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Abstract. If we assume the axiom of choice, then every two cardinal numbers

are comparable. In the absence of the axiom of choice, this is no longer so. For

a few cardinalities related to an arbitrary infinite set, we will give all the possible

relationships between them, where possible means that the relationship is consistent

with the axioms of set theory. Further we investigate the relationships between some

other cardinal numbers in specific permutation models and give some results provable

without using the axiom of choice.

§1. Introduction. Using the axiom of choice, Felix Hausdorff proved
in 1914 that there exists a partition of the sphere into four parts, S =
A ∪̇B ∪̇C ∪̇E, such that E has Lebesgue measure 0, the sets A, B, C
are pairwise congruent and A is congruent to B ∪̇C (cf. [9] or [10]). This
theorem later became known as Hausdorff’s paradox. If we want to avoid
this paradox, we only have to reject the axiom of choice. But if we do
so, we will run into other paradoxical situations. For example, without
the aid of any form of infinite choice we cannot prove that a partition of
a given set m has at most as many parts as m has elements. Moreover,
it is consistent with set theory that the real line can be partitioned into
a family of cardinality strictly bigger than the cardinality of the real
numbers (see Fact 8.6).

Set theory without the axiom of choice has a long tradition and a lot
of work was done by the Warsaw School between 1918 and 1940. Al-
though, in 1938, Kurt Gödel proved in [5] the consistency of the axiom of
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choice with the other axioms of set theory, it is still interesting to inves-
tigate which results remain unprovable without using the axiom of choice
(cf. [18]).

In 1963, Paul Cohen proved with his famous and sophisticated forcing
technique, that it is also consistent with the other axioms of set theory
that the axiom of choice fails (cf. [3]). Also with a forcing construction,
Thomas Jech and Antońın Sochor could show in [15] that one can embed
the permutation models (these are models of set theory with atoms) into
well-founded models of set theory. So, to prove consistency results in set
theory, it is enough to build a suitable permutation model.

We will investigate the relationships between some infinite cardinal
numbers. For four cardinal numbers—which are related to an arbitrary
given one—we will give all the possible relationships between two of them;
where possible means that there exists a model of set theory in which the
relationship holds. For example it is possible that there exists an infi-
nite set m such that the cardinality of the set of all finite sequences of
m is strictly smaller than the cardinality of the set of all finite subsets
of m. On the other hand, it is also possible that there exists an infinite
set m′ such that the cardinality of the set of all finite sequences of m′ is
strictly bigger than the cardinality of the power-set of m′. In a few spe-
cific permutation models, like the basic Fraenkel model and the ordered
Mostowski model, we will investigate also the relationships between some
other cardinal numbers. Further we give some results provable without
using the axiom of choice and show that some relations imply the axiom
of choice.

§2. Definitions, notations and basic facts. First we want to define
the notion of a cardinal number and for this we have to give first the
definition of ordinal numbers.

Definition: A set α is an ordinal if and only if every element of α
is a subset of α and α is well-ordered by ∈.

Now let V be a model for ZF (this is Zermelo-Fraenkel’s set theory
without the axiom of choice) and let On := {α ∈ V : α is an ordinal};
then On is a proper class in V . It is easy to see that if α ∈ On, then
also α + 1 := α ∪ {α} ∈ On. An ordinal α is called a successor ordinal
if there exists an ordinal β such that α = β + 1 and it is called a limit
ordinal if it is neither a successor ordinal nor the empty-set.

By transfinite recursion on α ∈ On we can define Vα as follows: V∅ := ∅,
Vα+1 = P(Vα) and Vα :=

⋃
β∈α Vβ when α is a limit ordinal. Note that by

the axiom of power-set and the axiom of replacement, for each α ∈ On, Vα

is a set in V . By the axiom of foundation we further get V :=
⋃

α∈On Vα

(cf. [16, Theorem 4.1]).
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Let m be a set in V , where V is a model of ZF, and let C(m) denote
the class of all sets x, such that there exists a one-to-one mapping
from x onto m. We define the cardinality of m as follows.

Definition: For a set m, let m := C(m)∩ Vα, where α is the smallest
ordinal such that Vα ∩ C(m) 6= ∅. The set m is called the cardinality of
m and a set n is called a cardinal number (or simply a cardinal) if it
is the cardinality of some set.

Note that a cardinal number is defined as a set.
A cardinal number m is an aleph if it contains a well-ordered set. So,

the cardinality of each ordinal is an aleph. Remember that the axiom of
choice is equivalent to the statement that each set can be well-ordered.
Hence, in ZFC (this is Zermelo-Fraenkel’s set theory with the axiom of
choice), every cardinal is an aleph; and vice versa, if every cardinal is an
aleph, then the axiom of choice holds.

If we have a model V of ZF in which the axiom of choice fails, then we
have more cardinals in V than in a model M of ZFC. This is because all
the ordinals are in V and, hence, the alephs as well.

Notation: We will use fraktur-letters to denote cardinals and ℵ’s to
denote the alephs. For finite sets m, we also use |m| to denote the car-
dinality of m. Let N := {0, 1, 2, . . . } be the set of all natural numbers
and let ℵ0 denote its cardinality. We can consider N also as the set of
finite ordinal numbers, where n = {0, 1, . . . , n − 1} and 0 = ∅. For a
natural number n ∈ N, we will not distinguish between n as an ordinal
number and the cardinality of n. Further, the ordinal number ω denotes
the order-type (with respect to <) of the set N.

Now we define the order-relation between cardinals.
Definition: We say that the cardinal number p is less than or equal

to the cardinal number q if and only if for any x ∈ p and y ∈ q there is a
one-to-one mapping from x into y.

Notation: If p is less than or equal to the cardinal number q, we write
p ≤ q. We write p < q for p ≤ q and p 6= q. If neither p ≤ q nor q ≤ p
holds, then we say that p and q are incomparable and write p‖q. For
x ∈ p and y ∈ q we write: x 4 y if p ≤ q and x 64 y if p � q (cf. also
[16, p. 27]). Notice that x 4 y iff there exists a one-to-one function from
x into y.

Another order-relation which we will use at a few places and which was
first introduced by Alfred Tarski (cf. [20]) is the following.

Definition: For two cardinal numbers p and q we write p ≤∗ q if
there are non-empty sets x ∈ p and y ∈ q and a function from y onto x.

Notice, that for infinite cardinals p and q, we must use the axiom of
choice to prove that p ≤∗ q implies p ≤ q (see e.g. [7]). In general, if
we work in ZF, there are many relations between cardinals which do not
exist if we assume the axiom of choice (cf. [7]); and non-trivial relations



4 LORENZ HALBEISEN AND SAHARON SHELAH

between cardinals become trivial with the axiom of choice (see also [17]
or [23]).

The main tool in ZF to show that two cardinals are equal is the
Cantor-Bernstein Theorem: If p and q are cardinals with p ≤ q

and q ≤ p, then p = q.
(For a proof see [14] or [1].)
Notice that for x ∈ p and y ∈ q we have x 4 y 64 x is equivalent to

p < q, and if x 4 y 4 x, then there exists a one-to-one mapping from x
onto y.

A result which gives the connection between the cardinal numbers and
the ℵ’s is

Hartogs Theorem: For every cardinal number m, there exists a least
aleph, denoted by ℵ(m), such that ℵ(m) � m.

(This was proved by Friedrich Hartogs in [8], but a proof can also be
found in [14] or in [1].)

Now we will define “infinity”.
Definition: A cardinal number is called finite if it is the cardinality

of a natural number, and it is called infinite if it is not finite.
There are some other degrees of infinity (cf. e.g. [6] or [26]), but we will

use only “infinite” for “not finite” and as we will see, most of the infinite
sets we will consider in the sequel will be Dedekind finite, where a cardinal
number m is called Dedekind finite if ℵ0 � m.

There are also many weaker forms of the axiom of choice (we refer
the reader to [12]). Concerning the notion of Dedekind finite we wish to
mention five related statements.

AC: “The Axiom of Choice”;
2m = m : “For every infinite cardinal m we have 2m = m”;

C(ℵ0,∞) : “Every countable family of non-empty sets has a
choice function”;

C(ℵ0, < ℵ0) : “Every countable family of non-empty finite sets
has a choice function”;

Wℵ0 : “Every Dedekind finite set is finite”.

