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Abstract

For any set S let
∣
∣ seq1-1(S)

∣
∣ denote the cardinality of the set of all finite

one-to-one sequences that can be formed from S, and for positive integers
a let

∣
∣aS

∣
∣ denote the cardinality of all functions from S to a. Using a result

from combinatorial number theory, Halbeisen and Shelah have shown that
even in the absence of the axiom of choice, for infinite sets S one always
has

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣2S

∣
∣ (but nothing more can be proved without the aid

of the axiom of choice). Combining stronger number-theoretic results with
the combinatorial proof for a = 2, it will be shown that for most positive
integers a one can prove the inequality

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣ without using any

form of the axiom of choice. Moreover, it is shown that a very probable
number-theoretic conjecture implies that this inequality holds for every
positive integer a in any model of set theory.

1. Motivation

It was proved in [3, Theorem 4] that for any set S with more than one element,
the cardinality

∣
∣ seq1-1(S)

∣
∣ of the set of all finite one-to-one sequences that can be

formed from S can never be equal to the cardinality of the power set of S, denoted by∣
∣2S

∣
∣. The proof does not make use of any form of the axiom of choice and hence, the

result also holds in models of set theory where the axiom of choice fails. Moreover, in
the absence of the axiom of choice,

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣2S

∣
∣ is all one can prove about the

relation between these two cardinalities. In other words, for each of the statements∣
∣ seq1-1(S)

∣
∣ <

∣
∣2S

∣
∣,

∣
∣ seq1-1(S)

∣
∣ >

∣
∣2S

∣
∣, and

∣
∣ seq1-1(S)

∣
∣ incomparable to

∣
∣2S

∣
∣, there

are models of Zermelo-Fraenkel’s set theory without the axiom of choice in which the
statement is true (cf. [4, §9]). However, in the presence of the axiom of choice, for any
infinite set S we always have

∣
∣ seq1-1(S)

∣
∣ <

∣
∣2S

∣
∣. Now, it is natural to ask whether

the power set of S, which can be identified by the set of all functions from S to 2,
can be replaced by a possibly larger set, namely the set of all functions from S to
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2 LORENZ HALBEISEN

some integer a > 2, where a = {0, 1, . . . , a − 1}. Again, in the presence of the axiom
of choice, for any infinite set S and for any integer a ≥ 2 we have

∣
∣2S

∣
∣ =

∣
∣aS

∣
∣. On

the other hand, it is not hard to show that for example in the ordered Mostowski
permutation model (cf. [4, §7.2]) the infinite set of atoms (or urelements) U satisfies∣
∣aU

∣
∣ <

∣
∣bU

∣
∣ whenever a < b. Moreover, one can even show that in this model we

have
∣
∣ seq1-1(U)

∣
∣ >

∣
∣aU

∣
∣ (for each positive integer a), but

∣
∣ seq1-1(U)

∣
∣ <

∣
∣
⋃∞

a=1 aU
∣
∣.

Turning back to our problem we may ask if it is provable without the aid of the
axiom of choice that for any infinite set S and for every integer a ≥ 2 we always
have

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣. The proof in [3] for the case of a = 2 uses a purely number-

theoretic result which can be generalized to a large class of numbers a and it is very
likely that it holds for all integers a ≥ 2.

The aim of this paper is to state and give evidence for a number-theoretic conjecture
which implies that for any infinite set S and for every integer a ≥ 2,

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣.

2. The Shadow of A000522

In the sequel we present some number-theoretic results of a combinatorial integer
sequence. The sequence we are interested in has identification number A000522 in
Sloane’s On-Line Encyclopedia of Integer Sequences [5]. For any non-negative integer
n, let n? be the number of one-to-one sequences (i.e., sequences without repetitions)
we can build with n distinct objects. It is not hard to verify that

n? =
n∑

k=0

(
n

k

)

k! =
n∑

j=0

n!

j!
,

and that for all positive integers n we have n? = ben!c, where bxc denotes the integer
part of a real number x and e is the Euler number. In particular, 0? = 1 and
n? = n · (n − 1)? + 1, which implies that

n? = e

∫ ∞

1

tne−tdt .

The first few numbers of the integer sequence n? are 0? = 1, 1? = 2, 2? = 5, 3? = 16,
4? = 65, 5? = 326, and further we get e.g., 100? ≈ 2.53687 · 10158 and 256? ≈
2.33179 · 10507.

