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abstract. Forcing is a method to extend models of Set Theory

in order to get independence or at least consistency results. For gen-

eralized Silver and Mathias forcings it is shown how infinite games

between two players, say Death and the Maiden, and in particular the

absence of a winning strategy for the Maiden, can be used to predict

combinatorial properties of the extended model. For example it is

shown that Mathias forcing restricted to certain game families adds

dominating reals, has pure decision, and does not add Cohen reals,

and that Silver forcing restricted to some weaker game families does

not add unbounded reals, adds splitting reals, and is minimal.

Outline

The aim of this paper is to show how infinite games can be used in the
investigation of forcing extensions of models of Set Theory. In particular two
types of forcing notions are considered, namely Mathias and Silver forcings,
and it is shown how infinite two-player games, especially the absence of a
winning strategy for one of the players, can be used to predict combinatorial
properties of the corresponding extended models.

Our system of set-theoretic axioms includes the axioms of Zermelo and
Fraenkel as well as the Axiom of Choice. This system is usually denoted
ZFC. All our set-theoretic notations and definitions are standard and can
be found in textbooks such as [Jec03], [Kun83] or [Bar1Jud95]. A brief

*I would like to thank the referee for valuable comments on a former version of this
paper (which led to the discussion of happy families in Section 6).
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introduction to the forcing technique can be found for example in [Jec86]
and [She98, Chapter I, § 1]. However, to make this paper self-contained, we
also provide a short introduction to forcing here.

The paper is organized as follows: In the first section, a brief introduction
to forcing is given and some combinatorial properties of forcing extensions
are discussed. Then in Section 2, two types of forcing notions are introduced
which are investigated in the last two sections. In Section 3, families defined
by the absence of a winning strategy for player I are introduced. These
families play the key rôle in the investigation of Mathias and Silver forcings
in Section 4 and Section 5 respectively.

1 The Notion of Forcing

In modern set theory, one usually gets consistency results by a forcing con-
struction. Forcing was invented by Paul Cohen in the early 1960s to show
that the Axiom of Choice AC as well as the Continuum Hypothesis CH are
not provable in ZF (which is Zermelo-Fraenkel Set Theory without AC). In
fact he showed that ¬AC is relatively consistent with ZF and that ¬CH is
relatively consistent with ZFC. Forcing is a technique to extend models of
set theory in such a way that certain statements become true in the exten-
sion, no matter if they were true or false in the ground model. In other
words, forcing adds new sets to some ground model and by choosing the
right forcing notion, which is essentially a partial ordering, we can make
sure that the new sets have some desired properties. So, the main ingredi-
ents of a forcing construction are a model of ZFC, usually denoted by V,
and a partial ordering P = (P,≤).

1.1 Partial orderings, generic filters, and names

Let V be a model of Set Theory and let P = (P,≤) be a partial ordering
defined in this model. The elements of P are usually called conditions.
Two conditions p1 and p2 of P are called incompatible, denoted p1 ⊥ p2,
if there is no q ∈ P such that p1 ≤ q ≥ p2. A set D ⊆ P is called dense if
for every condition p ∈ P there is a q ∈ D such that p ≤ q. A set D ⊆ P
is called open (or upwards closed) if p ∈ D and q ≥ p implies q ∈ D. A
set F ⊆ P is called a filter if it is directed (i.e., for all p1, p2 ∈ F there is
a q ∈ F such that p1 ≤ q ≥ p2) and downwards closed (i.e., if p ∈ F and
q ≤ p implies q ∈ F ). A filter G is called a generic filter if for each dense
open set D ⊆ P which belongs to V we have G ∩ D 6= ∅. If G ⊆ P is a
generic filter, then we say that G is P-generic over V. Notice that if the
partial ordering P has no trivial branch in the sense that for every condition
p ∈ P there are q1, q2 ∈ P such that q1 ≥ p ≤ q2 and q1 ⊥ q2, then a generic
filter cannot belong to V (otherwise, the set P \ G would be a dense open
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subset of P belonging to V).

Theorem 1 (The Generic Model Theorem). Let V be a model of
ZFC, called the ground model, and let P = (P,≤) be a partial ordering
defined in V. If G is P-generic over V, then there is a model V[G] of ZFC,
called the generic extension of V, such that V ⊆ V[G] and G ∈ V[G],
and every model of ZFC containing V and G contains also V[G].

In the sequel, let V be a model of ZFC, let P be a partial ordering defined
in V, and let G be P-generic over V. In general, G /∈ V and therefore people
living in V do not have knowledge of all the sets in V[G]. On the other
hand, people living in V have so-called “names” for each member of V[G],
but before we introduce the notion of names and their interpretation in
V[G], let us recall the definition of the rank of a set: The rank of a set
x ∈ V, denoted rk(x), is

⋃ {
rk(y) + 1 : y ∈ x

}
where rk(∅) = 0. Notice

that since the union of a set of ordinals is an ordinal, rk(x) is an ordinal
if defined, and by the Axiom of Foundation rk(x) is defined for every set
x ∈ V.

Now we can define by induction on α what is a P-name τ
˜

of rank less
than or equal to α as well as its interpretation τ

˜
[G] in V[G]: τ

˜
is a P-name

with rk(τ
˜
) ≤ α if it has the form

τ
˜

=
{
(pι, τι

˜
) : ι ∈ I

}

where I is some set and for each ι ∈ I we have pι ∈ P and rk(τι
˜

) < α. The
interpretation τ

˜
[G] of τ

˜
in V[G] is

{
τι
˜

[G] : (pι, τι
˜

) ∈ τ
˜

and pι ∈ G
}

.

Since G ∈ V[G] and V ⊆ V[G], there is a P-name for G as well as for each
set in V. For a set x ∈ V, ẋ is a P-name for x defined by induction on rk(x)
as follows:

ẋ =
{
(p, ẏ) : p ∈ P and y ∈ x

}
.

Further, the P-name for G, denoted by G
˜

, is defined as follows:

G
˜

=
{
(p, ṗ) : p ∈ P

}
.

