8. THE SYLOW THEOREMS
In the sequel, G is always a finite group.

DEFINITION. For a € G, the set C(a) := {z € G : raxz™' = a} is called the central-
izer of a in G.

Note that € C(a) iff xa = az, and that for any a € G we have a € C(a).
Fact 8.1. For any a € G, C(a) < G.

Proof. We have to verify the axioms (A0), (Al) and (A2).
(A0) For z,y € C(a) we have
(wy)a=a(ya) = w(ay) =(za)y = (az)y=alzy),
veC(a) 2€C(a)
hence, zy € C(a).
(A1) ea = ae, thus, e € C(a).
(A2) If x € C(a), then

v la=2"ta(zz™") = 27 (azx)z !

= o Y za)z7' = (v 2)ar = ax” ",
xeg(a)

hence, z~! € C(a). =

DEFINITION. For a € G, the set orbit(a) := {zax™' : x € G} is called the orbit of a.

FacT 8.2. For a,d’ € G we either have orbit(a) = orbit(a’) or orbit(a) Norbit(a") = (.
Further, |orbit(a)| =1 iff a € Z(G).

Proof. If orbit(a) N orbit(a’) # @, then xaz™' = ya'y~' (for some z,y € G). Thus,
a =y zar~ly = y“lwa(y~'z)"! € orbit(a) and a = x 7 ya'y e = 27 yd (a7 ly) 7t €
orbit(a’), which implies that orbit(a) = orbit(a’).

If |orbit(a)| = 1, then for all x € G we have zazr™! = qa, thus, for all x € G we have
ra = az, which implies Z(G). On the other hand, if a € Z(G), then zaz™' = a (for
all z € G), thus, | orbit(a)| = 1. —

LEMMA 8.3. For every a € G we have
|orbit(a)| = |G : C(a)].
Proof. |G : C(a)| = |G/C(a)| = [{zC(a) : © € G}|. Further, we have
2C(a) = yCla) <= 27 'y € Cla) <= (v 'yaly 'z =a < yay ' = zaz™",
which implies that [{zaz™!: 2 € G}| = |{zC(a) : v € G}|. —
As a consequence of Fact 8.2 and Lemma 8.3 we get

COROLLARY 8.4. Let aq,...,a, be representatives for the n orbits which have size
larger than 1. Then

G| = |Z(G)] +Z|orbit(ai)\ = |2(GQ)| + Z G : C(a;)] .

PROPOSITION 8.5. If G is a group of order p?, where p is prime, then G is abelian.
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Proof. Assume that G is not abelian, then, by Corollary 8.4, we can choose some
ai,...,a, € G such that |orbit(a;)| > 1 (for all a; € {ay,...,a,}) and p* = |G| =
|1Z(G)| + >, |G : C(a;)]. By Lemma 8.3, for each a; € {ai,... ,a,} we get 1 <
|orbit(a;)| = |G : C(a;)], so, p | |C(a;)|, and therefore p ‘ Z(@), which implies that
|Z(G)| > p. If we assume that G is not abelian, then Z(G) < G, thus, |Z(G)| = p.
Choose some z € G\ Z(G), then Z(G) < C(x), and since z € C(x) we get |C(z)| >
p+ 1. Now, since C(z) < G, |C(z)| | |G| = p?, and because |C(z)| > p + 1 we get
C(z) = G, thus z € Z(G), which is absurd. Hence, we must have Z(G) = G, which
shows that G is abelian. =

THEOREM 8.6 (Cauchy). Suppose that p | |G| for some prime number p. Then there
is an element g € G of order p.

Proof. The proof is by induction on |G|. If |G| = 1, then the result is vacuously true.
Now, let us assume that |G| > 1 and that for every proper subgroup H < G we have
p1|H]|, (in other words, p | |G : HJ), else we are home by induction. By Corollary 8.4
and by our assumption we get p | |Z(G)|, so, G = Z(G) which implies that G is
abelian. A proper subgroup H < G is called maximal if H < H' < G implies H' = H
or H' = G. If H, K are distinct maximal proper subgroups of GG, then HK < G (since
G is abelian) and by maximality of H and K we get HK = G (since H, K < HK).
Now, |G| = |HK| = “f]%‘;', but because p 1 |H| and p 1 |K|, this implies p 1 |G,
which is a contradiction. Therefore, G has a unique maximal proper subgroup, say
M. Since M is the only maximal proper subgroup of G, all proper subgroups H < G
are subgroups of M. Choose g € G with g ¢ M, then (g9) = G, (since otherwise,
< g(< M), and hence, G is cyclic. The order of g is |G|, and if we put n = %, then
(g"™) is a subgroup of G of order p, which completes the proof. —

DEFINITION. Let H < G, then the set N(H) :={z € G : xHz™' = H} is called the
normalizer of H in G, and orbit(H) := {xHz~' : v € G} is called the orbit of H.