Let us now recall some results of [1]: For each positive integer a, an easy calculation
modulo a shows that for all non-negative integers n we have n? ≡ (n + a)? mod a.
In particular, if a | n?, then a | (n + a)?.

The shadow d(a) of a positive integer a is being defined by stipulating

d(a) := |D(a)| , where D(a) :=
{
n < a : a | n?

}
.

The shadow d(a) counts the sequence entries 0?, 1?, 2?, . . . , (a − 1)? which are divisible
by a. As an easy consequence we get the following (cf. [1, Corollary 11]):
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Fact 2.1. If d(a) is the shadow of some positive integer a and
∏j

i=1 pki

i is the prime

decomposition of a, then d(a) =
∏j

i=1 d(pki

i ).

Therefore, the shadow d(a) of any positive integer a is fully determined by its values
on the powers of prime numbers. Further we have that for all positive integers a,

all elements m ∈ D(ak+1) must be of the form m = n + l ak,

where n ∈ D(ak) and l ∈ {0, 1, . . . , a−1}. Hence, we get inductively that if d(a) = 0,
then d(ak) = 0 for all positive integers k, and a positive integer a with d(a) = 0 is
called annihilating. An integer a ≥ 2 is annihilating if and only if a is a multiple of
some annihilating prime number, and the sequence of annihilating primes starts with
3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, 151, 157, 191, 199, . . ..

What can we say about non-annihilating numbers? For example is it the case that for
all positive integers k we have d(a) = d(ak) ? To answer this question, let us repeat
the calculation carried out in [1, p. 144]. For positive integers a, h, k, l, n, where h ≤ k
and a ≥ 2, we have the following:

(n + lak)
?

=

lak+n∑

j=0

(l ak + n)!

j!

=

lak−1∑

j=0

(l ak + n)!

j!
+

l ak+n∑

j=lak

(l ak + n)!

j!

=
(l ak + n))!

(l ak − 1)!
(l ak − 1)

?
+

lak+n∑

j=lak

(l ak + n)!

j!

≡ l ak n! (l ak − 1)
?
+

lak+n∑

j=lak

(l ak + n)!

j!
mod ak+h

≡ l ak n! (l ak − 1)
?
+ n? + l ak

n−1∑

j=0

n∑

i>j

n!

j! i
mod ak+h

≡ n? + l ak

(

n! (l ak − 1)
?
+

n∑

i=1

i−1∑

j=0

n!

j! i

)

mod ak+h

≡ n? + l ak

(

n! (ah − 1)
?
+

n−1∑

j=0

n!

(j + 1)!
j?

)

︸ ︷︷ ︸

=: sah,n

mod ak+h (♣)

As a consequence of (♣) we get that if ak | n? and ak+1 - n? (where a ≥ 2 and k ≥ 1),
then ak+1 | (n + lak)

?
if and only if (n?/ak) + l sa,n ≡ 0 mod a. In particular, if a is
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prime, ak | n?, and sa,n 6≡ 0 mod a, then there is a unique l ∈ {1, . . . , a} such that
ak+1 | (n + lak)

?
. This leads to the following definition:

Let

X(a) :=
∏

n∈D(a)

Mod(sa,n, a) ,

where Mod(a, b) denotes the reminder of the division of a by b and

sa,n := n! (a − 1)? +
n−1∑

j=0

n!

(j + 1)!
j? .

An integer a ≥ 2 with X(a) 6= 0 is called regular, otherwise it is called irregular.

Since the empty product is by definition equal to 1, all annihilating numbers are
regular. The following fact, which is Lemma 15 and Proposition 16 of [1], gives a
connection between the shadow d(a) of an integer a ≥ 2 and its regularity:

Fact 2.2. (i) An integer a ≥ 2 is regular if and only if for all positive integers k we
have d(ak) = d(a).

(ii) If d(a) is the shadow of some positive integer a and
∏j

i=1 pki

i is the prime decom-
position of a, then

d(a) =

j
∏

i=1

d(pi) ,

provided each prime pi is regular or one of the primes is annihilating. In particular,
an integer a ≥ 2 is regular if and only if each prime pi is regular or one of the primes
is annihilating.