We have the following relations (for the references see [12]):

AC ⇒ 2m = m ⇒ Wℵ0 ⇒ C(ℵ0, < ℵ0) and AC ⇒ C(ℵ0,∞) ⇒ Wℵ0 ,

but on the other hand have

AC : 2m = m : Wℵ0 : C(ℵ0, < ℵ0) and AC : C(ℵ0,∞) : Wℵ0 ,

and further 2m = m ; C(ℵ0,∞) ; 2m = m.

§3. Cardinals related to a given one. Let m be an arbitrary set
and let m denote the cardinality of m. In the following we will define
some cardinalities which are related to the cardinal number m.
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Let [m]2 be the set of all 2-element subsets of m and let [m]2 denote the
cardinality of the set [m]2.

Let fin(m) denote the set of all finite subsets of m and let fin(m) denote
the cardinality of the set fin(m).

For a natural number n, fin(m)n denotes the set {〈e0, . . . , en−1〉 : ∀i <
n(ei ∈ fin(m))} and fin(m)n denotes its cardinality.

For a natural number n, finn+1(m) denotes the set fin(finn(m)), where
fin0(m) := m, and finn+1(m) denotes its cardinality.

Let m2 := m × m = {〈x1, x2〉 : ∀i < 2(xi ∈ m)} and let m2 = m · m
denote the cardinality of the set m2.

Let seq1 1(m) denote the set of all finite one-to-one sequences of m,
which is the set of all finite sequences of elements of m in which every
element appears at most once, and let seq1 1(m) denote the cardinality of
the set seq1 1(m).

Let seq(m) denote the set of all finite sequences of m and let seq(m)
denote the cardinality of the set seq(m).

Finally, let P(m) denote the power-set of m, which is the set of all
subsets of m, and let 2m denote the cardinality of P(m).

In the sequel, we will investigate the relationships between these cardi-
nal numbers.

§4. Cardinal relations which imply the axiom of choice. First
we give some cardinal relations which are well-known to be equivalent to
the axiom of choice. Then we show that also a weakening of one of these
relations implies the axiom of choice.

The following equivalences are proved by Tarski in 1924. For the his-
torical background we refer the reader to [21, 4.3].

Proposition 4.1. The following conditions are equivalent to the axiom
of choice:

(1) m · n = m+ n for every infinite cardinal m and n
(2) m = m2 for every infinite cardinal m
(3) If m2 = n2, then m = n
(4) If m < n and p < q, then m+ p < n+ q
(5) If m < n and p < q, then m · p < n · q
(6) If m+ p < n+ p, then m < n
(7) If m · p < n · p, then m < n

(The proofs can be found in [27], in [1] or in [23].)
As a matter of fact we wish to mention that Tarski observed that the

statement
If 2m < m+ n, then m < n

is equivalent to the axiom of choice, while the proposition:

If 2m > m+ n, then m > n
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can be proved without the aid of the axiom of choice (cf. [23, p. 421]).
To these cardinal equivalences mentioned above, we will now add two

more:

Proposition 4.2. The following conditions are equivalent to the axiom
of choice:

(1) For every infinite cardinal m we have [m]2 = m
(2) For every infinite cardinal m we have [m]2 = m or m2 = m

Proof. The proof is essentially the same as Tarski’s proof that the
axiom of choice follows if m2 = m for all infinite cardinals m (cf. [27]).

Tarski proved in [27] (cf. also [23]) the following relation for infinite
cardinals m:

m+ ℵ(m) = m · ℵ(m) implies m < ℵ(m).

Notice that m < ℵ(m) implies that every set m ∈ m can be well-ordered.
Therefore it is sufficient to show that (2), which is weaker than (1), implies
that for every infinite cardinal number m we have m < ℵ(m).

First we show that for two infinite cardinal numbers m and n we have
m + n ≤ m · n. For this, let m1 and n1 be such that m = m1 + 1 and
n = n1 + 1. Now we get

m ·n = (m1 +1) · (n1 +1) = m1 ·n1 +m1 +n1 +1 ≥ 1+m1 +n1 +1 = m+n.

It is easy to compute, that

[m+ ℵ(m)]2 = [m]2 +mℵ(m) + [ℵ(m)]2,

and
(m+ ℵ(m))2 = m2 + 2mℵ(m) + ℵ(m)2.

Now we apply the assumption (2) to the cardinal m + ℵ(m). If [m +
ℵ(m)]2 = m + ℵ(m), we get mℵ(m) ≤ m + ℵ(m) which implies (by the
above, according to the Cantor-Bernstein Theorem) mℵ(m) = m + ℵ(m).
By the result of Tarski mentioned above we get m < ℵ(m). The case when
(m+ ℵ(m))2 = m+ ℵ(m) is similar. So, if the assumption (2) holds, then
we get m < ℵ(m) for every cardinal number m and therefore, each set m
can be well-ordered, which is equivalent to the axiom of choice. a

§5. A few relations provable in ZF. In this section we give some
relationships between the cardinal numbers defined in section 3 which are
provable without using the axiom of choice.

The most famous one is the
Cantor Theorem: For any cardinal number m we have m < 2m.
(This is proved by Georg Cantor in [2], but a proof can also be found

in [14] or [1].)
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Concerning the relationship between “≤∗” and “≤”, it is obvious that
p ≤ q implies p ≤∗ q. The following fact gives a slightly more interesting
relationship.

Fact 5.1. For two arbitrary cardinals n and m we have n ≤∗ m→ 2n ≤
2m.

(For a proof see e.g. [23] or [1].)
The following two facts give a list of a few obvious relationships.

Fact 5.2. For every cardinal m we have:
(1) m2 ≤ fin2(m)
(2) seq1 1(m) ≤ fin2(m)
(3) seq1 1(m) ≤ seq(m)
(4) If m is infinite, then 2ℵ0 ≤ 2fin(m)

Proof. First take an arbitrary set m ∈ m. For (1) note that a set
〈x1, x2〉 ∈ m2 corresponds to the set {{x1}, {x1, x2}} ∈ fin2(m). For (2)
note that a finite one-to-one sequence 〈a0, a1, . . . , an〉 of m can always
be written as {{a0}, {a0, a1}, . . . , {a0, . . . , an}}, which is an element of
fin2(m). The relation (3) is trivial. For (4) let En := {e ⊆ m : |e| =
n}, where n ∈ N. Because m is assumed to be infinite, every x ⊆ N
corresponds to a set Fx ∈ P(fin(m)) defined by Fx :=

⋃
{En : n ∈ x}. a

Fact 5.3. ℵ0 = ℵ2
0 = fin(ℵ0) = fin2(ℵ0) = seq1 1(ℵ0) = seq(ℵ0) < 2ℵ0

Proof. The only non-trivial part is ℵ0 < 2ℵ0 , which follows by the
Cantor Theorem. a

Three non-trivial relationships are given in the following

Proposition 5.4. For any infinite cardinal m we have:
(1) fin(m) < 2m

(2) seq1 1(m) 6= 2m

(3) seq(m) 6= 2m

(These three relationships are proved in [7].)

§6. Permutation models. In this section we give the definition of
permutation models (cf. also [13]). We will use permutation models to
derive relative consistency results. But first we have to introduce models
of ZFA, which is set theory with atoms (cf. [13]). Set theory with atoms
is characterized by the fact that it admits objects other than sets, namely
atoms, (also called urelements). Atoms are objects which do not have
any elements but which are distinct from the empty-set. The develop-
ment of the theory ZFA is very much the same as that of ZF (except for
the definition of ordinals, where we have to require that an ordinal does
not have atoms among its elements). Let S be a set; then by transfi-
nite recursion on α ∈ On we can define Pα(S) as follows: P∅(S) := S,
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Pα+1(S) := Pα(S) ∪ P(Pα(S)) and Pα(S) :=
⋃

β∈α Pα(S) when α is a
limit ordinal. Further let P∞(S) :=

⋃
α∈On Pα(S). If M is a model of

ZFA and A is the set of atoms of M, then we have M := P∞(A). The
class M0 := P∞(∅) is a model of ZF and is called the kernel. Note that
all the ordinals are in the kernel.