Notice that for every P-generic filter G we have ẋ[G] = x and G
˜

[G] = G.
In the sequel we identify the names for sets in the ground model with the
corresponding sets and omit the dots.

Let τ1
˜

, . . . , τn
˜

be P-names and ϕ(x1, . . . , xn) be a first-order formula of
the language of Set Theory. For a condition p ∈ P we write

p P “ϕ(τ1
˜

, . . . , τn
˜

)”
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and say p forces ϕ(τ1
˜

, . . . , τn
˜

), if for every P-generic filter G containing p
we have ϕ

(
τ1
˜

[G], . . . , τn
˜

[G]
)

is true in V[G], in symbols:

V[G] |= ϕ
(
τ1
˜

[G], . . . , τn
˜

[G]
)
.

Notice that for any conditions p, q ∈ P and any first-order sentence of the
forcing language ϕ, if p P ϕ and q ≥ p, then also q P ϕ.

Theorem 2 (The Forcing Theorem). If ϕ(τ1
˜

, . . . , τn
˜

) is a first-order
sentence of the forcing language, then for every P-generic filter G we have

V[G] |= ϕ
(
τ1
˜

[G], . . . , τn
˜

[G]
)
⇐⇒ ∃p ∈ G

(
p P “ϕ(τ1

˜
, . . . , τn

˜
)”

)
.

1.2 Dominating, unbounded, and splitting reals

In the following we characterize a few real numbers which might appear in
a generic extension, but first we have to introduce some notations.

The set {0, 1, 2, . . .} of natural numbers is denoted by ω and we usually
consider a natural number n as the set of all numbers smaller than n, so,
n = {k ∈ ω : k < n} and n + 1 = n ∪ {n}, which is also denoted n+. The
cardinality of a set x is denoted by |x|. In particular, for every natural
number n we have |n| = n.

The set of all infinite subsets of ω is denoted by [ω]ω, the set of all
functions from ω to ω is denoted by ωω, and the set of all functions from
ω to {0, 1} = 2 is denoted by ω2. Each of the sets [ω]ω, ωω, and ω2 can
be identified with the set of real numbers and in the sequel we usually call
their members just “reals”.

For two functions f, g ∈ ωω we say that g is dominated by f , denoted
g <∗ f , if there is an n ∈ ω such that for all k ≥ n we have g(k) < f(k).
For two sets x, y ∈ [ω]ω we say that x splits y if both sets y ∩ x and y \ x
are infinite.

Now let V be any model of ZFC and let V[G] be a generic extension
(with respect to some forcing notion P). A function f ∈ ωω in V[G] is
called a dominating real if each function g ∈ ωω ∩ V is dominated by f ,
and f is called an unbounded real if it is not dominated by any function
g ∈ ωω ∩ V. Further, a set x ∈ [ω]ω in V[G] is called a splitting real if it
splits each set y ∈ [ω]ω ∩ V.

Proposition 3. If V[G] contains a dominating real, then it also contains
a splitting real.

Proof. We can just follow the proof of [vDo84, Theorem 3.1 (a)]: Since V[G]
is a model of ZFC we have that if a function f ∈ ωω belongs V[G], then
also the set

σf =
⋃ {[

f2n(0), f2n+1(0)
)

: n ∈ ω
}
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belongs to V[G], where [a, b) = {k ∈ ω : a ≤ k < b} and fn+1(0) = f
(
fn(0)

)

with f0(0) := 0. Now let f ∈ ωω be a dominating real. Without loss of
generality we may assume that f is strictly increasing and that f(0) > 0.
Fix any x ∈ [ω]ω ∩V and let gx be the (unique) strictly increasing bijection
ω → x. Since f is dominating we have gx <∗ f , which implies that there is
an n ∈ ω such that for all k ≥ n we have gx(k) < f(k). Because k ≤ gx(k)
for all k ∈ ω, we get that if k ≥ n then

fn(0) ≤ gx

(
fn(0)

)
< f

(
fn(0)

)
= fn+1(0) .

Hence gx

(
fn(0)

)
∈ σf if n is even and gx

(
fn(0)

)
/∈ σf if n is odd, which

shows that σf is splitting. q.e.d.

A forcing notion is called ωω-bounding if there are no unbounded reals
in the generic extension, or in other words, if every function is dominated
by some function in the ground model. Obviously, a forcing notion which
adds a dominating real also adds unbounded reals and therefore cannot
be ωω-bounding, and by Proposition 3, such a forcing notion also adds
splitting reals. On the other hand, none of these implications is reversible.
For example a forcing notion which is ωω-bounding but adds splitting reals
is Silver forcing (investigated in Section 5), and Cohen forcing, discussed
below, is an example of a forcing notion which adds unbounded and splitting
reals but does not add dominating reals.

1.3 Cohen forcing

The Cohen partial ordering is certainly one of the simplest non-trivial forc-
ing notions. Cohen forcing is denoted by C = (C,≤) and defined as follows:
The set of conditions C consists of all functions from some n ∈ ω to {0, 1},
and for two conditions p, q ∈ C we define

p ≤ q ⇐⇒ q|dom(p) ≡ p ,

or in other words, p ≤ q if q extends p. If G is C-generic over V, then G
generates a function c ∈ ω2. To see this, notice that for every n ∈ ω, the
set Dn =

{
p ∈ C : n ∈ dom(p)

}
is dense open, and therefore, for any n ∈ ω

there is a p ∈ G such that n ∈ dom(p). Further, since any two members of
G are compatible, all conditions p ∈ G which are defined on n must agree
at this point. Thus,

c(n) =

{
0 if ∃p ∈ G

(
p(n) = 0

)
,

1 if ∃p ∈ G
(
p(n) = 1

)
,
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is a well-defined function from ω to {0, 1}. The real c ∈ ω2 is called a
Cohen real (over V). Thus, a C-generic filter generates a Cohen real, and
vice versa, the C-generic filter can be reconstructed from the corresponding
Cohen real.

The following proposition gives some basic properties of Cohen forcing
and Cohen reals respectively. Even though the proofs are straightforward,
they involve some standard techniques which will be also used later in the
investigation of Mathias and Silver forcings.