The smallest irregular prime is 383, and indeed, d(383) = 3 but for all k ≥ 2 we
have d(383k) = 2, so, 3832 is regular. All other primes smaller than ten millions

are regular. However, motivated by statistical observations it was conjectured in [1,
Section 4] that the expected value for the number of irregular primes below some
integer n is asymptotically

c ·
∑

p≤n
p prime

1

p
,

where c ≈ 0.9 is constant. We also like to mention that similar arguments support
the conjecture made in [2] that there are infinitely many primes p, such that 2p−1 ≡ 1
mod p2. These primes seem to have the same distribution type as irregular primes,
which makes them equally hard to find. In the next section we will use similar
heuristic arguments to support Conjectures A, B, and C below.
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3. Statistical Investigations

3.1. The random behaviour of n
? and D(a). A positive regular integer a is

called 1-regular if d(a) ≤ 1. Since 1-regular numbers play an important role in
Theorem 5.2, let us first investigate the distribution of 1-regular numbers.

As a consequence of Fact 2.2 and (♣) we get the following:

Corollary 3.1. If ar is regular, d(ar) = 1, k ≥ r, ak | n?, and ak | (n + t)?, then
ak | t.

Are there many 1-regular numbers? Analyzing random samples indicate that 1-
regular numbers are quite frequent, so the answer is “yes”. The first ten 1-regular
numbers are 2, 3, 4, 6, 7, 8, 9, 11, 12, and 14.

The following table gives the percentage of 1-regular numbers in the interval [u, w]:

u w percentage

2 100 75.6%

2 1,000 78.9%

2 10,000 81.0%

2 100,000 81.5%

50,000 60,000 83.1%

90,000 100,000 79.3%

100,000 110,000 77.9%

150,000 155,000 75.9%

200,000 205,000 74.2%

A similar picture we get if we consider just the percentage of 1-regular prime numbers

in the interval [u, w]:

u w percentage

2 100 72.0%

2 1,000 75.6%

2 10,000 74.2%

2 100,000 73.2%

50,000 60,000 74.54%

90,000 100,000 71.18%

100,000 110,000 75.28%

150,000 155,000 74.46%

200,000 205,000 74.03%
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The two preceding tables lead to the following

Observation 1. More than 80% of the positive integers smaller than 100, 000 as well
as more than 73% of the prime numbers smaller than 100, 000 are 1-regular. However,
it seems that this percentage decreases for larger intervals, but anyway, since the prime
numbers 3, 7, 11, and 17 are annihilating, by Fact 2.2 (ii), the percentage can never
be smaller than 50.9%.

Recall that by (♣), where l = h = k = 1, for any integer a ≥ 2 we have (n + a)? ≡
(n? + a · sa,n) mod a2. Thus, if a | n? and a2 - n?, then a2 | (n + a)? if and only if
Mod(n?, a2)/a + Mod(sa,n, a) ≡ 0 mod a. So, for a ≥ 2 and n ∈ D(a) let

ε(a, n) =
Mod(ñ + sa,n, a)

a
∈ [0, 1) ,

where ñ ≡ Mod(n?, a2)/a.

For positive integers w let ν(w) be the set of integers a with 2 ≤ a ≤ w such that
ε(a, n) = 0 for some n ∈ D(a), and let ∆(w) :=

∑w

a=2 d(a). If we assume that the
probability for a ∈

⋃∞
w=2 ν(w) is d(a)/a, then, since

(
ln(w) − 0.5

)
≈

∑w

a=2 1/a, for
large integers w we would expect that |ν(w)| is approximately

∆(w)

w
·
(
ln(w) − 0.5

)
=: N(w) .

Let us check if this assumption makes sense:

w ∆(w) |ν(w)| N(w)

1,000 741 4 4.8

5,000 3,582 6 5.7

10,000 7,140 6 6.2

50,000 35,075 8 7.4

100,000 71,689 8 7.9

500,000 358,063 9 9.0

1,000,000 716,100 10 9.5

Further we have ν(1, 000, 000) = {2, 5, 185, 460, 1520, 2521, 12974, 20683, 127430,
923663} with d(2) = 1, d(5) = 2, d(185) = 6, d(460) = 4, d(1520) = 4, d(2521) = 1,
d(12974) = 9, d(20683) = 9, d(127430) = 4, d(923663) = 18.

Observation 2. The preceding table shows that 0.71 < ∆(w)/w < 0.75 and that
the probability to have a | n? and a2 | (n + a)? is indeed roughly between 0.71/a and
0.75/a.