The underlying idea of permutation models, which are models of ZFA,
is the fact that the axioms of ZFA do not distinguish between the atoms,
and so a permutation of the set of atoms induces an automorphism
of the universe. The method of permutation models was introduced
by Adolf Fraenkel and, in a precise version (with supports), by An-
drzej Mostowski. The version with filters is due to Ernst Specker in
[25].

In the permutation models we have a set of atoms A and a group G of
permutations (or automorphisms) of A (where a permutation of A is a
one-to-one mapping from A onto A). We say that a set F of subgroups
of G is a normal filter on G if for all subgroups H,K of G we have:

(A) G ∈ F ;
(B) if H ∈ F and H ⊆ K, then K ∈ F ;
(C) if H ∈ F and K ∈ F , then H ∩K ∈ F ;
(D) if π ∈ G and H ∈ F , then πHπ−1 ∈ F ;
(E) for each a ∈ A, {π ∈ G : πa = a} ∈ F .

Let F be a normal filter on G. We say that x is symmetric if the group

symG(x) := {π ∈ G : πx = x}
belongs to F . By (E) we have that every a ∈ A is symmetric.

Let V be the class of all hereditarily symmetric objects; then V is a
transitive model of ZFA. We call V a permutation model. Because every
a ∈ A is symmetric, we get that the set of atoms A belongs to V.

Now every π ∈ G induces an ∈-automorphism of the universe V, which
we denote by π̂ or just π.

Because ∅ is hereditarily symmetric and for all ordinals α the set Pα(∅)
is hereditarily symmetric too, the class V := P∞(∅) is a class in V which
is equal to the kernel M0.

Fact 6.1. For any ordinal α and any π ∈ G we have πα = α.

(This one can see by induction on α, where π∅ = ∅ is obvious.)
Since the atoms x ∈ A do not contain any elements, but are distinct

from the empty-set, the permutation models are not models of ZF. How-
ever, with the Jech-Sochor Embedding Theorem (cf. [15], [13] or [14])
one can embed arbitrarily large fragments of a permutation model in a
well-founded model of ZF:

Jech-Sochor Embedding Theorem: Let M be a model of ZFA +
AC, let A be the set of all atoms of M, let M0 be the kernel of M and
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let α be an ordinal in M. For every permutation model V ⊆M (a model
of ZFA) there exists a symmetric extension V ⊇ M0 (a model of ZF) and
an embedding x 7→ x̃ of V in V such that

(Pα(A))V is ∈-isomorphic to (Pα(Ã))V .

Most of the well-known permutation models are of the following simple
type: Let G be a group of permutations of A. A family I of subsets of A
is a normal ideal if for all subsets E,F of A we have:

(a) ∅ ∈ I;
(b) if E ∈ I and F ⊆ E, then F ∈ I;
(c) if E ∈ I and F ∈ I, then E ∪ F ∈ I;
(d) if π ∈ G and E ∈ I, then πE ∈ I;
(e) for each a ∈ A, {a} ∈ I.

For each set S ⊆ A, let

fixG(S) := {π ∈ G : πs = s for all s ∈ S};

and let F be the filter on G generated by the subgroups {fixG(E) : E ∈ I}.
Then F is a normal filter. Further, x is symmetric if and only if there
exists a set of atoms Ex ∈ I such that

fixG(Ex) ⊆ symG(x).

We say that Ex is a support of x.

§7. Consistency results derived from a few permutation mod-
els. In this section we will give some relationships between the cardinals
defined in section 3 which are consistent with ZF. We will do this by inves-
tigating the relations between certain sets in a few permutation models.
Let V be a permutation model with the set of atoms A and let m be a
set in V. Let C(m) := {x ∈ V : V |= x 4 m 4 x}; then C(m) is a class
in V. The cardinality of m in the model V (denoted by m) is defined
by m := C(m) ∩ Pα(A) ∩ V, where α is the smallest ordinal such that
C(m) ∩ Pα(A) ∩ V 6= ∅. Note that if m and n are two arbitrary sets in
a permutation model V and we have for example V |= m 4 n 64 m (and
therefore V |= m < n), then by the Jech-Sochor Embedding Theorem
there exists a well-founded model V of ZF such that V |= m̃ 4 ñ 64 m̃
and therefore V |= m < n, where m and n are the cardinalities of the
sets m̃ and ñ. Hence, since every relation between sets in a permutation
model can be translated to a well-founded model, to prove that a rela-
tion between some cardinals is consistent with ZF, it is enough to find a
permutation model in which the desired relation holds between the cor-
responding sets. In the sequel we will frequently make use of this method
without always mention it.
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7.1. The basic Fraenkel model. First we present the basic Fraenkel
model (cf. [13]).

Let A be a countable infinite set (the atoms), let G be the group of
all permutations of A and let Ifin be the set of all finite subsets of A.
Obviously, Ifin is a normal ideal.

Let VF (F for Fraenkel) be the corresponding permutation model, the
so called basic Fraenkel model. Note that a set x is in VF iff x is
symmetric and each y ∈ x belongs to VF , too.

Now we will give two basic facts involving subsets of A.

Lemma 7.1.1. Let E ∈ Ifin; then each S ⊆ A with support E is either
finite or co-finite (which means A\S is finite). Further, if S is finite, then
S ⊆ E; and if S is co-finite, then A \ S ⊆ E.

Proof. Let S ⊆ A with support E. Because E is a support of S, for
all π ∈ fix(E) and every a ∈ A we have πa ∈ S if and only if a ∈ S. If S
is neither finite nor co-finite, the sets (A\E)\S and (A\E)∩S are both
infinite and hence we find a π ∈ fix(E) such that for some s ∈ S, πs /∈ S.
Now, if S is finite, then S must be a subset of E because otherwise we
have S \ E 6= ∅ and we find again a π ∈ fix(E) such that for some s ∈ S,
πs /∈ S. The case when S is co-finite is similar. a

Lemma 7.1.2. Let A be the set of atoms of the basic Fraenkel model
and let m denote its cardinality; then VF |= ℵ0 6≤ 2m.

Proof. Assume there exists a one-to-one function f : N→ P(A) which
belongs to VF . Then, because f is symmetric, there exists a finite set
Ef ⊆ A (a support of f) such that fixG(Ef ) ⊆ symG(f). Now let n ∈ N
be such that fixG(f(n)) * fixG(Ef ) and let π ∈ fixG(Ef ) be such that
πf(n) 6= f(n). With the fact 6.1 we get that πn = n and therefore
f(πn) = f(n). So, Ef cannot be a support of f , which implies that the
function f does not belong to VF . a

The following proposition gives the relationships in the basic Fraenkel
model between some of the cardinals defined in section 3, where m denotes
the cardinality of the set of atoms of VF .

Proposition 7.1.3. Let m denote the cardinality of the set of atoms
A of VF . Then the in the model VF we have the following:

(1) fin(m)‖seq1 1(m)
(2) fin(m)‖ seq(m)
(3) seq1 1(m)‖2m
(4) seq(m)‖2m

Proof. (1) Assume first that there exists a function f ∈ VF from
fin(A) into seq1 1(A) and let Ef ∈ Ifin be a support of f . Choose two
arbitrary distinct elements a0 and a1 of A \ Ef such that U := {x ∈ A :
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x occurs in f({a0, a1} ∪ Ef )} * Ef and put E∗
f := {a0, a1} ∪ Ef . Choose

a y ∈ U \ Ef and a permutation π ∈ fixG(Ef ) such that πy 6= y and
πai = a1−i (for i ∈ {0, 1}). Now, πE∗

f = E∗
f but πf(E∗

f ) 6= f(E∗
f ), which

implies either that f is not a function or that Ef is not a support of f .
In both cases we get a contradiction to our assumption.
The fact that seq1 1(m) � fin(m) we get by fin(m) < 2m (see Proposi-
tion 5.4 (1)) and by seq1 1(m) � 2m (which will be shown in (3)).