Proposition 4. Cohen forcing does not add dominating reals, but every
Cohen real is unbounded and splitting.

Proof. First we show that a Cohen real is always unbounded: Let c
˜

be a
name for a Cohen real, then for any condition p ∈ C we have

p C “c
˜
|dom(p) ≡ p” .

Let g ∈ ω2 ∩ V and n ∈ ω, then there exists a k ≥ n and a condition q ≥ p
such that k ∈ dom(q) and q(n) > g(n), which shows that for every n ∈ ω
the set of conditions q ∈ C such that

q C “∃k ≥ n
(
g(k) < c

˜
(k)

)
”

is dense open in C, which implies that no condition forces that c is domi-
nated by g, and since g was arbitrary, c is not dominated by any real in the
ground model.

In a similar way one can show that a Cohen real is always splitting: Let
c be a Cohen real and let σc :=

{
k ∈ ω : c(k) = 1

}
, then for any infinite set

x ∈ [ω]ω ∩ V and any n ∈ ω, the set of conditions p ∈ C such that

p C “|x ∩ σc
˜
| > n and |x \ σc

˜
| > n”

is dense open, and therefore, σc splits every real in the ground model.
Now let f ∈ ωω be a function in V[c] and let f

˜
be a C-name for f . In

order to show that f is not dominating we have to find a function g ∈ ωω∩V
such that for every n ∈ ω there is a k ≥ n such that g(k) ≮ f(k). We can
just follow the proof of [Bar1Jud95, Lemma 3.1.2 (2)]: Let {pk : k ∈ ω} be
a countable dense subset of C. For every k ∈ ω define

g(k) = min
{
n : ∃q ≥ pk

(
q C f

˜
(k) = n

)}
.

For every condition p ∈ C and every n ∈ ω there is a k ≥ n such that
pk ≥ p, and we find a q ≥ pk such that q C f

˜
(k) = g(k). Consequently, for

every n ∈ ω, the set

Dn =
{
q ∈ C : q C “f

˜
(k) = g(k) for some k ≥ n”

}
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is dense open in C. Hence, by the Forcing Theorem 2 and since the Cohen
real c meets every dense open subset of C we have

V[c] |= ∀n ∈ ω ∃k ≥ n
(
g(k) ≮ f(k)

)

which shows that g is not dominated by f . q.e.d.

2 Mathias and Silver Forcings

2.1 Free families

Before we introduce the forcing notions of Mathias and Silver, we consider
certain families of subsets of ω.

In the following the “ground set” will be ω and consequently for x ⊆ ω
we define xc := ω \x. Now a family F ⊆ [ω]ω is called a filter if it is closed
under intersections and supersets, or in other words, if for any x, y ∈ [ω]ω

we have

1. if x ∈ F and y ∈ F , then x ∩ y ∈ F ,
2. if x ∈ F and x ⊆ y, then y ∈ F .

The Fréchet filter is the filter consisting of all co-finite subsets of ω, i.e.,
all x ∈ [ω]ω such that xc is finite, and a filter F ⊆ [ω]ω is called a free
filter if it contains the Fréchet filter. For a filter F ⊆ [ω]ω, F+ denotes
the collection of all subsets x ⊆ ω such xc /∈ F . It is useful to notice that
for a free filter F , F+ = {x ⊆ ω : ∀z ∈ F (|x ∩ z| = ω} (cf. [Laf96, p. 52]).
Further, a family E of subsets of ω is called a free family if there is a free
filter F ⊆ [ω]ω such that E = F+. In particular, [ω]ω and all ultrafilters
are free families.

Notice that a free family does not contain any finite sets and is closed
under supersets. A filter F ⊆ [ω]ω is called an ultrafilter if for all x ⊆ [ω]ω

either x or xc belongs to F . It is easy to see that for a filter F ⊆ [ω]ω,
F = F+ if and only if F is an ultrafilter. Hence, a free family E is closed
under intersections if and only if E is an ultrafilter. However, all free families
have the following slightly weaker property.

Lemma 5. If E is a free family, x ∈ E , y ⊆ x, and y /∈ E , then x\y belongs
to E .

Proof. Let E = F+ where F is some free filter, let x ∈ E , and let y ⊆ x
be such that y /∈ E . By definition, xc /∈ F and yc ∈ F . Since x ∈ E , x ∩ z
is infinite for all z ∈ F . In particular, since yc ∈ F and F is a free filter,
x ∩ yc as well as x ∩ (yc ∩ z) = (x ∩ yc) ∩ z is infinite for all z ∈ F , which
implies that x ∩ yc = x \ y belongs to E . q.e.d.
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2.2 Mathias forcing restricted to free families

In the sequel let E be an arbitrary free family. Mathias forcing restricted
to E , denoted ME = (ME ,≤), is defined as follows:

ME =
{
(s, x) : s ⊆ ω is finite, x ∈ E , max(s) < min(x)

}

and
(s, x) ≤ (t, y) ⇐⇒ s ⊆ t, y ⊆ x, t \ s ⊆ x .

The finite set s of a Mathias condition (s, x) is called the stem of the
condition. Similar to Cohen forcing we can identify every ME -generic filter
with a real number, called Mathias real, which is in fact just the union of
the stems of the conditions which belong to the generic filter.

In [Mat077], Mathias introduced and investigated rigorously his forcing
notion in the case when E is a so-called happy family (defined and discussed
in Section 6). Special cases of happy families are when E = [ω]ω (in which
case ME is known as unrestricted Mathias forcing) and when E is a Ram-
sey ultrafilter. Mathias showed that if E is a happy family, then ME has
many interesting combinatorial properties. In the next section, so-called
Ramsey families, defined in terms of infinite games, will be introduced and
in Section 4 it will be shown that Mathias forcing restricted to such families
has essentially the same combinatorial features as for example unrestricted
Mathias forcing.

2.3 Silver forcing restricted to free families

In the sequel let again E be an arbitrary free family. For a set x ⊆ ω, let
x2 denote the set of all functions f : x → {0, 1}. Silver forcing restricted
to E , denoted SE = (SE ,≤), is defined as follows:

SE =
⋃{

x2 : xc ∈ E
}

and for p, q ∈ SE we stipulate

p ≤ q ⇐⇒ q|dom(p) ≡ p .

