
9. The Groups T , C, and D

In the sequel, T denotes the tetrahedron-group, C denotes the cube-group and D
denotes the dodecahedron-group. Further, O denotes the octahedron-group and I
denotes the icosahedron-group.

We already know that O ∼= C and I ∼= D, so, we do not have to consider O and I.

Theorem 9.1. T ∼= A4, C ∼= S4 and D ∼= A5.

Proof. T ∼= A4: Let 1, 2, 3, 4 denote the four faces of the tetrahedron, then each
τ ∈ T can be considered as a permutation of {1, 2, 3, 4} and the corresponding map
ϕ : T → S4 is an injective homomorphism. Thus, T is isomorphic to a subgroup of
S4 of order |T | = 12. Further, each cycle (i1, i2, i3) ∈ S4 of length 3 can be realized
by a rotation τ ∈ T of order 3. Thus, since A4 is generated by the cycles of length 3,
A4 is isomorphic to a subgroup of T . Now, because |A4| = |T |, this implies T ∼= A4.

C ∼= S4: Let 1, 2, 3, 4 denote the four long diagonals of the cube, then each γ ∈ C can
be considered as a permutation of {1, 2, 3, 4} and the corresponding map ϕ : C → S4

is an injective homomorphism (check that ϕ is injective). Thus, C is isomorphic to a
subgroup of S4 of order |C| = 24 = |S4|, and therefore we get C ∼= S4.

D ∼= A5: Let 1, 2, 3, 4, 5 denote the five different cubes we can put into a dodecahedron
in such a way that each edge of each cube lies on one face of the dodecahedron. Thus,
each δ ∈ D can be considered as a permutation of {1, 2, 3, 4, 5} and the corresponding
map ϕ : D → S5 is a homomorphism. Now, since a dodecahedron has 20 vertices,
the five cubes have 5 ·8 = 40 vertices and there are

(
5
2

)
= 10 pairs of cubes, every two

cubes have exactly two vertices in common and these two vertices are opposite each
other. Now, if δ ∈ D is a rotation about an axis joining 2 opposite vertices through
2π/3, then ϕ(δ) is a 3-cycle. On the other hand, for every 3-cycle σ ∈ S5, there
is a δ ∈ D such that ϕ(δ) = σ. Hence, since by Proposition 7.14 every alternating
group is generated by its 3-cycles, A5 is isomorphic to a subgroup of D, and since
|A5| = |D|, we get D ∼= A5. a

The subgroups of T. By Sylow’s Theorem, T has 1 or 4 Sylow 3-subgroups which
have order 3, and it has 1 or 3 Sylow 2-subgroups which have order 4. Further, T
must also have a subgroup of order 2 (since by Cauchy’s Theorem, a group of order
4 has always a subgroup of order 2), but we already know that T does not have a
subgroup of order 6.

In the following we give a complete list of all subgroups of A4
∼= T :

Of course, A4 has exactly one subgroup of order 1, namely {ι}, where ι is the identity,
and it has exactly one subgroup of order 12, namely A4 itself.

The subgroups of order 2 are: {ι, (1, 2)(3, 4)}, {ι, (1, 3)(2, 4)}, {ι, (1, 4)(2, 3)}, and
none of them is a normal subgroup of A4.

There is just one subgroup of order 4, namely {ι, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
Since a subgroup of order 4 is a Sylow 2-subgroup, by Corollary 8.11, {ι, (1, 2)(3, 4),
(1, 3)(2, 4), (1, 4)(2, 3)} is a normal subgroup of A4, and further, it is isomorphic to
C2 × C2.

The 4 subgroups of order 3 are: {ι, (1, 2, 3), (3, 2, 1)}, {ι, (1, 2, 4), (4, 2, 1)}, {ι, (1, 3, 4),
(4, 3, 1)} and {ι, (2, 3, 4), (4, 3, 2)}. Since a subgroup of order 3 is a Sylow 3-subgroup,
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by Corollary 8.11, none of these subgroups of order 3 can be a normal subgroup of
A4.

Corollary 9.2. T is not simple.