A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY 7

3.2. More randomness. Let us now investigate the frequency of integers a ≥ 2 such
that D(a) ∩ D(a2) is non-empty, i.e., a2 | n? for some n ∈ D(a). In order to do so,
let us first consider the distribution of the set-function

ϕ(a) :=

{
(n?/a) mod a

a
: n ∈ D(a)

}

⊆ [0, 1) .

For each of the twenty intervals Ij = [0.05 · (j − 1), 0.05 · j), where 1 ≤ j ≤ 20, and
for a few intervals [u, w], let us compute

100 ·

∑w

a=u

∣
∣{r ∈ ϕ(a) : r ∈ Ij}

∣
∣

∑w

a=u

∣
∣ϕ(a)

∣
∣

.

The result of this calculations is shown in the following four graphics:

5 10 15 20

3

3.5

4

4.5

5.5

6

6.5

2 ≤ a ≤ 1, 000

5 10 15 20

3

3.5

4

4.5

5.5

6

6.5

1, 000 ≤ a ≤ 10, 000

5 10 15 20

4.8

4.9

5.1

5.2

10, 000 ≤ a ≤ 100, 000

5 10 15 20

4.8

4.9

5.1

5.2

10, 000 ≤ a ≤ 1, 000, 000

Observation 3. These four graphics show that for integers a ≤ 1000, the distribution
of ϕ is far away from being uniform. On the other hand, for integers a ≥ 10000, the
distribution of ϕ becomes more and more uniform (note the different scales).
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For a ≥ 2, D(a) ∩ D(a2) 6= ∅ is the same as saying 0 ∈ ϕ(a). Thus, if ϕ would be
uniform, then in the interval [u, w] we would expect to find about

w∑

a=u

d(a)

a
≈

∆(u, w)

w − u

w∑

a=w

1

a
≈

∆(u, w)

w − u

(
ln(w) − ln(u)

)
=: E(u, w)

such numbers a, where ∆(u, w) =
∑w

a=u d(a).

Now, let us compare the value of 3
4
E(u, w) and 2E(u, w) with the actual number of

such integers a, which is denoted by η(u, w):

u w 3
4
E(u, w) η(u, w) 2E(u, w)

1 1,000 3.84 11 10.24

1,000 10,000 1.23 1 3.27

10,000 100,000 1.24 1 3.30

10,000 500,000 2.10 4 5.60

10,000 1,000,000 2.47 5 6.60

The following is the list of pairs (a, n) such that n ∈ D(a) ∩ D(a2) and 2 ≤ a ≤
1, 000, 000: (4, 3), (10, 7), (20, 19), (29, 23), (38, 33), (58, 23), (65, 12), (370, 219), (386,
255), (920, 819), (977, 704), (9727, 2747), (19454, 2747), (170536, 157427), (226735,
153319), (453470, 153319), (788339, 666681).

Observation 4. Since ∆(u, w)/(w − u) is somewhere between 0.71 and 0.75, the
preceding table indicates that for large numbers a, the probability to have D(a) ∩
D(a2) 6= ∅ seems to be somewhere between 1/2a and 3/2a, or roughly about 1/a.

4. Number-Theoretic Conjectures

In the following we state three number-theoretic conjectures. Conjecture A is the
strongest one and states that there are only finitely many positive integers n such that
n? = ak, where a and k are integers both greater than or equal to 2. Conjecture B,
which is motivated by Observation 4, is a weakened version of Conjecture A, but in
fact, just Conjecture C, which is the weakest of the three conjectures, will be used
later (see Corollary 5.3).

For every integer a ≥ 2 let

Pa =
{
n : n? = ak for some k ≥ 2

}
,

and let

P =
∞⋃

a≥2

Pa .
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The only known number in the set P is 16, since 16 = 3?. Even though there is no
obvious reason why the set P should be finite, this seems very likely and motivates

Conjecture A. The set P is finite.

Let us consider now the set Pa for some integer a ≥ 2. Let k0 ≥ 1 be such that
ak0 > 104 and assume that there exists k1 > k0 such that ak1 = n? for some integer
n. Let k = bk1/2c, then, since n? = ben!c, we must have ak > n which implies that
n ∈ D(ak) ∩ D

(
(ak)2

)
. Now, if we assume—motivated by Observation 4—that the

probability for this is roughly 1/ak, then, since
∑∞

k=1 1/ak is finite, this would imply
that the set Pa is finite and motivates

Conjecture B. For each integer a ≥ 2, the set Pa is finite.