(2) Because seq1 1(m) ≤ seq(m), by (1) it remains to show that fin(A) 64
seq(A). Assume there exists a function g ∈ V from fin(A) into seq(A) and
let Eg ∈ Ifin be a support of it.
– If for each p ∈ [A \ Eg]2 we have fixG(Eg) ⊆ symG(g(p)), then we find
{a0, a1} and {b0, b1} in [A \ Eg]2 with {a0, a1} ∩ {b0, b1} = ∅, and a per-
mutation π ∈ fixG(Eg) such that πai = bi and πbi = ai (for i ∈ {0, 1}).
Now we get πg({a0, a1}) = g({a0, a1}) and π{a0, a1} = {b0, b1}, which
contradicts our assumption.
– Otherwise, there exists a set {a0, a1} ∈ [A \ Eg]2 with fixG(Eg) *

symG(g({a0, a1})), hence we find in the sequence g({a0, a1}) an element
y ∈ A which does not belong to Eg. Now let π ∈ fixG(Eg) be such that
πai = a1−i (for i ∈ {0, 1}) and πy 6= y; then πg({a0, a1}) 6= g({a0, a1})
and π{a0, a1} = {a0, a1}, which contradicts again our assumption.

(3) Because m is infinite we have (by Proposition 5.4 (1)) fin(m) <
2m, which implies (by (1)) that 2m � seq1 1(m) and it remains to show
that seq1 1(A) 64 P(A). Assume there exists a function h ∈ VF from
seq1 1(A) into P(A) and let Eh ∈ Ifin be a support of h with |Eh| ≥ 4.
Consider seq1 1(Eh), then, because |Eh| ≥ 4, it is easy to compute that
|seq1 1(Eh)| > 2 · 2|Eh|, which implies (by Lemma 7.1.1) that there exists
an s0 ∈ seq1 1(Eh) such that Eh is not a support of h(s0). Let E0 :=⋂
{E ∈ Ifin : E is a support of h(s0)}; then E0 is a support of h(s0), too.

Choose a y ∈ E0 \ Eh and a permutation π ∈ fixG(Eh) such that πy 6= y.
Now, because π ∈ fixG(Eh) and s0 ∈ seq1 1(Eh) we have πs0 = s0, and
by construction we get πh(s0) 6= h(s0). This implies either that h is not
a function or that Eh is not a support of h and in both cases we get a
contradiction to our assumption.

(4) By fin(m) < 2m and fin(m) � seq(m) we get 2m � seq(m), and
the inequality seq(m) � 2m follows from seq1 1(m) � 2m and seq1 1(m) ≤
seq(m). a

7.2. The ordered Mostowski model. Now we shall construct the
ordered Mostowski model (cf. also [13]).

Let the infinite set of atoms A be countable, and let <M be a linear
order on A such that A is densely ordered and does not have a smallest
or greatest element (thus A is isomorphic to the rational numbers). Let
G be the group of all order-preserving permutations of A, and let again
Ifin be the ideal of the finite subsets of A.
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Let VM (M for Mostowski) be the corresponding permutation model
(given by G and Ifin), the so called ordered Mostowski model.

Because all the sets in the ordered Mostowski model are symmetric,
each subset of A has a finite support. By similar arguments as in the
proof of Lemma 7.1.2 one can show

Lemma 7.2.1. Let A be the set of atoms of the ordered Mostowski
model and let m denote its cardinality; then VM |= ℵ0 6≤ 2m.

For a finite set E ⊆ A, one can give a complete description of the
subsets of A with support E and one gets the following

Fact 7.2.2. If E ⊆ A is a finite set of cardinality n, then there are
22n+1 sets S ⊆ A (in VM ) such that E is a support of S.

(For a proof see [7, p. 32].)
In the following we investigate the relationships between some of the

cardinals defined in section 3 in the ordered Mostowski model, where m
will be cardinality of the set of atoms of VM .

Let m denote the cardinality of the set of atoms A (of the ordered
Mostowski model). In Theorem 1 of [7] it is shown that 2m ≤∗ fin(m).
Now, by Fact 5.1, we get 22

m ≤ 2fin(m) which implies (by the Cantor-
Bernstein Theorem, as fin(m) ≤ 2m) that the equation 22

m
= 2fin(m) holds

in the ordered Mostowski model.
Unlike in the basic Fraenkel model, all the simple cardinalities defined

in section 3 are comparable in the ordered Mostowski model:

Proposition 7.2.3. Let m denote the cardinality of the set of atoms
of VM . Then the following holds in VM :

m < fin(m) < 2m < seq1 1(m) < seq(m) .

Proof. Let A be the set of atoms A of the ordered Mostowski model.
m < fin(m): It is obvious that the function f : A → fin(A), defined by

f(a) := {a}, is a one-to-one function from A into fin(A). Now assume
that there exists also a one-to-one function g from fin(A) into A. Let
a0 := g(∅) and an+1 := g({a0, . . . , an}) (for n ∈ N). The ω-sequence
〈a0, a1, . . . , an, . . .〉 is a one-to-one sequence of A, which implies that ℵ0 ≤
m, but this is a contradiction to Lemma 7.2.1.

fin(m) < 2m: Because A is infinite, by Proposition 5.4 (1) we have
fin(m) < 2m.
2m < seq1 1(m): For a set S ⊆ A, let supp(S) :=

⋂
{E ∈ Ifin : E is

a support of S}; then supp(S) is a support of S, too; in fact, it is the
smallest support of S. Using the order-relation “<M” on the set of atoms
A, we can define an ordering on the set of finite subsets of A as follows.
For two finite sets {a0, . . . , an} and {b0, . . . , bm} of A, where ai <M ai+1

and bj <M bj+1 (for i < n and j < m), let {a0, . . . , an}<fin{b0, . . . , bm}
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iff either n < m or for n = m we have ∃i ≤ n∀j < i(aj = bj ∧ ai <M bi)).
The ordering “<fin” on the finite subsets of A induces an ordering on
the power-set of A (because every subset of A has a well-defined smallest
finite support). Further, the order-relation “<M” induces in a natural way
an ordering on the set of all permutations of a given finite subset of A
and we identify a permutation τ of a finite subset {c0 <M . . . <M cn−1}
with 〈τ(c0), τ(c1), . . . , τ(cn−1)〉 ∈ seq1 1(A). Now we choose 20 distinct
atoms c0 <M c1 <M . . . <M c19 of A and define a function f from P(A)
into seq1 1(A) as follows. For S ⊆ A with | supp(S)| ≥ 11, let f(S) be
the kth permutation of supp(S), where S is the kth subset of A with
smallest support supp(S) (this we can do because for | supp(S)| ≥ 11 we
have | supp(S)| ! ≥ 22| supp(S)|+1). If supp(S) = {a0, . . . , al} for l ≤ 9
(where ai < ai+1), then we choose the first 10 elements (with respect
to <M ) of {c0, . . . , c19} which are not in supp(S), say {d0, . . . , d9} and
put f(S) = 〈a0, . . . , al, dι0 , . . . , dι9〉, where dι0 . . . dι9 is the (10! − k)th
permutation of d0 . . . d9 and S is the kth subset of A with smallest support
supp(S). By Lemma 7.2.2, the function f is a well-defined one-to-one
function from P(A) into seq1 1(A). If there exists a one-to-one function
from seq1 1(A) into P(A), then, because n! > 22n+1 + 2 for n ≥ 10, we
can build an one-to-one ω-sequence of A, which is a contradiction to
Lemma 7.2.1.

seq1 1(m) < seq(m): Because each one-to-one sequence of A is a sequence
of A, we have seq1 1(A) 4 seq(A). Now assume that there exists also a
one-to-one function g from seq(A) into seq1 1(A). Choose an arbitrary
atom a ∈ A and let sn := g(〈a, a, . . . , a〉n), where 〈a, a, . . . , a〉n denotes
the sequence of {a} of length n. Because for every n ∈ N, the sequence
sn is a one-to-one sequence of A, for every n ∈ N there exists a k > n
and a b ∈ A such that b occurs in sk but for i ≤ n, b does not occur in si.
Because a sequence is an ordered set, with the function g we can build an
one-to-one ω-sequence of A, which contradicts Lemma 7.2.1. a

Let again m denote the cardinality of the set of atoms of the ordered
Mostowski model. Using some former facts and some arithmetical cal-
culations, by similar arguments as is the proof of Proposition 7.2.3 one
can show that the following sequence of inequalities holds in the ordered
Mostowski model:

m < [m]2 < m2 < fin(m) < 2m < seq1 1(m) < fin2(m) < seq1 1(fin(m)) <

< fin(2m) < fin3(m) < fin4(m) < . . . < finn(m) < seq(m) < 2fin(m) = 22
m

7.3. A custom-built permutation model. In the proof of Theo-
rem 2 of [7], a permutation model Vs (s for sequences) is constructed in
which there exists a cardinal number m such that Vs |= seq(m) < fin(m)
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and hence, Vs |= seq1 1(m) < fin(m). Specifically, m is the cardinality of
the set of atoms of Vs.

