9. THE Grours T, C';, AND D

In the sequel, T' denotes the tetrahedron-group, C' denotes the cube-group and D
denotes the dodecahedron-group. Further, O denotes the octahedron-group and [
denotes the icosahedron-group.

We already know that O = C' and I = D, so, we do not have to consider O and I.

THEOREM 9.1. T = Ay, C' = S, and D = As.

Proof. T = Ay Let 1,2,3,4 denote the four faces of the tetrahedron, then each
7 € T can be considered as a permutation of {1,2,3,4} and the corresponding map
p T — 9, is an injective homomorphism. Thus, 7' is isomorphic to a subgroup of
Sy of order |T'| = 12. Further, each cycle (iy,ia,13) € Sy of length 3 can be realized
by a rotation 7 € T of order 3. Thus, since A, is generated by the cycles of length 3,
Ay is isomorphic to a subgroup of T. Now, because |A4| = |T|, this implies T' = A,.

C = Sy Let 1,2, 3,4 denote the four long diagonals of the cube, then each v € C' can
be considered as a permutation of {1,2,3,4} and the corresponding map ¢ : C' — Sy
is an injective homomorphism (check that ¢ is injective). Thus, C' is isomorphic to a
subgroup of Sy of order |C| = 24 = |S,|, and therefore we get C' = S,.

D = As: Let 1,2, 3,4, 5 denote the five different cubes we can put into a dodecahedron
in such a way that each edge of each cube lies on one face of the dodecahedron. Thus,
each 0 € D can be considered as a permutation of {1,2,3,4,5} and the corresponding
map ¢ : D — Sy is a homomorphism. Now, since a dodecahedron has 20 vertices,
the five cubes have 5-8 = 40 vertices and there are (g) = 10 pairs of cubes, every two
cubes have exactly two vertices in common and these two vertices are opposite each
other. Now, if § € D is a rotation about an axis joining 2 opposite vertices through
27/3, then ¢(0) is a 3-cycle. On the other hand, for every 3-cycle o € Ss, there
is a d € D such that ¢(0) = 0. Hence, since by Proposition 7.14 every alternating
group is generated by its 3-cycles, As is isomorphic to a subgroup of D, and since
|As| = | D], we get D = As. —

The subgroups of T. By Sylow’s Theorem, T" has 1 or 4 Sylow 3-subgroups which
have order 3, and it has 1 or 3 Sylow 2-subgroups which have order 4. Further, T'
must also have a subgroup of order 2 (since by Cauchy’s Theorem, a group of order
4 has always a subgroup of order 2), but we already know that 7" does not have a
subgroup of order 6.

In the following we give a complete list of all subgroups of A4 = T

Of course, A4 has exactly one subgroup of order 1, namely {¢}, where ¢ is the identity,
and it has exactly one subgroup of order 12, namely A, itself.

The subgroups of order 2 are: {¢,(1,2)(3,4)}, {¢, (1,3)(2,4)}, {¢,(1,4)(2,3)}, and
none of them is a normal subgroup of Aj.

There is just one subgroup of order 4, namely {¢, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}.
Since a subgroup of order 4 is a Sylow 2-subgroup, by Corollary 8.11, {¢, (1,2)(3,4),
(1,3)(2,4), (1,4)(2,3)} is a normal subgroup of A4, and further, it is isomorphic to
CQ X 02.

The 4 subgroups of order 3 are: {¢,(1,2,3),(3,2,1)}, {¢,(1,2,4), (4,2, 1)}, {¢,(1,3,4),

(4,3,1)} and {4, (2,3,4), (4,3,2)}. Since a subgroup of order 3 is a Sylow 3-subgroup,
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by Corollary 8.11, none of these subgroups of order 3 can be a normal subgroup of

Ay.
COROLLARY 9.2. T is not simple.