Again we can identify every SE -generic filter with a real number, called
Silver real, which is in fact just the union of the functions which belong
to the generic filter.

The original (or unrestricted) Silver forcing we get when E = [ω]ω (cf.
[Mat079, p. 112] or [Jec86, Part I, 3.10]). For E a P -point (defined below),
restricted Silver forcing, also known as Grigorieff forcing, was intro-
duced and investigated in depth by Grigorieff in [Gri71] (see also [Jec86,
Part I, 3.22]). Unrestricted Silver forcing has essentially the same combina-
torial properties as Grigorieff forcing. Moreover, there are families between
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[ω]ω and P -points (introduced in the next section) such that Silver forc-
ing restricted to such families has still the same combinatorial features as
unrestricted Silver forcing or as Grigorieff forcing.

3 Infinite Games

Let E be an arbitrary free family. Associated with E we define two quite
similar games between two players, say Death and the Maiden.

Maiden x0 x1 x2

G
E

: . . .

Death a0 a1 a2

The rules for the game G
E

are as follows: For each i ∈ ω, xi ∈ E and
ai ∈ xi, and further we require that xi+1 ⊆ xi and ai < ai+1. Finally,

Death wins the game G
E

if and only if the sequence {ai : i ∈ ω} belongs
to the family E .

A free family E is called a Ramsey family if the Maiden has no win-

ning strategy for the game G
E
. In other words, if E is a Ramsey family then

Death can always defeat any given strategy of the Maiden, no matter how
sophisticated her strategy is. (The only possibility for the Maiden to win
against Death is to play randomly, i.e., not according to any strategy.)
Notice that this does not imply that Death has a winning strategy. Obvi-
ously, [ω]ω is a Ramsey family. On the other hand, there are also ultrafilters
which are Ramsey families, namely the so-called Ramsey ultrafilters (and
vice versa, every Ramsey family which is an ultrafilter is a Ramsey ultrafil-
ter). According to [Bar1Jud95], this was shown by Galvin and Shelah (cf.
[Bar1Jud95, Theorem 4.5.3]). So, Ramsey families are a kind of generalized
Ramsey ultrafilters. These families were first introduced and studied by
Laflamme in [Laf96] (where the filters associated to a Ramsey family are
called +-Ramsey filters). As we will see in Section 6, every Ramsey family
is a happy family (in the sense of [Mat077]), but not vice versa.

In the game G
∗
E
, Death has slightly more freedom, since he can play now

finite sequences instead of just singletons.

Maiden x0 x1 x2

G
∗
E

: . . .

Death s0 s1 s2
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Again, the sets xi played by the Maiden must belong to the free family E

and each finite set si played by Death must be a subset of the corresponding
xi. Further, for each i ∈ ω we require that xi+1 ⊆ xi and max(si) <

min(si+1). Finally, Death wins the game G
∗
E

if and only if
⋃
{si : i ∈ ω}

belongs to the family E .

A free family E is called a P -family if the Maiden has no winning

strategy for the game G
∗
E
. Obviously, [ω]ω is a P -family. On the other

hand, there are also P -families which are ultrafilters, namely the so-called P -
points (cf. [Bar1Jud95, Theorem 4.4.4]). So, P -families can be considered as
a generalization of P -points, which are a weaker form of Ramsey ultrafilters.
P -families were first introduced and studied by Laflamme in [Laf96] (where
the filters associated to a P -family are called P+-filters).

4 Properties of Mathias Forcing Notions

Throughout this section let E be an arbitrary but fixed Ramsey family. It
will be shown that the forcing notion ME adds dominating reals, does not
add Cohen reals, and that every infinite subset of a Mathias real is also a
Mathias real.

Since every Ramsey family is happy (cf. Fact 19), the main results of this
section follow from Mathias’ investigations [Mat077, Section 4]. However,
the technique used here provides a new and uniform approach to Mathias
forcing notions and may be applied also in more general contexts.

4.1 ME adds dominating reals

Theorem 6. The forcing notion ME adds dominating reals.

Proof. We show that a Mathias real is always dominating: Let m be ME -
generic over V, let p = (s, x) be an arbitrary ME -condition, and let g ∈
ωω ∩ V be any function in the ground model. It is enough to show that
there exists a condition q ≥ p such that q ME

“m
˜

dominates g”. In order

to construct the condition q we run the game G
E

where the Maiden plays
according to the following strategy: The Maiden’s first move is x0 :=
x\

(
g(n0)

+
)
, where n0 = |s|, and for i ∈ ω she plays xi+1 := xi\max

{
g(n0+

i)+, a+
i

}
. Since this strategy is not a winning strategy for the Maiden,

Death can play such that y := {ai : i ∈ ω} ∈ E . Now by construction we
get that (s, y) ≥ p and

(s, y) ME
∀k ≥ n0

(
m
˜

(k) > g(k)
)

which shows that m is a dominating real. q.e.d.
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As a consequence of Proposition 3 we get

Corollary 7. The forcing notion ME adds splitting reals.

4.2 ME has pure decision

The following property of Mathias forcing is known as pure decision (cf.
[Mat077, Proposition 4.12 (2.9)]):

Theorem 8. For every ME -condition (s, x) and for every sentence of the
forcing language ϕ, there exists an ME -condition (s, y) ≥ (s, x) with the
same stem as (s, x) such that (s, y) decides ϕ, i.e.,

(s, y) ME
ϕ or (s, y) ME

¬ϕ .

Pure decision is one of the main features of Mathias forcing, but before
we can prove the theorem, we have to introduce some terminology and prove
some auxiliary results: For ME -conditions (s, x) let

[s, x] :=
{
z ∈ [ω]ω : s ⊆ z ⊆ s ∪ x

}
.

For a (fixed) open set O ⊆ ME let Ō :=
⋃ {

[s, x] : (s, x) ∈ O
}
. An ME -

condition (s, x) is called good (with respect to O), if there is a condition
(s, y) ≥ (s, x) such that [s, y] ⊆ Ō; otherwise it is called bad. Further,
the condition (s, x) is called ugly if

(
s ∪ {a}, x \ a+

)
is bad for all a ∈ x.