The set of atoms of Vs is built by induction, where every atom contains
a finite sequence of atoms on a lower level. We will follow this idea, but
instead of finite sequences we will put ordered pairs in the atoms. The
model we finally get will be a model in which there exists a cardinal m,
such that m2 < [m]2 (this is in fact a finite version of Theorem 2 of [7]).

We construct by induction on n ∈ N the following:
(α) A0 is an arbitrary countable infinite set.
(β) G0 is the group of all permutations of A0.
(γ) An+1 := An∪̇

{
(n + 1, p, ε) : p ∈ An ×An ∧ ε ∈ {0, 1}

}
.

(δ) Gn+1 is the subgroup of the group of permutations of An+1 con-
taining all permutations h such that for some gh ∈ Gn and εh ∈ {0, 1} we
have

h(x) =

{
gh(x) if x ∈ An,
(n + 1, gh(p), εh +2 εx) if x = (n + 1, p, εx),

where gh(p) = 〈gh(p1), gh(p2)〉 for p = 〈p1, p2〉 and +2 is the addition
modulo 2.

Let A :=
⋃
{An : n ∈ N} and let Aut(A) be the group of all permuta-

tions of A; then

G :=
{
H ∈ Aut(A) : ∀n ∈ N (H|An ∈ Gn)

}
is a group of permutations of A. Let F be the normal filter on G generated
by {fixG(E) : E ⊆ A is finite}, and let Vp (p for pairs) be the class of all
hereditarily symmetric objects.

Now we get the following

Proposition 7.3.1. Let m denote the cardinality of the set of atoms
A of Vp. Then we have Vp |= m2 < [m]2.

Proof. First we show that Vp |= m2 ≤ [m]2. For this it is sufficient to
find a one-to-one function f ∈ Vp from A2 into [A]2. We define such a
function as follows. For x, y ∈ A let

f(〈x, y〉) :=
{
(n + m + 1, 〈x, y〉, 0), (n + m + 1, 〈x, y〉, 1)

}
,

where n and m are the smallest numbers with x ∈ An and y ∈ Am,
respectively. For any π ∈ G and x, y ∈ A we have πf(〈x, y〉) = f(〈πx, πy〉)
and therefore, the function f is as desired and belongs to Vp.

Now assume that there exists a one-to-one function g ∈ Vp from [A]2

into A2 and let Eg be a finite support of g. Without loss of generality
we may assume that if (n + 1, 〈x, y〉, ε) ∈ Eg, then also x, y ∈ Eg. Let
k := |Eg| and for x, y ∈ A let g({x, y}) = 〈t0{x,y}, t

1
{x,y}〉. Let r := k + 4
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and let N := Ramsey(2, r2, 3), where Ramsey(2, r2, 3) is the least natu-
ral number such that for every coloring τ : [Ramsey(2, r2, 3)]2 → r2 we
find a 3-element subset H ⊆ Ramsey(2, r2, 3) such that τ |[H]2 is con-
stant. (If p, r,m are natural numbers such that p ≤ m and r > 0,
then by the Ramsey Theorem (cf. [22, Theorem B]), Ramsey(p, r,m) is
well-defined.) Choose N distinct elements x0, . . . , xN−1 ∈ A0 \ Eg, let
X = {x0, . . . , xN−1} and let ch (h < k) be an enumeration of Eg. We
define a coloring τ : [X]2 → r × r as follows. For {xi, xj} ∈ [X]2 such
that i < j let τ({xi, xj}) = 〈τ0({xi, xj}), τ1({xi, xj})〉 where for l ∈ {0, 1}
we define

τl({xi, xj}) :=



h if tl{xi,xj} = ch,

k if tl{xi,xj} = xi,

k + 1 if tl{xi,xj} = xj ,

k + 2 if tl{xi,xj} ∈ A0 \ ({xi, xj} ∪ Eg),

k + 3 if tl{xi,xj} ∈ A \ (A0 ∪Eg).

By the definition of N we find 3 elements xι0 , xι1 , xι2 ∈ X with ι0 <
ι1 < ι2 such that for l ∈ {0, 1}, τl is constant on [{xι0 , xι1 , xι2}]2. So, for
{xιi , xιj} ∈ [{xι0 , xι1 , xι2}]2 with i < j and for l ∈ {0, 1}, we are at least
in one of the following cases:

(1) tl{xιi ,xιj }
= ch0 and t1−l

{xιi ,xιj }
= ch1 ,

(2) tl{xιi ,xιj }
= ch and t1−l

{xιi ,xιj }
= xιi ,

(3) tl{xιi ,xιj }
= ch and t1−l

{xιi ,xιj }
= xιj ,

(4) tl{xιi ,xιj }
= xιi and t1−l

{xιi ,xιj }
= xιj ,

(5) tl{xιi ,xιj }
∈ A0 \ (Eg ∪ {xιi , xιj}),

(6) tl{xιi ,xιj }
∈ A \ (Eg ∪A0).

If we are in case (1) or (2), then g({xι0 , xι1}) = g({xι0 , xι2}), and there-
fore g is not a one-to-one function. If we are in case (3), then g is also
not a one-to-one function because g({xι0 , xι2}) = g({xι1 , xι2}).

If we are in case (4), let π ∈ fix(Eg) be such that πxι0 = xι1 and πxι1 =
xι0 . Assume g({xι0 , xι1}) = 〈xι0 , xι1〉 (the case when g({xι0 , xι1}) =
〈xι1 , xι0〉 is symmetric). Then we have π{xι0 , xι1} = {xι0 , xι1}, but
πg({xι0 , xι1}) = 〈xι1 , xι2〉 6= 〈xι0 , xι1〉, and therefore g is not a function in
Vp.

If we are in case (5), let l ∈ {0, 1} be such that tl{xι0 ,xι1}
∈ A0 \ (Eg ∪

{xι0 , xι1}) and let a := tl{xι0 ,xι1}
. Take an arbitrary a′ ∈ A0 \ (Eg ∪

{a, xι0 , xι1}) and let π ∈ fix(Eg∪{xι0 , xι1}) be such that πa = a′ and πa′ =
a. Then we get π{xι0 , xι1} = {xι0 , xι1} but πg({xι0 , xι1}) 6= g({xι0 , xι1}),
and therefore g is not a function in Vp.
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If we are in case (6), let l ∈ {0, 1} be such that tl{xι0 ,xι1}
∈ A\(Eg∪A0),

thus tl{xι0 ,xι1}
= (n + 1, p, ε) for some (n + 1, p, ε) ∈ A. Let π ∈ fix(Eg ∪

{xι0 , xι1}) be such that π(n + 1, p, ε) = (n + 1, p, 1 − ε). Then we have
π{xι0 , xι1} = {xι0 , xι1} but πg({xι0 , xι1}) 6= g({xι0 , xι1}), and therefore g
is not a function in Vp.

So, in all the cases, g is either not a function or it is not one-to-one,
which contradicts our assumption and completes the proof. a

7.4. On sequences and the power-set. The Theorem 2 of [7] states
that the relation seq(m) < fin(m) is consistent with ZF. If we consider the
permutation model Vs (s for sequences) constructed in the proof of this
theorem, we see that even more is consistent with ZF, namely

Proposition 7.4.1. It is consistent with ZF that there exists a cardinal
number m, such that seq1 1(m) < seq(m) < fin(m) < 2m.

Proof. Let m denote the cardinality of the set of atoms of the permu-
tation model Vs constructed in the proof of Theorem 2 of [7]. Then in Vs

we have seq1 1(m) < seq(m) < fin(m) < 2m:
The inequality seq(m) < fin(m) is Theorem 2 of [7] and because m is

infinite, by Proposition 5.4 (1), we also get fin(m) < 2m.
To see that also seq1 1(m) < seq(m) holds in Vs, assume that there exists

(in V) a one-to-one function from seq(m) into seq1 1(m). Such a one-to-one
function would generate a function f ∈ V from ℵ0 into m, but because
f—as an element of V—has a finite support, this is impossible. a

In the remainder of this section we show that it is consistent with ZF
that there exists a cardinal number m such that seq1 1(m) < 2m < seq(m).
For this we construct a permutation model Vc (c for categorical) where m
will be the cardinality of the set of atoms of Vc.

