
8. The Sylow Theorems

In the sequel, G is always a finite group.

Definition. For a ∈ G, the set C(a) := {x ∈ G : xax−1 = a} is called the central-
izer of a in G.

Note that x ∈ C(a) iff xa = ax, and that for any a ∈ G we have a ∈ C(a).

Fact 8.1. For any a ∈ G, C(a) 6 G.

Proof. We have to verify the axioms (A0), (A1) and (A2).

(A0) For x, y ∈ C(a) we have

(xy)a = x(ya) =
↑

y∈C(a)

x(ay) = (xa)y =
↑

x∈C(a)

(ax)y = a(xy) ,

hence, xy ∈ C(a).

(A1) ea = ae, thus, e ∈ C(a).

(A2) If x ∈ C(a), then

x−1a = x−1a(xx−1) = x−1(ax)x−1 =
↑

x∈C(a)

x−1(xa)x−1 = (x−1x)ax−1 = ax−1 ,

hence, x−1 ∈ C(a). a

Definition. For a ∈ G, the set orbit(a) := {xax−1 : x ∈ G} is called the orbit of a.

Fact 8.2. For a, a′ ∈ G we either have orbit(a) = orbit(a′) or orbit(a)∩orbit(a′) = ∅.
Further, | orbit(a)| = 1 iff a ∈ Z(G).

Proof. If orbit(a) ∩ orbit(a′) 6= ∅, then xax−1 = ya′y−1 (for some x, y ∈ G). Thus,
a′ = y−1xax−1y = y−1xa(y−1x)−1 ∈ orbit(a) and a = x−1ya′y−1x = x−1ya′(x−1y)−1 ∈
orbit(a′), which implies that orbit(a) = orbit(a′).

If | orbit(a)| = 1, then for all x ∈ G we have xax−1 = a, thus, for all x ∈ G we have
xa = ax, which implies Z(G). On the other hand, if a ∈ Z(G), then xax−1 = a (for
all x ∈ G), thus, | orbit(a)| = 1. a

Lemma 8.3. For every a ∈ G we have

| orbit(a)| = |G : C(a)| .

Proof. |G : C(a)| = |G/C(a)| =
∣∣{xC(a) : x ∈ G}

∣∣. Further, we have

xC(a) = yC(a) ⇐⇒ x−1y ∈ C(a) ⇐⇒ (x−1y)a(y−1x = a ⇐⇒ yay−1 = xax−1 ,

which implies that
∣∣{xax−1 : x ∈ G}

∣∣ =
∣∣{xC(a) : x ∈ G}

∣∣. a
As a consequence of Fact 8.2 and Lemma 8.3 we get

Corollary 8.4. Let a1, . . . , an be representatives for the n orbits which have size
larger than 1. Then

|G| = |Z(G)|+
n∑

i=1

| orbit(ai)| = |Z(G)|+
n∑

i=1

|G : C(ai)| .

Proposition 8.5. If G is a group of order p2, where p is prime, then G is abelian.
38



39

Proof. Assume that G is not abelian, then, by Corollary 8.4, we can choose some
a1, . . . , an ∈ G such that | orbit(ai)| > 1 (for all ai ∈ {a1, . . . , an}) and p2 = |G| =
|Z(G)| +

∑n
i=1 |G : C(ai)|. By Lemma 8.3, for each ai ∈ {a1, . . . , an} we get 1 <

| orbit(ai)| = |G : C(ai)|, so, p
∣∣ |C(ai)|, and therefore p

∣∣ Z(G), which implies that
|Z(G)| ≥ p. If we assume that G is not abelian, then Z(G) < G, thus, |Z(G)| = p.
Choose some x ∈ G \ Z(G), then Z(G) 6 C(x), and since x ∈ C(x) we get |C(x)| ≥
p + 1. Now, since C(x) 6 G, |C(x)|

∣∣ |G| = p2, and because |C(x)| ≥ p + 1 we get
C(x) = G, thus x ∈ Z(G), which is absurd. Hence, we must have Z(G) = G, which
shows that G is abelian. a

Theorem 8.6 (Cauchy). Suppose that p
∣∣ |G| for some prime number p. Then there

is an element g ∈ G of order p.

Proof. The proof is by induction on |G|. If |G| = 1, then the result is vacuously true.
Now, let us assume that |G| > 1 and that for every proper subgroup H < G we have
p - |H|, (in other words, p

∣∣ |G : H|), else we are home by induction. By Corollary 8.4

and by our assumption we get p
∣∣ |Z(G)|, so, G = Z(G) which implies that G is

abelian. A proper subgroup H < G is called maximal if H 6 H ′ 6 G implies H ′ = H
or H ′ = G. If H,K are distinct maximal proper subgroups of G, then HK 6 G (since
G is abelian) and by maximality of H and K we get HK = G (since H, K 6 HK).

Now, |G| = |HK| = |H|·|K|
|H∩K| , but because p - |H| and p - |K|, this implies p - |G|,

which is a contradiction. Therefore, G has a unique maximal proper subgroup, say
M . Since M is the only maximal proper subgroup of G, all proper subgroups H < G
are subgroups of M . Choose g ∈ G with g /∈ M , then 〈g〉 = G, (since otherwise,

≤ g〈6 M), and hence, G is cyclic. The order of g is |G|, and if we put n = |G|
p

, then

〈gn〉 is a subgroup of G of order p, which completes the proof. a

Definition. Let H 6 G, then the set N(H) := {x ∈ G : xHx−1 = H} is called the
normalizer of H in G, and orbit(H) := {xHx−1 : x ∈ G} is called the orbit of H.