By Observation 1 it follows that for more than 50% of the integers a ≥ 2 we have
Pa = ∅. So, Conjecture B is right for more than half of the positive integers. An
even weaker conjecture than Conjecture B we get if we just conjecture that for each
integer a ≥ 2, the numbers in Pa become more and more rare.

Conjecture C. For each integer a ≥ 2, the set
{
n : n? = ak for some k ≥ 2 and (n + t) ∈ Pa for some 1 ≤ t ≤ k

}

is finite.

Notice that by Corollary 3.1, Conjecture C is right for all regular integers a ≥ 2
with d(a) ≤ 1 (compare with Theorem 5.2). In the next section we will see that if
Conjecture C is right, then for any infinite set S and any integer a ≥ 2,

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣ is provable without using any form of the axiom of choice.

5. A Link to Set Theory

Before we can state the main result of this section we like to explain how to compare
the cardinalities of infinite sets in ZF, which is Zermelo-Fraenkel’s set theory without
the axiom of choice.

For any two sets A and B we say that A has the same cardinality as B, denoted
by |A| = |B|, if there is a bijection between A and B, i.e., a one-to-one function from
A onto B. Further, the cardinality of A is less than or equal to the cardinality of B,
denoted by |A| ≤ |B|, if |A| = |B ′| for some B′ ⊆ B. If we have neither |A| ≤ |B| nor
|B| ≤ |A|, then we say that the cardinalities of the sets A and B are incomparable.

Let ℵ0 be the cardinality of the non-negative integers. A set S is called transfinite
if ℵ0 ≤ |S|, i.e., if S contains an infinite one-to-one sequence.

For any set S, let seq1-1(S) be the set of all finite one-to-one sequences that can be
formed from S, and for any positive integer a, let aS be the set of all functions from
S to a = {0, 1, . . . , a− 1}. Notice that the set 2S can be identified with the power set
of S.
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As it was mentioned before, each of the following statements is consistent with ZF

(see [4, §9]):

•
∣
∣ seq1-1(S)

∣
∣ <

∣
∣2S

∣
∣ ;

•
∣
∣ seq1-1(S)

∣
∣ >

∣
∣2S

∣
∣ ;

• the cardinalities of the sets seq1-1(S) and 2S are incomparable.

On the other hand, it is provable in ZF that for any set S with more than one
element, the cardinality of seq1-1(S) is never equal to the cardinality of the power set
of S (cf. [3, Theorem 4]). The crucial point in the proof of Theorem 4 in [3] was the
fact that—in the terminology of the preceding section—the number 2 is regular and
d(2) = 1. This leads to the following definition:

An integer a ≥ 2 is called eventually regular if there is a positive integer r
such that ar is regular. In view of the fact that there is just one irregular prime
known which is even eventually regular, one would expect that all integers a ≥ 2 are
eventually regular. Further, an integer a ≥ 2 is called eventually 1-regular if ar is
regular (for some r ≥ 1) and d(ar) ≤ 1.

In the following we will see that—even in the absence of the axiom of choice—for
any eventually 1-regular number a ≥ 2 and for any infinite set S we always have∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣, i.e., there is no bijection between seq1-1(S) and aS. The proof will

essentially follow that of Theorem 4 in [3], and the first step is to show that if the
infinite set S contains a countable infinite one-to-one sequence, then

∣
∣ seq1-1(S)

∣
∣ �

∣
∣aS

∣
∣:

Lemma 5.1 (ZF). Let S be an infinite set. If S is transfinite, then for each integer
a ≥ 2 we have

∣
∣ seq1-1(S)

∣
∣ �

∣
∣aS

∣
∣.

Proof. In [3, §3] it is shown that if the power set is transfinite, then
∣
∣ seq1-1(S)

∣
∣ �

∣
∣2S

∣
∣.

Firstly, if S is transfinite, then also the power set 2S is transfinite. Secondly, for any
integer a ≥ 2 we have

∣
∣2S

∣
∣ ≤

∣
∣aS

∣
∣, and Lemma 5.1 follows immediately. a

Theorem 5.2 (ZF). For any infinite set S, if the integer a ≥ 2 is eventually 1-regular,
then

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣.