Let L be the signature containing the binary relation symbol “<” and
for each n ∈ N an n + 1-ary relation symbol Rn. Let T0 be the following
theory:

(α) < is a linear order,
(β) for each n ∈ N : Rn(z0, . . . , zn) →

∧
l 6=m

(zl 6= zm) .

Let K = {N : N is a finitely generated structure of T0}; then K 6= ∅
and further we have the following fact (cf. also [11, p. 325]).

Fact 7.4.2. K has the amalgamation property.

Proof. If N0 ⊆ N1 ∈ K, N0 ⊆ N2 ∈ K and N1 ∩ N2 = N0, then we
can define an N ∈ K such that dom(N) = dom(N1)∪dom(N2), N1 ⊆ N ,
N2 ⊆ N , <N1 ∪ <N2⊆<N and for any n ∈ N we have RN1

n ∪RN2
n = RN

n . a
As a consequence of Fact 7.4.2 we get the

Lemma 7.4.3. There exists (up to isomorphism) a unique structure M
of T0 such that the cardinality of dom(M) is ℵ0, each structure N ∈ K
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can be embedded in M and every isomorphism between finitely gener-
ated substructures of M (between two structures of K) extends to an
automorphism of M .

Proof. For a proof see e.g. Theorem 7.1.2 of [11]. a
Therefore, Th(M) is ℵ0-categorical and, because every isomorphism be-

tween finitely generated substructures of M extends to an automorphism
of M , the structure M has non-trivial automorphisms.

Now we construct the permutation model Vc as follows. The set dom(M)
constitutes the set of atoms A of Vc and G is the group of all permutations
π of A such that: M |= x <M y iff M |= πx <M πy and for each n ∈ N,
M |= Rn(z0, . . . , zn) iff M |= Rn(πz0, . . . , πzn). In fact, the group G is
the group of all automorphisms of M . Further, let F be the normal filter
on G generated by {fix(E)G : E ⊆ A is finite} and let Vc be the class of
all hereditarily symmetric objects.

Notation: If i+k = n and ȳ = 〈y0, . . . , yn−1〉, then we write Ri,k(x, ȳ)
instead of Rn(y0 . . . , yi−1, x, yi, . . . yi+k−1). If i = 0, we write just Rn(x, ȳ).

The following lemma follows from the fact that every isomorphism be-
tween two structures of K extends to an automorphism of M and from
the fact that Th(M) is ℵ0-categorical (cf. also [11, Theorem 7.3.1]).

Lemma 7.4.4. For every set S ⊆ A in Vc there exists a unique smallest
support supp(S) and for each finite set E ⊆ A, the set {S ⊆ A : S ∈
Vc ∧ supp(S) = E} is finite.

Proof. For n ∈ N let E = {e0, . . . , en−1} ⊆ A be a finite set of atoms.
Further, let ΘE the set of all atomic L-formulas ϕi(x) such that we have
ϕi(x) is either the formula x = ej (for some j < n) or x <M ej (for some
j < n) or Ri,k(x, ē) (for i + k ≤ n and ē ∈ seq1 1(E)). For an atom a ∈ A
let

ϑE(a) := {ϕi(x) ∈ ΘE : M |= ϕi(a)} ;
thus, ϑE(a) is the set of all atomic formulas in ΘE such that ϕi(a) holds
in M .

Take an arbitrary S ⊆ A in Vc and let E be a support of S. If s, t ∈ A
are such that ϑE(t) = ϑE(s), then we find (by construction of M and G)
a permutation π ∈ fixG(E) such that πs = t and therefore we have s ∈ S
if and only if t ∈ S. Hence, the set S is determined by {ϑE(s) : s ∈ S},
which is a finite set of finite sets of atomic formulas.

Now we show that if E1 and E2 are two distinct supports of a set S ⊆ A,
then E1 ∩ E2 is also a support of S. If E1 ⊆ E2 or E2 ⊆ E1, then it is
obvious that E1∩E2 is a support of S. So, assume that E1\E2 and E2\E1

are both non-empty and let E0 := E1 ∩E2. Take an arbitrary s0 ∈ S and
let ϑ0 := ϑE0(s0). Let t ∈ A be any atom such that ϑE0(t) = ϑ0. We
have to show that also t ∈ S. If x = ej belongs to ϑ0 (and thus ej ∈ E0),
then s0 = t = ej and we have t ∈ S. So, assume that x = ej does not
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belong to ϑ0 (for any ej ∈ E0). If x = ei does not belong to ϑE1(t), let
t′ := t. Otherwise, if x = ei belongs to ϑE1(t), because ϑE0(t) = ϑ0 and
E0 = E1∩E2 we have ei ∈ E1 \E2. By construction of M we find a t′ ∈ A
such that t′ /∈ E1 and ϑE2(t

′) = ϑE2(t), hence, t′ ∈ S ⇔ t ∈ S. Now let

Ξ2 := {ϑE2(s) : s ∈ S ∧ ϑE2(s) ∩ ϑE0(s) = ϑ0} .

Because t′ /∈ E1 we find (again by construction of M) a t′′ ∈ A such
that ϑE1(t

′′) = ϑE1(t
′) and ϑE2(t

′′) ∈ Ξ2. Now, by ϑE2(t
′′) ∈ Ξ2 we have

t′′ ∈ S, by ϑE1(t
′′) = ϑE1(t

′) we have t′′ ∈ S ⇔ t′ ∈ S, and because
t′ ∈ S ⇔ t ∈ S we finally get t ∈ S.

Hence, supp(S) :=
⋂
{E : E is a support of S} is a support of S and

by construction it is unique. a
Now we are ready to prove the

Proposition 7.4.5. Let m denote the cardinality of the set of atoms
of Vc; then we have Vc |= seq1 1(m) < 2m < seq(m).

Proof. First we show Vc |= seq1 1(m) < 2m. For ȳ = 〈y0, . . . , yn−1〉 ∈
seq1 1(A) let

Φ(ȳ) : {x ∈ A : M |= Rn(x, ȳ)} .

By the construction of Vc, the function Φ belongs to Vc and is a one-to-
one mapping from seq1 1(A) to P(A). Hence, Vc |= seq1 1(m) ≤ 2m and
because (by Proposition 5.4 (2)) seq1 1(m) 6= 2m is provable in ZF, we get
Vc |= seq1 1(m) < 2m.

To see that Vc |= 2m < seq(m), notice first that by Proposition 5.4 (3),
the inequality seq(m) 6= 2m is provable in ZF, and therefore it is enough
to find a one-to-one function from P(A) into seq(A) which lies in Vc. For
each finite set E ⊆ A, let ηE be an enumeration of the set ΘE . (The
function E 7→ ηE exists as <M is a linear order on the finite set E.) Then
by the Lemma 7.4.4 and its proof, for each finite set E ⊆ A, ηE induces
a mapping from {S ⊆ A : supp(S) = E} into k, for some k ∈ N. Now fix
two distinct atoms a, b ∈ A and let

Ψ : P(A) −→ seq(A)
S 7−→ 〈e0, . . . , en−1, a, b, . . . , b〉

be defined as follows: E = {e0, . . . , en−1} := supp(S) such that e0 <M

. . . <M en−1 and the length of the sequence Ψ(S) is equal to n + 1 + l,
where ηE maps S to l. The function Ψ is as desired, because it is a
one-to-one function from P(A) into seq(A) which lies in Vc. a

Remark: Because the relation <M is a dense linear order on the set
of atoms of Vc, with similar arguments as in the proof of the Proposi-
tion 7.2.3 one can show that Vc |= fin(m) < seq1 1(m) (where m denotes
the cardinality of the atoms of Vc).
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§8. Cardinals related to the power-set. In this section we compare
the cardinalities of some sets which are related to the power-set. First we
consider the power-set itself and afterwards we give some results involving
the set of partitions.

The following fact can be found also in [20] or [23, VIII 2 Ex. 9]. How-
ever, we want to give here a combinatorial proof of this fact.

Fact 8.1. If ℵ0 ≤ 2m, then 2ℵ0 ≤ 2m.

