
7. Permutation Groups

Recall that the set of all permutations of {1, . . . , n} under composition is a group
of oder n!, denoted by Sn, which is called the symmetric group or permutation
group of degree n. Permutations are usually denoted by Greek letters like π, ρ, and
σ.

The following theorem indicates that permutation groups and their subgroups play
a key-role in the investigation of finite groups.

Theorem 7.1. If G is a finite group of order n, then G is isomorphic to a subgroup
of Sn.

Proof. Let G = {a1, . . . , an} and let

ϕ : G → Sn

x 7→ πx

where for i ∈ {1, . . . , n}, πx(i) is such that xai = aπx(i).

ϕ is well-defined: We have to show that for all x ∈ G, ϕ(x) ∈ Sn. Let x ∈ G, then
for all i, j ∈ {1, . . . , n} we have

πx(i) = πx(j) ⇐⇒ xai = xaj ⇐⇒ ai = aj ⇐⇒ i = j .

Thus, for each x ∈ G, ϕ(x) = πx is an injective mapping from {1, . . . , n} into
{1, . . . , n}, which implies – since {1, . . . , n} is a finite set – that ϕ(x) is a permutation
of {1, . . . , n}, or equivalently, ϕ(x) ∈ Sn.

ϕ is injective: If ϕ(x) = ϕ(y), then for each i ∈ {1, . . . , n} we have πx(i) = πy(i),
thus

xai = aπx(i) = aπy(i) = yai ,

which implies x = y.

ϕ is a homomorphism: We have to show that ϕ(xy) = ϕ(x)ϕ(y). For x, y ∈ G and
for any i ∈ {1, . . . , n} we have

aπxy(i) = (xy)ai = x(yai) = xaπy(i) = aπx(πy(i)) .

Thus, πxy(i) = πx

(
πy(i)

)
(for all i ∈ {1, . . . , n}), and hence, ϕ(xy) = ϕ(x)ϕ(y).

By Corollary 6.2 and since ϕ is injective, G is isomorphic to a subgroup of Sn, namely
to the image of ϕ. a

It is common to write a permutation π ∈ Sn in two-row notation, in which the
top row of the 2× n matrix contains the integers 1, . . . , n and the effect of π on the
integer i is written under i:

π =

(
1 2 . . . i . . . n

π(1) π(2) . . . π(i) . . . π(n)

)
In particular, the identity permutation is(

1 2 . . . i . . . n
1 2 . . . i . . . n

)
and is denoted by ι. For any permutation π and any integer k we set π0 := ι and
πk+1 := π(πk).
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A more compact notation is the so-called cycle notation, which avoids repeating
the same first row in each permutation. The theoretical basis for this notation is in
the following result.

Proposition 7.2. Let π ∈ Sn, i ∈ {1, . . . , n}, and let k be the smallest positive
integer for which πk(i) is in the set

{
i, π(i), π2(i), . . . , πk−1(i)

}
. Then πk(i) = i.

Proof. If πk(i) = πr(i) for some non-negative r < k − 1, then, for k′ = k − r we
have k ≥ k′ > 0 and πk′

= ι, which implies πk′
(i) = i ∈

{
i, π(i), . . . , πk−1(i)

}
, and

therefore, by our assumption, k′ = k. a
Definition. A permutation ρ ∈ Sn is a k-cycle if there exists a positive integer k
and an integer i ∈ {1, . . . , n} such that

(1) k is the smallest positive integer such that ρk(i) = i, and
(2) ρ fixes each j ∈ {1, . . . , n} \ {i, ρ(i), . . . , ρk−1(i)}.

The k-cycle ρ is usually denoted
(
i, ρ(i), . . . , ρk−1(i)

)
.

For example the five non-identity elements of S3 are all cycles, and may be written
as

(1, 2, 3), (3, 2, 1), (1, 2), (1, 3), and (2, 3) .

Notice that for example (1, 2, 3) = (2, 3, 1) = (3, 1, 2) and that not every permutation
is a cycle, e.g., (

1 2 3 4
4 3 2 1

)
is not a cycle.

Definition. Two permutations ρ and σ are disjoint if each number moved by ρ is
fixed by σ, or equivalently, each number moved by σ is fixed by ρ.

It is quite easy to see that disjoint permutations commute.

Fact 7.3. Let σ and ρ be disjoint permutations, then σρ = ρσ, and in general, for all
positive integers k, (σρ)k = σkρk.

Proof. Since σ and ρ are disjoint permutations, each number moved by σ is fixed by ρ
and vice versa. So, the set of numbers moved by σ is disjoint from the set of numbers
moved by ρ, and therefore it does not matter which permutation we carry out first.
Consequently we get (σρ)k = σkρk (for all positive integers k). a
The next result shows that cycles are the “atoms” of permutations.

Proposition 7.4. Every permutation π ∈ Sn may be written as a product of disjoint
cycles.

Proof. Let π ∈ Sn. By Proposition 7.2 and since the set {1, . . . , n} is finite, for
every i ∈ {1, . . . , n} there is a positive integer ki such that πki(i) = i and ρi =(
i, π(i), . . . , πki−1(i)

)
is a ki-cycle. We proceed by induction. Let i1 := 1 and for

j ≥ 1 with
∑j

`=1 ki` < n let ij+1 be the least number of the non-empty set{
1, . . . , n

}
\

⋃ {
πk(i`) : k ∈ Z and 1 ≤ ` ≤ j

}
.