Notice that if (s, x) is ugly, then (s, x) is bad, too. Finally, (s, x) is called
completely ugly if

(
s∪{a0, . . . , an}, x\a+

n

)
is bad for all {a0, . . . , an} ⊆ x

with a0 < . . . < an.

Lemma 9. If an ME -condition (s, x) is bad, then there is a condition
(s, y) ≥ (s, x) which is ugly.

Proof. We run the game G
E

where the Maiden plays according to the
following strategy: She starts the game by playing x0 := x, and then,
for i ∈ ω, she plays xi+1 ⊆ (xi \ a+

i ) such that [s ∪ {ai}, xi+1] ⊆ Ō if
possible, and xi+1 = (xi \ a+

i ) otherwise. Strictly speaking we assume
that E is well-ordered and that xi+1 is the first element of E with the
required properties. However, since this strategy is not a winning strategy
for the Maiden, Death can play such that z := {ai : i ∈ ω} ∈ E and let
y =

{
ai ∈ z : [s∪ {ai}, xi+1] ⊆ Ō

}
. Because E is a free family, by Lemma 5

we get that y or z \ y belongs to E . If y ∈ E , then [s, y] ⊆ Ō which would
imply that (s, x) is good, but this contradicts the premise of the lemma.
Hence, z \ y ∈ E , which implies that (s, z \ y) is ugly. q.e.d.

Lemma 10. If an ME -condition (s, x) is bad, then there is a condition
(s, y) ≥ (s, x) such that (s, y) is completely ugly.
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Proof. This follows by an iterative application of Lemma 9. In fact, for
every i ∈ ω, the Maiden can play a set xi ∈ E such that for each t ⊆
{a0, . . . , ai−1}, either the condition (s ∪ t, xi) is ugly or [s ∪ t, xi] ⊆ Ō.
Now Death can play such that y := {ai : i ∈ ω} ∈ E . Assume that
there exists a finite set t ⊆ y such that (s ∪ t, y \ max(t)+) is good. Such
a set cannot be empty, since (s, x) was assumed to be bad. Now let t0
be a smallest finite subset of y such that q0 = (s ∪ t0, y \ max(t0)

+) is
good and let t−0 = t0 \ {max(t0)}. Then by definition of t0, the condition
q−0 =

(
s ∪ t−0 , y \ max(t0)

)
is not good, and hence, by the strategy of the

Maiden, it must be ugly, but if q−0 is ugly, then q0 is bad, which is a
contradiction to our assumption. Thus, there is no finite set t ⊆ y such that
(s∪ t, y \max(t)+) is good, which implies that all these conditions are ugly,
and therefore (s, y) is completely ugly. q.e.d.

Now we are ready to proof Theorem 8 (i.e., that the forcing notion ME has
pure decision):

Proof. Let (s, x) be an ME -condition and let ϕ be a sentence of the forcing
language. With respect to ϕ we define O1 := {q ∈ ME : q ME

ϕ} and
O2 := {q ∈ ME : q ME

¬ϕ}. Clearly O1 and O2 are both open and
O1 ∪ O2 is even dense in ME . By Lemma 10 we know that for any (s, x)
there exists (s, y) ≥ (s, x) such that either [s, y] ⊆ Ō1 or [s, y] ∩ Ō1 = ∅.
In the former case we have (s, y) ME

ϕ and we are done. In the latter
case we find (s, y′) ≥ (s, y) such that [s, y′] ⊆ Ō2. (Otherwise we would
have [s, y]∩ (Ō1 ∪ Ō2) = ∅, which is impossible by the density of O1 ∪O2.)
Hence, (s, y′) ME

¬ϕ. q.e.d.

For the following result, which is again a consequence of Lemma 10, see
also [Mat077, Corollary 4.10 (ii)] (and for a kind of reverse implication see
[Mat077, Theorem 2.10]).

Proposition 11. Every infinite subset of an ME -generic real is also ME -
generic.

Proof. Let D ⊆ ME be an arbitrary dense open subset of ME and let D′ be
the set of all conditions (s, z) ∈ ME such that for all t ⊆ s, [t, z] ⊆ D̄.

First we show that D′ is dense (and by definition also open) in ME : For
this take an arbitrary condition (s, x) ∈ D and let {ti : 0 ≤ i ≤ m} be
an enumeration of all subsets of s. Because D is dense open in ME , by
Lemma 10 we find a condition (s, y) ≥ (s, x) such that (s, y) ∈ D′, which
implies that D′ is dense in ME .
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Let m ∈ [ω]ω be ME -generic and let m′ be an infinite subset of m. Since
D′ is dense open and m is ME -generic, there exists a condition (s, x) ∈ D′

such that s ⊆ m ⊆ s ∪ x. Let t = m′ ∩ s, then t ⊆ m′ ⊆ t ∪ x and by
definition of D′ we have [t, x] ⊆ D̄. Thus, m′ meets the dense open set D,
and since D was arbitrary, this completes the proof. q.e.d.

4.3 ME does not add Cohen reals

In Section 1 we have seen that Cohen forcing adds unbounded but not dom-
inating reals. Now we will see that the forcing notion ME , even though it
adds dominating reals (cf. Theorem 6), it does not add Cohen reals:

Theorem 12. The forcing notion ME does not add Cohen reals.

Proof. Let f
˜

be an ME -name for a function in ω2 and let m be ME generic
over V. We have to show that f

˜
[m] is not C-generic over V, i.e., there is a

dense open set Df ⊆ C in V such that for all p ∈ Df we have f [m]|dom(p) 6≡
p.

Notice that by Theorem 8, for every ME -condition (s, x) and for every k ∈
ω there exists a condition (s, y) which decides f

˜
(k), i.e., (s, y) ME

f
˜
(k) = 0

or (s, y) ME
f
˜
(k) = 1. Consequently, for every (s, x) and every n ∈ ω there

exists a condition (s, y) which decides f
˜
(k) for all k < n.