Proof. Since T has a normal subgroup of order 4, T" is not simple. —

The subgroups of C of order 6, 8 and 12. The group C' has 4 subgroups of order
3, namely rotations about a long diagonal through 27/3 and —27/3. Each of these
4 Sylow 3-subgroups is isomorphic to C5. Thus, C' has 4 subgroups of order 6 (just
turn the long diagonal), each of them is isomorphic to D3 = S3 and none of them
is a normal subgroup of C'. A subgroup of order 8 is a Sylow 2-subgroup, and since
there are 3 subgroups of order 8, none of them is a normal subgroup. Further, each
subgroup of order 8 is isomorphic to D4. The group C has also a unique subgroup of
order 12, which is isomorphic to T" and since |C' : T'| = 2, this subgroup is a normal
subgroup of C.

COROLLARY 9.3. C' is not simple.

Proof. Since C' has a normal subgroup of order 12, C' is not simple. —

The subgroups of D. A dodecahedron has 12 faces, 20 vertices and 30 edges.
Remember that since D = Az and A, is simple (for n > 5), D is simple, thus, D has
no normal subgroups (except {¢} and D), in particular for p = 2, 3,5, | Syl (D)| # 1.
In the following we give a complete list of all proper subgroups of D:

The subgroups of order 2 are the rotations about an axis joining midpoints of two
opposite edges and since there are 30 edges, D has 15 subgroups of order 2.

A subgroup of order 3 is a Sylow 3-subgroup and therefore, |Syl;(D)| is 4 or 10.
Further, subgroups of order 3 are rotations about an axis joining opposite vertices
and since there are 20 vertices, D has 10 subgroups of order 3.

A subgroup of order 4 is a Sylow 2-subgroup and therefore, |Syl,(D)| is 3 or 5.
Further, subgroups of order 4 are generated by rotations about three perpendicular
axes joining midpoints of two opposite edges and since there are 30 edges, and each
subgroup needs 6 edges, D has 5 subgroups of order 4 and each is isomorphic to

02 X 02.

A subgroup of order 5 is a Sylow 5-subgroup and therefore, | Syl;(D)| is 6. Indeed,
subgroups of order 5 are rotations about an axis joining midpoints of opposite faces
and since there are 12 faces, D has 6 subgroups of order 5.

It is not hard to see that D has 10 subgroups of order 6 and each is those subgroups
is isomorphic to Ds.

Further, D has 6 subgroups of order 10 and each of those subgroups is isomorphic to
Ds.

Finally we have 5 subgroups of order 12 and each of those subgroups is isomorphic
to T'.

Since D has no subgroups of order 15, 20 or 30, the 57 subgroups listed above are all
proper subgroups of D.
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THEOREM 9.4. D is simple.

¢ 7

Proof. Let us define an equivalence relation “~” on D as follows:
a~b < Jr€ D(xar ' =b)

First we have to check that “~” is an equivalence relation:

an~a " =a.

a~b—b~a: If zaz~' = b, then 27 1bx = a.

a~bandb~c—a~c If zax™' =band yby ! = ¢, then (yx)a(yz)™ = c.

The equivalence relation “~” induces a partition of D into five pairwise disjoint parts,
namely
P, ={},
Porjz = { rotations through 27/3 about axes joining opposite vertices } ,
P, = {rotations through m about axes joining midpoints of opposite edges } ,
Py = {rotations through 2w /5 about axes joining centres of opposite faces} ,

Pyrss = { rotations through 47 /5 about axes joining centres of opposite faces } .

We have ’PL‘ = 1, ‘Pzﬂ/g‘ = 20, ‘Pgﬂ-’ = 15, ‘P2w/5’ = ‘P47r/5‘ = 12. Notice that
|D| =60 = |P,| + | Pars| + [Por| + | Parss| + | Parys|, thus, each element of D belongs
to exactly one part of the partition.

Assume that N < D and let a € N. Firstly, since N is a normal subgroup of D, N
must contain all elements which are equivalent to a, which implies that N must be a
union of some of the five parts. Secondly, since N < D, |N| must divide |D| = 60.
Now, since P, € N, this is just possible if N = P, or N = P, U Par/3U Por U Por /5 U
Pir5 = D. Thus, N = {t} or N = D, and therefore, D is simple. —



