which
intersects each line of the affine plane of order p, i.e., a transversal, must contain
at least 2p − 1 points. Notice that the complement of a set which intersects each
line of an affine plane cannot contain a line. Thus, in order to prove Theorem 2.5
it is enough to prove that there exists an affine plane of order p such that each line
forms an arithmetic progression with respect to Zp2 , since we then can conclude that
α(p2, p) ≤ p2 − (2p− 1) = (p− 1)2.

So, let us show that there is an affine plane of order p such that every line forms
an arithmetic progression of length p. Let {ai,j : 0 ≤ i, j < p} be the set of points,
where ai,j := i + jp (for all 0 ≤ i, j < p). The p2 + p lines ` are defined as follows:
For 0 ≤ j < p and 0 ≤ s < p let `j,s := {ai,(si+j) mod p : 0 ≤ i < p} and let
`j,p := {aj,i : 0 ≤ i < p}. By construction, for fixed j, {`j,s : 0 ≤ s ≤ p} is the
set containing the p + 1 lines going through a0,j, and for any s with 0 ≤ s ≤ p,
the set Cs = {`j,s : 0 ≤ j < p} consists of p parallel lines, i.e., is a parallel class.
Now, for every 0 ≤ j < p and every 0 ≤ s ≤ p, `j,s forms an arithmetic progression
with respect to Zp2 . Indeed, for 0 ≤ s < p, `j,s forms an arithmetic progression
with common difference sp+1 and `j,p forms an arithmetic progression with common
difference p. Further, for any two distinct points, there is exactly one line (in some
parallel class Cs) which contains these two points.

Thus, for every prime number p there exists an affine plane of order p such that
each line forms an arithmetic progression with respect to Zp2 , which completes the
proof. a

The proof of the Jamison-Brouwer-Schrijver result is algebraic, using polynomial
equations over a finite field, and no combinatorial proof is known (cf. [Ju01, Prob-
lem 3.13+]). In the case of p = 3 or p = 5, we were able to prove the equation
α(p2, p) = (p−1)2 in a purely combinatorial way. However, since the proof is already
awkward for p = 5, it is difficult to see how it could be extended to larger primes. In
the following we like to present a combinatorial proof just for the case of p = 3:

Proposition 2.6. α(9, 3) = 4.

Proof. By Corollary 2.4 we get α(9, 3) ≥ 4. So, assume towards a contradiction
that there is a set Ã ⊆ Z9 which witnesses (9, 5, 3), or in other words, assume that
Ã ⊆ Z9 is a set with five elements which does not contain any non-constant arithmetic
progression of length 3. Let M9 be the 3× 3-matrix

M9 =

 0 3 6
1 4 7
2 5 8
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and let R1, R2 and R3 be the rows of M9. Since each row Ri is equal to the set i+3Z3,
each row is an arithmetic progressions preserving copy of Z3, and since α(3, 3) = 2
for each 1 ≤ i ≤ 3, we have |Ã ∩ Ri| ≤ 2 (where |Ã ∩ Ri| denotes the cardinality of
the set Ã∩Ri). Further, since |Ã| = 5, there must be two rows, say R1 and R2, such
that |Ã ∩R1| = |Ã ∩R2| = 2, which—by checking the 9 possible cases—implies that
Ã ∩R3 = ∅, and hence, Ã does not witness (9, 5, 3), which completes the proof. a

As we have seen above, for any prime number p > 2 and sufficiently large k we have
α(pk, p) > (p − 1)k. On the other hand, we also have seen that α(p2, p) = (p − 1)2

holds for any prime number p. Thus, it still might be the case that the equation
α(p3, p) = (p−1)3 holds for all prime numbers p. A first step towards this conjecture
is the following:

Proposition 2.7. α(27, 3) = 8.

Proof. By Corollary 2.4 we get α(27, 3) ≥ 8. So, assume towards a contradiction that
there is a set Ã ⊆ Z27 which witnesses (27, 9, 3). Let M27 be the 3× 9-matrix

M27 =

 0 3 6 9 12 15 18 21 24
1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26


and let R1, R2 and R3 be the rows of M27. Since each row Ri is an arithmetic
progressions preserving copy of Z9 and α(9, 3) = 4, for each 1 ≤ i ≤ 3, |Ã ∩ Ri| ≤ 4.
We partition Z27 into the three pairwise disjoint sets

T1 = {0, 1, 2, 9, 10, 11, 18, 19, 20},
T2 = {3, 4, 5, 12, 13, 14, 21, 22, 23},
T3 = {6, 7, 8, 15, 16, 17, 24, 25, 26}.