Proof. Take an arbitrary m ∈ m. Because ℵ0 ≤ 2m, we find an one-
to-one ω-sequence 〈p0, p1, . . . , pn, . . .〉 of P(m). Define an equivalence
relation on m by

x ∼ y if and only if ∀n ∈ N(x ∈ pn ↔ y ∈ pn) ,

and let [x] := {y ∈ m : y ∼ x}. For x ∈ m let g[x] := {n ∈ N : x ∈ pn};
then, for every x ∈ m, we have g[x] ⊆ N and g[x] = g[y] if and only if
[x] = [y]. We can consider g[x] as an ω-sequence of {0, 1} by stipulating
g[x](n) = 0 if x ∈ pn and g[x](n) = 1 if x /∈ pn. Now we define an ordering
on the set {g[x] : x ∈ m} as follows:

g[x] <g g[y] if and only if

∃n ∈ N
(
g[x](n) < g[y](n) ∧ ∀k < n(g[x](k) = g[y](k))

)
.

This is a total order on the set {g[x] : x ∈ m}. Let P 0
n := {g[x] : g[x](n) =

0}; then for each n ∈ N the set P 0
n is a set of ω-sequences of {0, 1}. The

order relation <g defines an ordering on each P 0
n and we must have one

of the following two cases:
Case 1 : For each n ∈ N, P 0

n is well-ordered by <g.
Case 2 : There exists a least n ∈ N such that P 0

n is not well-ordered by
the relation <g.

If we are in case 1, then we find a well-ordering on
⋃

n∈N P 0
n . Let the

ordinal α denote its order-type; then α ≥ ω (otherwise the ω-sequence
〈p0, p1, . . .〉 would not be one-to-one) and therefore we can build a one-
to-one ω-sequence 〈g[x0], g[x1], . . .〉 of {g[x] : x ∈ m}. If we define qi :=
{x ∈ m : g[x] = g[xi]}, then the set Q := {qi : i ∈ N} is a set of pairwise
disjoint subsets of m of cardinality ℵ0. Therefore, the cardinality of P(Q)
is 2ℵ0 and because for q ⊆ Q the function ϕ(q) :=

⋃
q ⊆ m is a one-to-one

function, we get 2ℵ0 ≤ 2m.
If we are in case 2, let n be the least natural number such that P 0

n is not
well-ordered by <g. Let S0 :=

⋃
{s ⊆ P 0

n : s has no smallest element}.
Then S0 ⊆ P 0

n has no smallest element, too. For k ∈ N we define Sk+1

as follows. If Sk ∩ P 0
n+k+1 = ∅, then Sk+1 := Sk; otherwise, Sk+1 :=

Sk ∩ P 0
n+k+1. By construction, for every k ∈ N, the set Sk is not the

empty set and it is not well-ordered by <g. Thus, for every k ∈ N there
exists an l > k such that Sl is a proper subset of Sk. Now let 〈Sk0 , Sk1 , . . .〉
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be such that for all i < j we have Ski
\ Skj

6= ∅ and let qi := {x ∈ m :
g[x] ∈ (Ski

\ Ski+1
}. Then the set Q := {qi : i ∈ N} is again a set of

pairwise disjoint subsets of m of cardinality ℵ0 and we can proceed as
above. a

Fact 8.2. If ℵ0 � 2m, then for every natural number n we have n ·2m <

(n + 1) · 2m and if ∅ /∈ m we also have 2n·m < 2(n+1)·m.

Proof. We will give the proof only for the former case, since the proof
of the latter case is similar. Let n be an arbitrary natural number. It
is obvious that we have n · 2m ≤ (n + 1) · 2m. So, for an m ∈ m, let us
assume that we also have a one-to-one function f from (n + 1) × P(m)
into n× P(m). For k ≥ 1 let 〈s0, . . . , sk−1〉k be a one-to-one k-sequence
of P(m) and let Uk := {si : i < k}. We can order the set (n + 1)× Uk as
follows: 〈li, si〉 <U 〈lj , sj〉 iff either i < j or i = j and li < lj . Because
| (n+1)×Uk |= (n+1) ·k and k ≥ 1, we have (n+1) ·k > n ·k and hence
there exists a first 〈li, si〉 (w.r.t. <U ), such that the second component
of f(〈li, si〉) does not belong to Uk. Now we define sk := f(〈li, si〉) and
the (k + 1)-sequence 〈s0, . . . , sk〉k+1 is a one-to-one sequence of P(m).
Repeating this construction, we finally get an one-to-one ω-sequence of
P(m). But this is a contradiction to ℵ0 6≤ 2m. So, our assumption was
wrong and we must have n · 2m < (n + 1) · 2m. a

Because it is consistent with ZF that there exists an infinite cardinal
number m such that ℵ0 � 2m (see Lemma 7.1.2), it is also consistent
with ZF that there exists an infinite cardinal m such that 2m < 2m + 2m.
Concerning 22

m
, Hans Läuchli proved in ZF that for every infinite cardinal

number m we have 22
m

+ 22
m

= 22
m

(see [17]). In particular, he got this
result as a corollary of the following: It is provable in ZF that for any
infinite cardinal m we have

(
2fin(m)

)ℵ0 = 2fin(m) (cf. [17]). Now, because
2m = fin(m) + q (for some q), we have 22

m
= 2fin(m)+q = 2fin(m) · 2q, and

therefore, 22
m

=
(
2fin(m)

)ℵ0 · 2q ≥ 2fin(m) · 2fin(m) · 2q ≥ 2 · 2fin(m)+q =
22
m

+ 22
m
, and the equation 22

m
+ 22

m
= 22

m
follows by the Cantor-

Bernstein Theorem.
Now we give some results concerning the set of partitions of a given set.
A set p ⊆ P(m) is a partition of m if p is a set of pairwise disjoint,

non-empty sets such that
⋃

p = m. We denote the set of all partitions of
a set m by part(m) and the cardinality of part(m) by part(m). Because
each partition of m is a subset of the power set of m, we obviously have
part(m) ≤ 22

m
. It is also easy to see that if m has more than 4 elements,

then 2m ≤ part(m). If we assume the axiom of choice, then for every
infinite set m we have 2m = part(m) (cf. [23, XVII.4 Ex. 3]). But it is
consistent with ZF that there exists an infinite set m such that 2m <
part(m). Moreover we have the following
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Proposition 8.3. If m ≥ 5 and ℵ0 � 2m, then 2m < part(m).

Proof. For a finite m ≥ 5, it is easy to compute that 2m < part(m).
So, let us assume that m is infinite and take m ∈ m. Because m has more
than 4 elements we have P(m) 4 part(m). Now let us further assume
that there exists a one-to-one function f from part(m) into P(m). First
we choose 4 distinct elements a0, a1, a2, a3 from m. Let ci := {ai} (for
i < 4) and c4 := m \

⋃
{ci : i < 4}; then P5 := {ci : i ≤ 4} is a partition

of m with |P5| = 5.
Let Sh = 〈X0, . . . , Xh−1〉h be a one-to-one sequence of P(m) of length

h. With respect to the sequence Sh we define an equivalence relation on
m as follows. x ∼ y if and only if for all i < h: x ∈ Xi ⇔ y ∈ Xi. For
x ∈ m let [x] := {y ∈ m : y ∼ x} and let χx : h → {0, 1} be such that
χx(i) = 0 if and only if x ∈ Xi. Notice that we have χx = χy if and
only if x ∼ y. We define an ordering on the set of equivalence classes by
stipulating [x] <χ [y] if there exists an i < h such that χx(i) < χy(i) and
for all j < i we have χx(j) = χy(j). Further, for k = |{[x] : x ∈ m}|, let
Pk = C(Sh) := {[x] : x ∈ m}; then Pk is a partition of m with |Pk| = k.