In order to construct Df we run the game G
E

where the Maiden plays
according to the following strategy: For i ∈ ω she plays xi such that for
all t ⊆ {a0, . . . , ai−1}, the condition (t, xi) decides f

˜
(k) for all k < 22i

.

Further, for t ⊆ {a0, . . . , ai−1} let pi
t ∈ C be such that dom(pi

t) = 22i

and
(t, xi) ME

f
˜
|dom(pi

t
) ≡ pi

t. Since this strategy is not a winning strategy for
the Maiden, Death can play such that x := {ai : i ∈ ω} ∈ E . Now, let

Cf =
{
q ∈ C : ∃i ∈ ω ∃t ⊆ x (q ≤ pi

t)
}

and let Df := C \ Cf .
By construction Df is open in C and it remains to show that Df is also

dense: Firstly notice that for all n ∈ ω, (∅, x) ME
f
˜
|n ∈ Cf . Secondly

notice that for any finite t ⊆ x and for any i ≥ |t|,
∣∣{q ∈ C : q ≥ pi

t, dom(q) = 22i+1}∣∣ = 22i(
22i

− 1
)

whereas

∣∣{q ∈ Cf : q ≥ pi
t, dom(q) = 22i+1}∣∣ = 2i+1

which implies that Df is dense in C and completes the proof. q.e.d.
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5 Properties of Silver Forcing Notions

Throughout this section let E be an arbitrary but fixed P -family. It will be
shown that the forcing notion SE is ωω-bounding, i.e., adds no unbounded
reals (and consequently no Cohen reals), but adds splitting reals and is
minimal, i.e., if g is a Silver real, then every real f in the extension which
does not belong to the ground model reconstructs g.

5.1 SE is ωω-bounding

Recall that a forcing notion is ωω-bounding if no function f ∈ ωω in the
generic extension is unbounded, i.e., every function f ∈ ωω in the generic
extension is dominated by some function in the ground model. Before we
can show that the forcing notion SE = (SE ,≤) is ωω-bounding, we have to
introduce the following notation: Remember that a condition p ∈ SE is a
function from some x ⊆ ω to {0, 1}, where xc ∈ E . For a condition p ∈ SE

and a finite set t ⊆ dom(p) let

p˜t =
{
q ∈ SE : dom(q) = dom(p), q|dom(q)\t ≡ p|dom(p)\t

}
.

Theorem 13. The forcing notion SE is ωω-bounding.

Proof. Let G be SE -generic over V, let f ∈ ωω be a function in V[G], and
let f

˜
be an SE -name for f . In order to show that f is bounded by some

function some function in the ground model it is enough to prove that for
every condition p ∈ SE there is a condition q0 ≥ p and a function g ∈ ωω∩V
such q0 SE

“g dominates f
˜
”.

We construct the condition q0 by running the game G
∗
E

where the Maiden

plays according to the following strategy: Let m0 ∈ ω be the least number
for which there exists a condition p0 ≥ p such that p0 SE

f
˜
(0) < m0.

Then the Maiden plays x0 = dom(p0)
c. For positive integers i ∈ ω let

ti =
⋃

k∈i sk, where s0, . . . , si−1 are the moves of Death, and let mi ∈ ω be
the least number for which there exists a condition pi ≥ pi−1 with dom(pi) ⊇
dom(pi−1) ∪ ti such that for all q ∈ pi ˜ti we have pi SE

f
˜
(i) < mi. Then

the Maiden plays xi = dom(pi)
c.

Since this strategy of the Maiden is not a winning strategy, Death can
play such that

⋃
i∈ω si ∈ E . Let h =

⋃
i∈ω pi, then h ∈ x2 for some x ⊆ ω

(but h is not necessarily a SE -condition). Now let q0 ∈ SE be such that
dom(q0) = dom(h) \

⋃
i∈ω si and q0 ≡ h|dom(q0), and define the function

g ∈ ωω by stipulating g(i) := mi. Then g belongs to the ground model V
and by construction we have

q0 SE
∀i ∈ ω

(
g(i) > f

˜
(i)

)

which shows that f is dominated by g. q.e.d.



A Playful Approach to Silver and Mathias Forcings 137

By Proposition 4, Theorem 13 implies that the forcing notion SE does not
add Cohen reals. However, it adds splitting reals:

Proposition 14. The forcing notion SE adds splitting reals.

Proof (Sketch). Let f ∈ ω2 be SE -generic over V. We can identify f with
the function f̄ ∈ ωω by stipulating f̄(n) = k iff f(k) = 1 and

∣∣{m < k :

f(m) = 1
}∣∣ = n. Then the set

σf =
⋃{[

f̄(2n), f̄(2n + 1)
)

: n ∈ ω
}

splits every real in the ground model. To see this, notice that for each
x ∈ [ω]ω ∩ V and for every n ∈ ω, the set

Dx,n =
{
p ∈ SE : p SE

“|x ∩ σf

˜
| > n and |x \ σf

˜
| > n|”

}

is dense open in SE . q.e.d.

5.2 SE is minimal

A real g is minimal over V if g is not in the ground model V and every
real f in V[g] is either in V or it reconstructs g, i.e., g belongs to V[f ]
(where V[f ] is the smallest model of ZFC which contains all sets of V as
well as the function f). Let P be a forcing notion and let G be P-generic
over V. If there is a real g such that V[g] = V[G] and g is minimal over V,
then the forcing notion P is called minimal.

In the following we show that the forcing notion SE is minimal. The
result will be a consequence of the following lemmas, but first we have to
introduce some terminology (cf. [Gri71, p. 375 f.]): Let G be SE -generic over
V and let f

˜
be an SE -name for a function f ∈ ω2∩V[G]. Two SE -conditions

p and q are called f
˜
-compatible if for all k ∈ ω and ε ∈ {0, 1} we have:

p SE
f
˜
(k) = ε ⇐⇒ q SE

f
˜
(k) = ε

For conditions p and functions h ∈ u2, where u ⊆ ω is finite and u∩dom(p) =
∅, we write p ∪ h for the extension of p by h, i.e., (p ∪ h)|dom(p) ≡ p and
(p ∪ h)|u ≡ h. We say that n ∈ ω is f

˜
-indifferent to a condition p if

n /∈ dom(p) and for any q ≥ p we have either n ∈ dom(q) or the conditions
q∪〈n, 0〉 and q∪〈n, 1〉 are f

˜
-compatible. Roughly speaking, n is f

˜
-indifferent

to p if above p, n is of no use for the interpretation of f
˜
.