Proof. Since T has a normal subgroup of order 4, T is not simple. a

The subgroups of C of order 6, 8 and 12. The group C has 4 subgroups of order
3, namely rotations about a long diagonal through 2π/3 and −2π/3. Each of these
4 Sylow 3-subgroups is isomorphic to C3. Thus, C has 4 subgroups of order 6 (just
turn the long diagonal), each of them is isomorphic to D3

∼= S3 and none of them
is a normal subgroup of C. A subgroup of order 8 is a Sylow 2-subgroup, and since
there are 3 subgroups of order 8, none of them is a normal subgroup. Further, each
subgroup of order 8 is isomorphic to D4. The group C has also a unique subgroup of
order 12, which is isomorphic to T and since |C : T | = 2, this subgroup is a normal
subgroup of C.

Corollary 9.3. C is not simple.

Proof. Since C has a normal subgroup of order 12, C is not simple. a

The subgroups of D. A dodecahedron has 12 faces, 20 vertices and 30 edges.
Remember that since D ∼= A5 and An is simple (for n ≥ 5), D is simple, thus, D has
no normal subgroups (except {ι} and D), in particular for p = 2, 3, 5, | Sylp(D)| 6= 1.
In the following we give a complete list of all proper subgroups of D:

The subgroups of order 2 are the rotations about an axis joining midpoints of two
opposite edges and since there are 30 edges, D has 15 subgroups of order 2.

A subgroup of order 3 is a Sylow 3-subgroup and therefore, | Syl3(D)| is 4 or 10.
Further, subgroups of order 3 are rotations about an axis joining opposite vertices
and since there are 20 vertices, D has 10 subgroups of order 3.

A subgroup of order 4 is a Sylow 2-subgroup and therefore, | Syl2(D)| is 3 or 5.
Further, subgroups of order 4 are generated by rotations about three perpendicular
axes joining midpoints of two opposite edges and since there are 30 edges, and each
subgroup needs 6 edges, D has 5 subgroups of order 4 and each is isomorphic to
C2 × C2.

A subgroup of order 5 is a Sylow 5-subgroup and therefore, | Syl5(D)| is 6. Indeed,
subgroups of order 5 are rotations about an axis joining midpoints of opposite faces
and since there are 12 faces, D has 6 subgroups of order 5.

It is not hard to see that D has 10 subgroups of order 6 and each is those subgroups
is isomorphic to D3.

Further, D has 6 subgroups of order 10 and each of those subgroups is isomorphic to
D5.

Finally we have 5 subgroups of order 12 and each of those subgroups is isomorphic
to T .

Since D has no subgroups of order 15, 20 or 30, the 57 subgroups listed above are all
proper subgroups of D.
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Theorem 9.4. D is simple.

Proof. Let us define an equivalence relation “∼” on D as follows:

a ∼ b ⇐⇒ ∃x ∈ D(xax−1 = b)

First we have to check that “∼” is an equivalence relation:

a ∼ a: ιaι−1 = a.

a ∼ b → b ∼ a: If xax−1 = b, then x−1bx = a.

a ∼ b and b ∼ c → a ∼ c: If xax−1 = b and yby−1 = c, then (yx)a(yx)−1 = c.

The equivalence relation “∼” induces a partition of D into five pairwise disjoint parts,
namely

Pι = {ι} ,

P2π/3 =
{

rotations through 2π/3 about axes joining opposite vertices
}

,

Pπ =
{

rotations through π about axes joining midpoints of opposite edges
}

,

P2π/5 =
{

rotations through 2π/5 about axes joining centres of opposite faces
}

,

P4π/5 =
{

rotations through 4π/5 about axes joining centres of opposite faces
}

.

We have |Pι| = 1, |P2π/3| = 20, |P2π| = 15, |P2π/5| = |P4π/5| = 12. Notice that
|D| = 60 = |Pι| + |P2π/3| + |P2π| + |P2π/5| + |P4π/5|, thus, each element of D belongs
to exactly one part of the partition.

Assume that N E D and let a ∈ N . Firstly, since N is a normal subgroup of D, N
must contain all elements which are equivalent to a, which implies that N must be a
union of some of the five parts. Secondly, since N 6 D, |N | must divide |D| = 60.
Now, since Pι ⊆ N , this is just possible if N = Pι or N = Pι ∪ P2π/3 ∪ P2π ∪ P2π/5 ∪
P4π/5 = D. Thus, N = {ι} or N = D, and therefore, D is simple. a