Let us assume that, for some k ≥ 5, we already have constructed a
partition Pk = {c0, . . . , ck−1} ∈ part(m) with |Pk| = k, where Pk = C(Sh)
and Sh = 〈X0, . . . , Xh−1〉h ∈ seq1 1(P(m)) (for some h). Every partition
of k induces naturally a partition of m, and thus we get a one-to-one
mapping ι from part(k) into part(m). Since k is a natural number, part(k)
can be ordered canonically, and because k ≥ 5, we have |part(k)| >
|P(k)|. Hence, we find a first partition q of k (first in the sense of the
ordering on part(k)) such that the set f(ι(q)) is not the union of elements
of Pk. We define Xh := f(ι(q)), Sh+1 := 〈X0, . . . , Xh〉h+1 and Pk′ :=
C(Sh+1), where k′ = |C(Sh+1)|. Repeating this construction, we finally get
a one-to-one ω-sequence of P(m). But this is a contradiction to ℵ0 � 2m

and therefore we have part(m) 64 P(m) and by P(m) 4 part(m) we get
2m < part(m). a

One can consider a partition of a set m also as a subset of [m]2. To
see this, let f : part(m) → P([m]2) be such that for p ∈ part(m) we have
{i, j} ∈ f(p) if and only if ∃b ∈ p({i, j} ⊆ b). Therefore, for any cardinal
m we have part(m) ≤ 2[m]2 and as a consequence we get

Fact 8.4. If m ≥ 4 and ℵ0 � 2m, then 2m < 2[m]2 .

Proof. This follows from the Fact 8.3 and the fact that part(m) ≤
2[m]2 . a

Let CH(m) be the following statement: If n is a cardinal number such
that m ≤ n ≤ 2m, then n = m or n = 2m. Specker showed in [24] that
if CH(m) holds for every infinite cardinal m, then we have the axiom of
choice.
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Concerning the set of partitions we get the following easy

Fact 8.5. If m is infinite and CH(m) holds, then part(m) = 2m.

Proof. Note that m ≤ [m]2 ≤ fin(m) < 2m and therefore, by CH(m),
we must have m = [m]2, and by 2m ≤ part(m) ≤ 2[m]2 we get part(m) =
2m. a

The assumption in Fact 8.5 is of course very strong. For example it
is also consistent with ZF that there exists an infinite set m such that
[m]2 > m (e.g., let m be the set of atoms in the basic Fraenkel model
or in the model Vp). Moreover, in the second Cohen model constructed
in [13, 5.4]—which is a symmetric model—there exists a set m such that
ℵ0 ≤ [m]2, ℵ0 6≤ m and ℵ0 ≤∗ m.

One cannot expect that the cardinality of a partition p ∈ part(m) is
very large: If p is a partition of m and p its cardinality, then p ≤∗ m
and (by Fact 5.1) we get 2p ≤ 2m, which implies p < 2m. On the other
hand, for p ∈ part(m) we can have p > m. To see this, take any two
cardinal numbers n and m such that n < m and m ≤∗ n (examples for
such cardinals can be found e.g. in [7]). Now take m ∈ m and n ∈ n, then
by the definition of ≤∗ there exists a function f from n onto m and the
set p :=

{
{x ∈ n : f(x) = y} : y ∈ m

}
is a partition of n of cardinality m.

Moreover, this can also happen even if we partition the real line:

Fact 8.6. It is consistent with ZF that the real line can be partitioned
into a family p, such that p > 2ℵ0 , where 2ℵ0 is the cardinality of the set
of the real numbers.

Proof. Specker showed in [25, II 3.32] that if the real numbers are
the countable union of countable sets, then ℵ1 and 2ℵ0 are incomparable.
Furthermore, Henri Lebesgue gave in [19] a proof that ℵ1 ≤∗ 2ℵ0 (see also
[23, XV 2]). Therefore we can decompose effectively the interval (0, 1)
into ℵ1 disjoint non-empty sets and obtain a decomposition of the real
line into ℵ1+2ℵ0 disjoint non-empty sets. If ℵ1 � 2ℵ0 , then 2ℵ0 < ℵ1+2ℵ0 .
Hence, in the model of Solomon Feferman and Azriel Levy (cf. [4])—in
which the real numbers are the countable union of countable sets—we find
a decomposition of the real line into more than 2ℵ0 disjoint non-empty
sets (see also [23, p. 372]). a

§9. Summary. First we summarize the results we got in the sections 5
and 7 by listing all the possible relationships between the cardinal num-
bers m, fin(m), seq1 1(m), seq(m) and 2m, where the cardinal number m is
infinite.
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m fin(m) seq1 1(m) seq(m) 2m

m = 5=
7.2

<
5=

7.2

<
5=

7.2

<
5

<

fin(m) =
7.3

>
5=

7.2

<
7.1

‖
7.3

>
5=

7.2

<
7.1

‖
5

<

seq1 1(m) = 5=
7.2

<
7.2

>
5

6=
5

<
7.1

‖

seq(m) =
7.2

>
5

6=
5

<
7.1

‖

2m =

One has to read the table from the left to the right and upwards. The
number over a relation refers to the section where the relation was men-
tioned.

For any infinite cardinal number m, if seq1 1(m), seq(m) and 2m are all
comparable, the only relations between these three cardinals which are
consistent with ZF are the following:
(i) seq1 1(m) = seq(m) < 2m

(this is true for m = ℵ0)
(ii) seq1 1(m) < seq(m) < 2m

(see section 7.4)
(iii) seq1 1(m) < 2m < seq(m)

(see section 7.4)
(iv) 2m < seq1 1(m) < seq(m)

(see section 7.2)
To see this, remember that by Proposition 5.4 (2) and (3), the inequal-

ities seq1 1(m) 6= 2m and seq(m) 6= 2m are both provable in ZF, and
further notice that seq1 1(m) = seq(m) implies ℵ0 ≤ m which implies
2m � seq1 1(m) (cf. [7, Lemma]). So, in ZF it is provable that there exists
no cardinal m such that 2m ≤ seq1 1(m) = seq(m).

Some other relationships which are provable without the axiom of choice
are the following.

1. m2 > ℵ0 → m > ℵ0

(see [23, VIII 2 Ex. 5])
2. 2m < 2ℵ0 → m < ℵ0 (this means that m is finite)

(see [23, VIII 2 Ex. 3])
3. (m � ℵ0 ∧m ≤ 2ℵ0) → 2ℵ0 ≤ 2m

(see [23, VIII 2 Ex. 2])
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4. ℵ0 ≤ 2m → 2ℵ0 ≤ 2m

(see [23, VIII 2 Ex. 9] or Fact 8.1)
5. ℵ0 ≤ 2m → 2m � fin(m)n (where n ∈ N)

(see [7, p. 36])
6. ℵ0 ≤ 2m → 2m � finn(m)

(the proof is similar to the proof of the previous fact 5)
7. n× fin(m) = 2m → n = 2k (where n, k ∈ N)

(see [7, p. 36])
8. ℵ0 ≤ 2m → 2m � seq1 1(m)

(see [7, Lemma])
9. ℵ0 ≤ m→ 2m � seq(m)

(the proof is similar to the proof of the Lemma of [7])
10. 22

m 6= 2ℵ0

(see [23, VIII 2 Ex. 7])
11.

(
2fin(m)

)ℵ0 = 2fin(m)

(see [17])
12. For every n ∈ N we have ℵ0 � 2m → n · 2m < (n + 1) · 2m

(see section 8)
13. 22

m
+ 22

m
= 22

m

(see [17] or section 8)
For each of the following statements we find a permutation model in

which there exists an infinite set m witnessing the corresponding result,
and therefore, by the Jech-Sochor Embedding Theorem, the following
statements are consistent with ZF.
14. n× fin(m) = 2m (for any n ∈ N of the form n = 2k+1)

(see [7])
15. ℵ0 ≤ 22

m
= 2fin(m)

(see [7, Theorem 1])
16. m2 < [m]2

(see section 7.3)
17. fin(m) < seq1 1(m) < 2m < seq(m)

(see section 7.4)
18. seq1 1(m) < seq(m) < fin(m) < 2m

(see section 7.4)
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[5] Kurt Gödel, The consistency of the axiom of choice and of the general-
ized continuum-hypothesis, Proceedings of the National Academy of Sciences
(U.S.A.), vol. 24 (1938), pp. 556–557.

[6] Martin Goldstern, Strongly amorphous sets and dual Dedekind infinity,
Mathematical Logic Quarterly, vol. 43 (1997), pp. 39–44.

[7] Lorenz Halbeisen and Saharon Shelah, Consequences of arithmetic for set
theory, The Journal of Symbolic Logic, vol. 59 (1994), pp. 30–40.
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[20] Adolf Lindenbaum and Alfred Tarski, Communication sur les recherches
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