For any condition p, two mutually exclusive cases are possible:

(i) ∃q ≥ p∀r ≥ q ∀n ∈ ω (n is not f
˜
-indifferent to r)
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(ii) ∀q ≥ p∃r ≥ q ∃n ∈ ω (n is f
˜
-indifferent to r)

Firstly consider the case when p satisfies (i) (cf. [Gri71, Lemma 4.6]):

Lemma 15. If p satisfies (i), then there is a condition q ≥ p such that
for every k ∈ ω and for any distinct functions t1, t2 : dom(q)c ∩ k → 2, the
conditions q ∪ t1 and q ∪ t2 are f

˜
-incompatible.

Proof. Since by assumption p satisfies (i), there is a q0 ≥ p such that for all

r ≥ q0 and for all n ∈ dom(r)c we have:

∃r′ ≥ r
(
r′ ∪ 〈n, 0〉 and r′ ∪ 〈n, 1〉 are f

˜
-incompatible

)
(♣)

In order to construct the condition q we run the game G
∗
E

where the Maiden

plays according to the following strategy: She begins by playing x0 :=
dom(q0)

c. Then, for positive integers i ∈ ω, she plays xi := dom(qi)
c where

the condition qi has the following properties: qi ≥ qi−1 and any two different
conditions which belong to the set qi ˜ti, where ti =

⋃
j∈i sj and the sj ’s

are the moves of Death, are f
˜
-incompatible.

Notice that by (♣) and since qi ≥ qi−1 ≥ q0, such a condition exists.
Since this strategy is not a winning strategy for the Maiden, Death can
play such that x := {si : i ∈ ω} ∈ E . Define q by stipulating dom(q) := xc

and q ≡
⋃

i∈ω qi|dom(q), then by construction, q belongs to SE and has the
desired properties. q.e.d.

Secondly consider the case when p satisfies (ii) (cf. [Gri71, Lemma 4.7]):

Lemma 16. If p satisfies (ii), then there is a condition q ≥ p which decides
f
˜
(k) for each k ∈ ω.

Proof. Since by assumption p satisfies (ii), for each p′ ≥ p there is an r ≥ p′

such that we have:

∃n ∈ dom(r)c
(
n is f

˜
-indifferent to r

)
(♠)

For conditions p′ ∈ SE let

Ip′ =
{
n ∈ dom(p′)c : n is f

˜
-indifferent to p′

}
.

Claim 17. For each condition p′ ≥ p, Ip′ belongs to E .

Proof. Assume towards a contradiction that Ip′ /∈ E , then, since dom(p′)c ∈
E , by Lemma 5 we get dom(p′)c \ Ip′ ∈ E . Let r ≥ p′ be any condition with
dom(r) = dom(p′) ∪ Ip′ , then there is no n ∈ ω such that n is f

˜
-indifferent
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to r, since such an n would also be f
˜
-indifferent to p′, but this is impossible

by the definition of Ip′ and completes the proof of the claim.
q.e.d. (Claim 17)

In order to construct the condition q we run the game G
∗
E

where the
Maiden plays according to the following strategy: She starts the game by
playing x0 := Ip0

, where p0 ≥ p is such that p0 decides f
˜
(0). In addition, she

plays a condition q0 ≥ p0 such that dom(q0) = xc

0. In general, for a positive
integer i ∈ ω let ti =

⋃
j∈i sj , where the sj ’s are the moves of Death, and

let pi ≥ qi−1 be such that dom(pi) ⊇ xc

i−1 ∪ ti and every p′ ∈ pi ˜ti decides
f
˜
(i). Now the Maiden plays xi := Ipi

and a condition qi ≥ pi such that
dom(qi) = xc

i.
Notice that by (♠) and by the claim, the strategy of the Maiden is

well-defined. Since her strategy is not a winning strategy, Death can play
such that x := {si : i ∈ ω} ∈ E . Define q by stipulating dom(q) := xc

and q ≡
⋃

i∈ω qi|dom(q), then by construction, q belongs to SE and has the
desired properties. q.e.d. (Lemma 16)

By combining the previous two lemmas we are now able to prove that the
forcing notion SE is minimal, or equivalently, that each Silver real is minimal
(cf. [Gri71, Theorem 4.1]).

Theorem 18. Each real g ∈ ω2 which is SE -generic over V is minimal over
V, i.e., for every real f ∈ ω2 ∩ V[g], either f ∈ V or g ∈ V[f ].

Proof. Let G be SE -generic over V, let g ∈ ω2 be the Silver real which
corresponds to G, and let f

˜
be an SE -name for a function f ∈ ω2 ∩ V[g].

We have to show that for f = f
˜
[g], either f ∈ V or g ∈ V[f ].

Let D = D1 ∪ D2 where D1 and D2 are defined as follows:

D1 =
{
q ∈ SE : q as in Lemma 15 with respect to some p ≤ q

}

D2 =
{
q ∈ SE : q as in Lemma 16 with respect to some p ≤ q

}

By definition, D is obviously dense open in SE which implies that there
exists a q0 ∈ G ∩ D. We have to consider the following two cases.

“q0 ∈ D1”: In V[f ] define the function g′ ∈ ω2∩V[f ] as follows. Firstly,
on dom(q0) define g′ such that g′|dom(q0) ≡ q0. Secondly, on dom(q0)

c define
g′ by the following induction: Suppose that the function g′ is already defined
on some k ∈ ω. Let tk ≡ g′|k∩dom(q0) and let m = min(dom(q0)

c \ k).
Then, by the definition of q0, the conditions p0

m := q0 ∪ tk ∪ 〈m, 0〉 and
p1

m := q0 ∪ tk ∪ 〈m, 1〉 are f
˜
-incompatible, i.e., there is an n ∈ ω such
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that p0
m SE

f
˜
(n) = ε and p1

m SE
f
˜
(n) = 1 − ε (for some ε ∈ {0, 1}).