FacT 8.7. For every H < G, N(H) < G and |orbit(H)| = |G : N(H)|.

Proof. Just follow the proofs of Fact 8.1 and Lemma 8.3. —
Fact 8.8. For every H < G, H I N(H).

Proof. By definition, for every z € N(H) we have tHz™' = H, thus, H < N(H). -

LEMMA 8.9. Let G be such that |G| = p™n, where p is prime, m,n > 0 and p J[ n, and
let P,@ < G be such that |P| = |Q| = p™. Then Q < N(P) if and only if Q = P.

Proof. Of course, Q = P implies @ < N(P). On the other hand, if @ < N(P), then,
since P <4 N(P) (by Fact 8.8), PQ < N(P) < G. Thus,

[Pl-1Q _ p™-p"
PNQl |PNQ|

|PQ| =

must divide |G| = p™n, which implies |P N Q| = p™, hence, Q = P. —
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DEFINITION. Let G be a finite group of order p™n, where p is prime and does not
divide n. Then any subgroup of GG of order p™ is called a Sylow p-subgroup of G,
and the set of all such subgroups of G is denoted Syl (G).

In order to state Sylow’s Theorem, we need one more definition.

DEFINITION. Two subgroups H; and Hs of a group G are called conjugate in G if
H, = xHyz! for some z € G.

THEOREM 8.10 (Sylow). Let GG be a finite group of order p™n, where p is prime and
does not divide n.

(i) There is a Sylow p-subgroup P of G.

(ii) All elements of Syl (G) are conjugate in G.
(iii) [Syl,(G)| =1 mod p.

(iv) |SyL(G)| | n.

Proof. We prove (i) by induction on |G|. If |G| = 1, then the result is vacuously
true, and therefore we may assume that |G| > 1. By Corollary 8.4 we have |G| =
|Z(G)| + 325, |G : C(x;)|, where the z; are a collection of representatives for those
orbits which are not singletons. Thus, each C(z;) is a proper subgroup of G. If
P ‘ |G : C(z;)| for every 1 < j < s, then p ‘ |Z(G)| # 1. Thanks to Cauchy’s
Theorem 8.6 we can choose z € Z(G) of order p, so, since z € Z(G), (z) < G. Let
7 : G — G/(z) be the natural projection. By induction, there is a Sylow p-subgroup
Py, of G/(z). This group has order p™~!, since |G/(z)| = p™ 'n. The preimage of P,
under 7 is P < G, where P/(z) has order p™~! = %'. Thus, |P| = p™ and we have
found a Sylow p-subgroup of G. The other possibility is that there is some z; with
p1|G: C(x;)|, so, |G : C(x;)| = p™k with k < n and p 1 k. By induction, C(z;) has
a Sylow p-subgroup P of order p™, and since P < G, P is a Sylow p-subgroup of G.
For part (ii) and (iii), let P be a Sylow p-subgroup of G. Let Q = {xPx~': z € G}
denote the set of all G-conjugates of P. Now, by Fact 8.7 we have |Q| = |G : N(P)].
Further, for P; € Q, let ; = {yPy ' : y € P}, then Q is the disjoint union of some
Qi’s, so, [Q] =", |4]. Again by Fact 8.7 we get [€;| = |P : N(P;) N P|, which tells us
that the orbits €; have size divisible by p, unless P < N(F;), in which case [;| =1
and P = P; (by Lemma 8.9). Hence, of the orbits 2; there is exactly one of length 1
and all the others have size divisible by p, thus, [2] =), || = 1 (mod p). If we can
show that 2 = Syl ((), then we are done. So, assume towards a contradiction that
Q # Syl (G), which means that there is a Sylow p-subgroup ¢ which is not a conjugate
of P. Now, all Q-orbits ; = {yPy~' : y € Q}, where P, € Q have size divisible by
p, since otherwise, @ < N(P;) (for some i) and therefore ) = P; (by Lemma 8.9),
which implies that () is a conjugate of P. Since € is a disjoint union of sets —namely
the €;’s—of size divisible by p we deduce that |2] = 0 (mod p). However, we already
know that [©2] =1 (mod p) so this is absurd. Thus, © = Syl (G), which implies that
all Sylow p-subgroups of G' are conjugate and | Syl (G)| =1 (mod p).

To verify (iv), let P € Syl,(G). Then, by (i), Syl,(G) = {zPz~" : z € G}, and by
Fact 8.7 we get | Syl,(G)| = |G : N(P)|. Since P < N(P) it follows that p™ { IN(P)],
and so |G : N(P)| must divide n. =



41

As a consequence of Theorem 8.10 (ii) we get

COROLLARY 8.11. Let G be a finite group of order p™n, where n,m > 0 and p is
prime and does not divide n. Then |Syl,(G)| = 1 if and only if the unique Sylow
p-subgroup is a normal subgroup of G. In particular, | Syl (G)| = 1 implies that G is
not simple.