Proof. By Lemma 5.1 it is enough to prove that if
∣
∣ seq1-1(S)

∣
∣ =

∣
∣aS

∣
∣, then S is

transfinite. Thus, towards a contradiction, let us assume that
∣
∣ seq1-1(S)

∣
∣ =

∣
∣aS

∣
∣ and

let
B : seq1-1(S) −→ aS

σ 7−→ fσ : S → a

be a bijection between seq1-1(S) and aS. We shall use this bijection to construct an
infinite one-to-one sequence (s0, s1, . . . , sn . . .) of elements of S. In fact it is enough to
show that every finite one-to-one sequence σn ∈ seq1-1(S) of length n can be extended
to a one-to-one sequence σn

_
s ∈ seq1-1(S) of length n + 1.
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Since a is eventually 1-regular, there is an r ≥ 2 so that ar is regular and d(ar) ≤ 1.
Pick ar + 1 distinct elements s0, s1, . . . , sar from S.

Assume that for some n > ar we already have constructed a one-to-one sequence
σn = (s0, s1, . . . , sn−1) of elements of S and let Sn = {si : 0 ≤ i < n}. The sequence
σn induces in a natural way an ordering on the set seq1-1(Sn), e.g., order seq1-1(Sn) by
length and lexicographically. Let us define an equivalence relation on S by stipulating

x ∼ y ⇐⇒ ∀σ ∈ seq1-1(Sn)
(
fσ(x) = fσ(y)

)
, where fσ = B(σ).

Let Eq(n) = S/∼ be the set of all equivalence classes. The ordering on seq1-1(Sn)
induces an ordering on Eq(n). Let

k = |Eq(n)| ,

then ak is equal to the cardinality of the set of functions from k = {0, 1, . . . , k − 1}
to a, where each such function corresponds to a function Eq(n) → a, which again
corresponds to a function in aS. In particular we can identify the set ak with the
cardinality of the set aEq(n) of all functions f̄ : S → a such that f̄ is constant on each
member of Eq(n). Now, the ordering on Eq(n) induces in a natural way an ordering
on the set of functions aEq(n) ⊆ aS.

By construction we have n? = | seq1-1(Sn)| ≤ ak.

Case 1 : If n? < ak, then there exists a least (with respect to the ordering on aEq(n))
function f̄0 ∈ aEq(n) such that f̄0 /∈

{
B(σ) : σ ∈ seq1-1(Sn)

}
, which implies that

B−1(f̄0) /∈ seq1-1(Sn). Let sn ∈ S be the first element in the sequence B−1(f̄0) which
does not belong to Sn. Now, σn

_
sn ∈ seq1-1(S) is a one-to-one sequence of length

n + 1.

Remark. Notice that if Conjecture B is right, then we can choose n such that for
all m ≥ n, m /∈ Pa, which implies that we are always in Case 1. In particular,
Conjecture B implies that for every infinite set S we have

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣. Further

notice that we are always in Case 1 if d(a) = 0, which, by Observation 1, holds for
more than 50% of the integers a ≥ 2.

Case 2 : Suppose that n? = ak. For arbitrary elements x ∈ S \ Sn let us resume
the construction with the sequence σn

_
x. By a parity argument one easily sees that

(n + 1)? is not an integer power of a, and thus, we are in Case 1. We proceed as long
as we are in Case 1. If there is an element x ∈ S \ Sn such that we are always in
Case 1, then we can construct an infinite one-to-one sequence of elements of S and
we are done. So, assume that for every x ∈ S \ Sn we get back in Case 2, where we
then have the following situation: The one-to-one sequence in S we have constructed
is of length n + ` + 1 (for some positive integer `), depends on x ∈ S \ Sn, and
(n + ` + 1)? is an integer power of a. Let σx

n+` = (s0, s1, . . . , sn+`) be this sequence
and let S̄x = {s0, s1, . . . , sn+`}. By construction we have x ∈ S̄x.

A subset of S is called good if it is not the union of elements of Eq(n).
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For any set X ⊆ S let χX : S → {0, 1} be such that χX(z) = 1 iff z ∈ X. Now, for
every good set T ⊆ S we have B−1(χT ) /∈ seq1-1(Sn), and therefore, there is a first
element in the sequence B−1(χT ) which does not belong to the set Sn.

Consider now the set

Tmin := {x : S̄x is good and of least cardinality } .

Since S is infinite, Tmin 6= ∅. If Tmin is good, use B−1(χTmin
) to construct a one-to-one

sequence in S of length (n + 1), and we are done.

Let mT :=
∣
∣S̄x

∣
∣ for some x in Tmin. For each x ∈ Tmin let us construct a one-to-one

sequence SEQx in S̄x of length mT such that

S̄x = S̄y =⇒ SEQx = SEQy .