Take the least such n and define g′(m) := f(n). Notice that this can be
done since we work in the model V[f ] in which we know the value f(n).
Notice also that since f = f

˜
[g], for i ∈ {0, 1} the condition pi

m belongs

to G iff pi
m SE

f
˜
(n) = g′(m). Thus, g′(m) decides which of the two

incompatible condition, p0
m or p1

m, belongs to G. Now, because q0 is in G,
we see inductively how the function g′ reconstructs the SE -generic filter G
or equivalently the function g, and since g′ ∈ V[f ] we consequently have
g ∈ V[f ].

“q0 ∈ D2”: By definition, q0 decides f
˜
(k) for each k ∈ ω, which shows

that the function f belongs to V.

Hence, we have either g ∈ V[f ] (if q0 ∈ D1) or f ∈ V (if q0 ∈ D2), which
completes the proof. q.e.d.

6 Happy Families and Their Relatives

Firstly we recall Mathias’ notion of a happy family (cf. [Mat077]): Let [ω]<ω

be the set of all finite subsets of ω, and for s ∈ [ω]<ω, let s̄+ := (max s)+1.
A set x ⊆ ω is said to diagonalize the set

{
xs : s ∈ [ω]<ω

}
⊆ [ω]ω, if

x ⊆ x∅ and for all s ∈ [ω]<ω, if (max s) ∈ x, then x \ s̄+ ⊆ xs. For
A ⊆ [ω]ω we write fil A for the filter generated by the members of A ,
i.e., filA consists of all subsets of ω which are supersets of intersections of
finitely many members of A . A free family E is called a happy family if
whenever fil

{
xs : s ∈ [ω]<ω

}
⊆ E , then there is an x ∈ E which diagonalizes

the set
{
xs : s ∈ [ω]<ω

}
.

An obvious example of a happy family is the set [ω]ω, and it is not hard to
see that all Ramsey ultrafilters are happy (cf. [Mat077, Section 0]). Other
examples of happy families are Ramsey families:

Fact 19. Every Ramsey family is happy.

Proof. Let E be a free family which is not happy and let
{
xs : s ∈ [ω]<ω

}
⊆

E be such that fil
{
xs : s ∈ [ω]<ω

}
⊆ E but there is no x ∈ E which

diagonalizes the set
{
xs : s ∈ [ω]<ω

}
. We leave it as an exercise to the

reader to construct with the set
{
xs : s ∈ [ω]<ω

}
a winning strategy for the

Maiden for the game G
E
. q.e.d.

More examples of happy families we obtain by maximal almost disjoint
families: An infinite family A ⊆ [ω]ω is called maximal almost disjoint,
abbreviated m.a.d., if any two distinct sets of A have a finite intersection
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and for every y ∈ [ω]ω \ A there is an x ∈ A such that x ∩ y is infinite.
Now, let A ⊆ [ω]ω be a m.a.d. family and let F = fil{ω \ x : x ∈ A },
then E (A ) := F+ is a happy family (cf. [Mat077, Proposition 0.7]). This
example of a happy family leads to the following:

Proposition 20. Not every happy family is Ramsey.

Proof. Let S = {si : i ∈ ω} be the set of all finite sequences of ω, which
is partially ordered by the extension relation, denoted “≺”. For infinite
sequences f ∈ ωω, let xf :=

{
i ∈ ω : ∃n ∈ ω(f |n = si)

}
. Obviously, for

any distinct sequences f, g ∈ ωω we have that xf ∩ xg is finite. Now, let
A0 := {xf : f ∈ ωω}, then A0 ⊆ [ω]ω is a set of pairwise almost disjoint
sets which can be extended to a m.a.d. family, say A .

We show that E (A ) is not a Ramsey family: Let x0 := ω be the first
move of the Maiden and let a0 be Death’ response. In general, for i ∈ ω
she plays

xi+1 = {i ∈ ω : san
≺ si} .

For every n ∈ ω, xn is the union of infinitely many members of A0, and
therefore is an element of E (A ). Now, by the Maiden’s strategy, sa0

≺
sa1

≺ · · · corresponds to an infinite sequence f ∈ ωω and therefore, {an :
n ∈ ω} ⊆ xf for some xf ∈ A0, which implies that {an : n ∈ ω} /∈ E (A )
and that Death loses the game. Thus, the Maiden has a winning strategy

for the game G
E (A ), and hence, E (A ) is not Ramsey. q.e.d.

A m.a.d. family A is called strongly maximal almost disjoint if given
countably many members of E (A ), then there is a member of A that meets
each of them in an infinite set.

For a free family E , consider the following game Ḡ
E
: The moves of the

Maiden are members of E and Death responses like in the game G
E
.

Further, Death wins if and only if the set of integers played by Death

belongs to A , but has infinite intersection with each set played by the
Maiden.

If A is a m.a.d. family, then obviously the Maiden has a winning strategy

for Ḡ
E (A ) if and only if A is not strongly m.a.d., which motivates the

following:

Question 21. Is it the case that for a m.a.d. family A , E (A ) is Ramsey
if and only if A is strongly m.a.d. ?

Related to happy families are the so-called moderately happy families
introduced by Mathias in [Mat077, Section 9]: A free family E is moder-
ately happy if whenever fil{xn : n ∈ ω} ⊆ E , then there is an x ∈ E such
that for all n ∈ ω, x \ xn is finite.
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On the one hand, it is not hard to verify that every P -family is mod-
erately happy. On the other hand, by similar arguments as in the proof
of Proposition 20, one can show that there exist moderately happy families
which are not P -families.

Now, since the results of Section 4 are also valid for Mathias forcing
restricted to happy families, it is natural to ask whether something similar
holds for Silver forcing with respect to moderately happy families:

Question 22. Are the results of Section 5 also valid for Silver forcing re-
stricted to moderately happy families?
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