Fact 8.7. For every H 6 G, N(H) 6 G and | orbit(H)| = |G : N(H)|.

Proof. Just follow the proofs of Fact 8.1 and Lemma 8.3. a

Fact 8.8. For every H 6 G, H E N(H).

Proof. By definition, for every x ∈ N(H) we have xHx−1 = H, thus, H E N(H). a

Lemma 8.9. Let G be such that |G| = pmn, where p is prime, m,n > 0 and p - n, and
let P,Q 6 G be such that |P | = |Q| = pm. Then Q 6 N(P ) if and only if Q = P .

Proof. Of course, Q = P implies Q 6 N(P ). On the other hand, if Q 6 N(P ), then,
since P E N(P ) (by Fact 8.8), PQ 6 N(P ) 6 G. Thus,

|PQ| = |P | · |Q|
|P ∩Q|

=
pm · pm

|P ∩Q|

must divide |G| = pmn, which implies |P ∩Q| = pm, hence, Q = P . a
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Definition. Let G be a finite group of order pmn, where p is prime and does not
divide n. Then any subgroup of G of order pm is called a Sylow p-subgroup of G,
and the set of all such subgroups of G is denoted Sylp(G).

In order to state Sylow’s Theorem, we need one more definition.

Definition. Two subgroups H1 and H2 of a group G are called conjugate in G if
H1 = xH2x

−1 for some x ∈ G.

Theorem 8.10 (Sylow). Let G be a finite group of order pmn, where p is prime and
does not divide n.

(i) There is a Sylow p-subgroup P of G.
(ii) All elements of Sylp(G) are conjugate in G.
(iii) | Sylp(G)| ≡ 1 mod p.

(iv) | Sylp(G)|
∣∣ n.

Proof. We prove (i) by induction on |G|. If |G| = 1, then the result is vacuously
true, and therefore we may assume that |G| > 1. By Corollary 8.4 we have |G| =
|Z(G)| +

∑s
j=1 |G : C(xj)| , where the xj are a collection of representatives for those

orbits which are not singletons. Thus, each C(xj) is a proper subgroup of G. If
p

∣∣ |G : C(xj)| for every 1 ≤ j ≤ s, then p
∣∣ |Z(G)| 6= 1. Thanks to Cauchy’s

Theorem 8.6 we can choose z ∈ Z(G) of order p, so, since z ∈ Z(G), 〈z〉 E G. Let
π : G → G/〈z〉 be the natural projection. By induction, there is a Sylow p-subgroup
P1 of G/〈z〉. This group has order pm−1, since |G/〈z〉| = pm−1n. The preimage of P1

under π is P 6 G, where P/〈z〉 has order pm−1 = |P |
p

. Thus, |P | = pm and we have

found a Sylow p-subgroup of G. The other possibility is that there is some xj with

p - |G : C(xj)|, so, |G : C(xj)| = pmk with k < n and p - k. By induction, C(xj) has
a Sylow p-subgroup P of order pm, and since P 6 G, P is a Sylow p-subgroup of G.

For part (ii) and (iii), let P be a Sylow p-subgroup of G. Let Ω = {xPx−1 : x ∈ G}
denote the set of all G-conjugates of P . Now, by Fact 8.7 we have |Ω| = |G : N(P )|.
Further, for Pi ∈ Ω, let Ωi = {yPiy

−1 : y ∈ P}, then Ω is the disjoint union of some
Ωi’s, so, |Ω| =

∑
i |Ωi|. Again by Fact 8.7 we get |Ωi| = |P : N(Pi)∩P |, which tells us

that the orbits Ωi have size divisible by p, unless P 6 N(Pi), in which case |Ωi| = 1
and P = Pi (by Lemma 8.9). Hence, of the orbits Ωi there is exactly one of length 1
and all the others have size divisible by p, thus, |Ω| =

∑
i |Ωi| ≡ 1 (mod p). If we can

show that Ω = Sylp(G), then we are done. So, assume towards a contradiction that
Ω 6= Sylp(G), which means that there is a Sylow p-subgroup Q which is not a conjugate
of P . Now, all Q-orbits Ωi = {yPiy

−1 : y ∈ Q}, where Pi ∈ Ω have size divisible by
p, since otherwise, Q 6 N(Pi) (for some i) and therefore Q = Pi (by Lemma 8.9),
which implies that Q is a conjugate of P . Since Ω is a disjoint union of sets – namely
the Ωi’s – of size divisible by p we deduce that |Ω| ≡ 0 (mod p). However, we already
know that |Ω| ≡ 1 (mod p) so this is absurd. Thus, Ω = Sylp(G), which implies that
all Sylow p-subgroups of G are conjugate and | Sylp(G)| ≡ 1 (mod p).

To verify (iv), let P ∈ Sylp(G). Then, by (ii), Sylp(G) = {xPx−1 : x ∈ G}, and by

Fact 8.7 we get | Sylp(G)| = |G : N(P )|. Since P 6 N(P ) it follows that pm
∣∣ |N(P )|,

and so |G : N(P )| must divide n. a
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As a consequence of Theorem 8.10 (ii) we get

Corollary 8.11. Let G be a finite group of order pmn, where n, m > 0 and p is
prime and does not divide n. Then | Sylp(G)| = 1 if and only if the unique Sylow
p-subgroup is a normal subgroup of G. In particular, | Sylp(G)| = 1 implies that G is
not simple.