Let j, k, l ∈ {1, 2, 3} be three distinct numbers. The three sets T1, T2 and T3 are such
that for each i with 1 ≤ i ≤ 3 we have

Ri ∩ Ã ∩ Tj 6= ∅ and Ri ∩ Ã ∩ Tk 6= ∅ implies Ri ∩ Ã ∩ Tl = ∅ . (])

Indeed, let a ∈ Ri ∩ Tj and b ∈ Ri ∩ Tk. Then there are three different arithmetic
progression of length 3 through a and b, say {a, b, c1}, {a, b, c2} and {a, b, c3}, and by
construction we have {c1, c2, c3} = Ri ∩ Tl. Since |Ã| = 9, there must be two rows,
say R1 and R2, such that |Ã∩R1| ≥ 3 and |Ã∩R2| ≥ 3. Hence, by (]), there must be
j1, j2 ∈ {1, 2, 3} such that |R1∩Ã∩Tj1| = |R2∩Ã∩Tj2| = 2. Consider the hypergraph
H27,3 = (Z27, E), where E consists of all instances of arithmetic progressions of length

3 in Z27. For a ∈ R1∩ Ã∩Tj1 and b ∈ R2∩ Ã∩Tj2 let Sa,b =
{
c ∈ R3 : {a, b, c} ∈ E

}
.

Then |Sa,b| = 3 and it is easy to see that |Sa,b ∩ T1| = |Sa,b ∩ T2| = |Sa,b ∩ T3| = 1.

Moreover, for {a1, a2} = R1 ∩ Ã ∩ Tj1 and {b1, b2} = R2 ∩ Ã ∩ Tj2 we have

Sa1,b1 ∪ Sa1,b2 ∪ Sa2,b1 ∪ Sa2,b2 = R3 , (∗)
which implies that Ã ∩ R3 = ∅, and hence, Ã does not witness (27, 9, 3). Let us
illustrate (∗) with the following example: Let j1 = 1, a1 = 0, a2 = 9, and j2 = 3, and



10

consider the six arithmetic progressions of length 3 going through a1 or a2, R2 ∩ T3,
and R3 ∩ T3:

a1 R2 ∩ T3 R3 ∩ T3 a2 R2 ∩ T3 R3 ∩ T3

0 7 17 9 7 8
0 16 8 9 16 26
0 25 26 9 25 17

Hence, no matter which two numbers b1 and b2 we take from R2∩T3, we always have

(R3 ∩ T3) = (S0,b1 ∩ T3) ∪ (S0,b2 ∩ T3) ∪ (S9,b1 ∩ T3) ∪ (S9,b2 ∩ T3) ,

which, by symmetry, is true for any choice of a1 and a2 from R1 ∩ T1. Thus, we have

(R3 ∩ T3) = (Sa1,b1 ∩ T3) ∪ (Sa1,b2 ∩ T3) ∪ (Sa2,b1 ∩ T3) ∪ (Sa2,b2 ∩ T3) .

Considering the six arithmetic progressions of length 3 going through a1 or a2, R2∩T2,
and R3 ∩ T2, we get

(R3 ∩ T2) = (Sa1,b1 ∩ T2) ∪ (Sa1,b2 ∩ T2) ∪ (Sa2,b1 ∩ T2) ∪ (Sa2,b2 ∩ T2) .

Similarly, by considering the six arithmetic progressions of length 3 going through a1

or a2, R2 ∩ T1, and R3 ∩ T1, we get

(R3 ∩ T1) = (Sa1,b1 ∩ T1) ∪ (Sa1,b2 ∩ T1) ∪ (Sa2,b1 ∩ T1) ∪ (Sa2,b2 ∩ T1) .

Thus, we finally have

R3 = (R3 ∩ T1) ∪ (R3 ∩ T2) ∪ (R3 ∩ T3) = Sa1,b1 ∪ Sa1,b2 ∪ Sa2,b1 ∪ Sa2,b2 .

a

3. Summary

The function α(n, r) is monotone in r but not monotone in n. However, for any
positive integers n, m and r we have α(nm, r) ≥ α(n, r) · α(m, r). In particular, for
any positive integers n, k, and r we have α(nk, r) ≥ α(n, r)k, which implies that for
any prime number p, α(pk, p) ≥ α(p, p)k = (p− 1)k. On the one hand, for each prime
number p > 2 there are integers k such that α(pk, p) > (p − 1)k, but on the other
hand, for every prime number p we have α(p2, p) = (p− 1)2 and α(p, p) = (p− 1). In
addition we have seen that α(33, 3) = 23 (Proposition 2.7) but the authors were not
able to prove α(53, 5) = 43, since the proof of Proposition 2.7 seems not generalisable.
This leads to the open question whether α(p3, p) = (p − 1)3 for all primes p larger
than 3 (the authors could not agree what they expect to be the answer). Further,
we have seen that for any positive integer n, α(n, n) = n

(
1 − 1

p

)
, where p is the

smallest prime number dividing n. In particular, for any positive integer m we have
α(2m, 2m) = m.
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