In order to do so, let x ∈ Tmin be arbitrary. Because S̄x is good,

B−1
(
χS̄x

)
/∈ seq1-1(Sn) ,

and hence there is a first element z in B−1
(
χS̄x

)
which is not in Sn. Resume the

construction with σn
_
z and consider S̄z. It is easy to see that if S̄z  S̄x, then S̄z is

not good (because x ∈ Tmin). But then

B−1
(
χS̄x\S̄z

)
/∈ seq1-1(S̄z)

and we may proceed building the sequence SEQx, which depends only on the set S̄x.

For i < mT define

Qi := {s ∈ S : s is the ith element in SEQx for some x ∈ Tmin} .

Claim. There is a smallest j < mT such that Qj is good.

Then B−1(χQj
) /∈ seq1-1(Sn), but B−1(χQj

) ∈ seq1-1(S) and we can construct a one-
to-one sequence in S of length n + 1.

It remains to prove the Claim: For any x ∈ Tmin let

x= := {y : S̄y = S̄x} ,

which are the elements of the finite set S̄x we cannot distinguish, and further let t0
denote the least cardinality of the sets x=, where x ∈ Tmin.

Note that if for some i 6= j, z ∈ Qi ∩Qj, then S̄z cannot be good (otherwise, SEQz

would not be unique). Consequently, for each x ∈ Tmin there is exactly one ix such
that x ∈ Qix and for all y, z ∈ x= with y 6= z we have iy 6= iz. Hence, if there are no
good Qi’s, then t0 cannot exceed k = |Eq(n)|. Let us now show that indeed, t0 must

exceed k: Recall that ar is regular, d(ar) ≤ 1, and n ≥ ar + 1. Further recall that
n? = ak and that (n + ` + 1)? is an integer power of a, where ` + 1 = mT − n. As a
consequence of Corollary 3.1, for any positive integer t we get:

n? = ak and (n + t)?
is an integer power of a implies t > k . (♠)
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Take any x ∈ Tmin with |x=| = t0. For any y ∈ S̄x \ Sn, where S̄y is not necessarily
good, we have the following:

• |S̄y| = n + t where (n + t)? = ak′

for some k′ > k, and
• either y ∈ x= or S̄y is not good.

Hence, for some non-negative integer t′ we have

mT = n + ` + 1 = n + t′ + t0 = |S̄x| ,

where (n + t′)? and (n + t′ + t0)
? are both integer powers of a. Hence, by (♠), t0 > k

which completes the proof. a

As a consequence of the proof of Theorem 5.2 we get the following:

Corollary 5.3. If Conjecture C is right, then for any infinite set S and for any
integer a ≥ 2 we always have

∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣, even in the absence of the axiom of

choice.

Proof. The crucial point in the proof of Theorem 5.2 was that the assumptions on ak

imply (♠). Now, if Conjecture C is right, then we can choose n0 such that the set
{
n ≥ n0 : n? = ak for some k ≥ 2 and (n + t) ∈ Pa for some 1 ≤ t ≤ k

}
is empty,

which implies (♠). a

6. Conclusion

Let S be any infinite set and let a ≥ 2 be an integer. Then we may ask:

Is
∣
∣ seq1-1(S)

∣
∣ 6=

∣
∣aS

∣
∣ provable in ZF ?

In fact, the question just depends on the integer a and therefore it would not
be surprising if some number-theoretical arguments are involved in an affirmative
answer. Even though it is possible that

∣
∣2S

∣
∣ 6=

∣
∣aS

∣
∣ is provable in ZF without using

any number-theoretical results, we do not know of any such proof, not even in the
case of a = 2.

However, we have seen above that for a large class of numbers a the answer is
affirmative: Theorem 5.2 tells us that the answer is “yes” if a is eventually 1-regular
and according to the statistics in Section 3.1 and Observation 1, eventually 1-regular
numbers are quite frequent.

Further, by the remark in the proof of Theorem 5.2 we see that the answer is also
“yes” if Conjecture B is right. Moreover, by Corollary 5.3, even Conjecture C implies
that the answer is “yes”. Using some heuristic methods we have seen in Section 4
that Conjecture C is very likely to be right. Thus, if there is a model of ZF in which
the equation

∣
∣2S

∣
∣ =

∣
∣aS

∣
∣ holds for some infinite set S and some integer a ≥ 2, then

this number a must be extremely peculiar.
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