Further, let m be the least positive integer such that
∑m

`=1 ki` = n, then, by construc-
tion, π = ρi1 ρi2 . . . ρim and the ρ’s are disjoint cycles. a
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Definition. A decomposition of a permutation π into disjoint cycles is called a cycle
decomposition of π.

For example the cycle decomposition of the permutation

π =

(
1 2 3 4 5 6 7 8 9
6 2 5 3 4 1 7 9 8

)
is (1, 6)(2)(3, 5, 4)(7)(8, 9). It is usual to omit cycles of length 1, those integers fixed
by π, and so π is abbreviated to (1, 6)(3, 5, 4)(8, 9).

Proposition 7.5. If ρ is a k-cycle, then ord(ρ) = k, and consequently, if π is a
product of disjoint cycles of length k1, . . . , kr, then ord(π) = lcm(k1, . . . , kr), where
lcm(k1, . . . , kr) is the lowest common multiple of the integers k1, . . . , kr.

Proof. If ρ is a k-cycle, then there is an i ∈ {1, . . . , n} such that ρ =
(
i, ρ(i), . . . , ρk−1(i)

)
where ρk(i) = i. Hence, for every non-negative ` < k we have ρk

(
ρ`(i)

)
= ρ`

(
ρk(i)

)
=

ρ`(i), which shows that ρk = ι, thus ord(ρ) ≥ k. On the other hand, by definition of
k, ρ` 6= ι for any positive ` < k, thus, ord(ρ) = k.

Let π be a product of disjoint cycles ρ1, . . . , ρr of length k1, . . . , kr and let ord(π) = k.
By Fact 7.3 we have ι = πk = ρk

1 . . . ρ
k
r which implies that for every 1 ≤ j ≤ r, kj

divides k, thus, ord(π) ≥ lcm(k1, . . . , kr). On the other hand, it is easy to see that
for k = lcm(k1, . . . , kr), π

k = ι, thus, ord(π) = k. a

For example, the order of (1, 2, 3, 4)(5, 6, 7)(8, 9) is equal to lcm(4, 3, 2) = 12. How-
ever, the permutation (1, 2, 3, 4)(2, 6, 7)(3, 9) is not a product of disjoint cycles (and
so need not have order 12). In fact,

(1, 2, 3, 4)(2, 6, 7)(3, 9) = (1, 2, 6, 7, 3, 9, 4) ,

and therefore has order 7.
The following result shows that for any permutations π and ρ, π has the same cycle

structure as ρπρ−1.

Proposition 7.6. Let π and ρ be permutations in Sn. The cycle decomposition of
the permutation ρπρ−1 is obtained from that of π by replacing each integer i in the
cycle decomposition of π with the integer ρ(i).

Proof. Consider the effect that ρπρ−1 has on the integer ρ(i):

ρπρ−1
(
ρ(i)

)
= ρ

(
π(i)

)
,

or in other words, ρπρ−1 maps ρ(i) to ρ
(
π(i)

)
. Hence, in the cycle decomposition of

ρπρ−1, the number ρ(i) stands to the left of ρ
(
π(i)

)
, so

ρπρ−1 = . . .
(
. . . ρ(i), ρ

(
π(i)

)
. . .

)
. . . ,

whereas in the cycle decomposition of π, i stands to the left of π(i), so

π = . . .
(
. . . i, π(i) . . .

)
. . . ,

which completes the proof. a
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Definition. A transposition is a cycle of length 2, and an elementary transpo-
sition is a transposition of the form (i, i+ 1).

Lemma 7.7. Every k-cycle can be written as a product of k − 1 transpositions and
every transposition can be written as product of an odd number of elementary trans-
positions.

Proof. It is easily verified that

(i1, i2, . . . , ik) = (i1, i2)(i2, i3) . . . (ik−1, ik) ,

thus, every k-cycle can be written as a product of k − 1 transpositions. Further, let
j be a positive integer and let (i, i+ j) be a transposition. If j = 1, then (i, i+ 1) is
an elementary transposition and we are done. Otherwise, it is easy to see that

(i, i+ j) = (i, i+ 1) . . . (i+ j − 1, i+ j)︸ ︷︷ ︸
j elementary transpositions

(i+ j − 2, i+ j − 1) . . . (i, i+ 1)︸ ︷︷ ︸
j − 1 elementary transpositions

,

thus, (i, i+ j) is the product of 2j− 1 elementary transpositions and 2j− 1 is always
odd. a

Proposition 7.8.

(1) Each permutation can be written as a product of (elementary) transpositions.
(2) Sn is generated by the transpositions (1, 2), (1, 3), . . . , (1, n).
(3) Sn is generated by the two permutations (1, 2) and (1, 2, . . . , n).

Proof. (1) follows from Proposition 7.4 and Lemma 7.7.

(2) By (1), it is enough to show that every transposition (i, j), where i < j, belongs
to

〈{
(1, 2), (1, 3), . . . , (1, n)

}〉
. Now, if i = 1, then we are done. Otherwise, it is easy

to see that (i, j) = (1, i)(1, j)(1, i).

(3) See Hw10.Q47. a

The factorisation of a cycle into transpositions is not unique. Moreover, it is not
even true that the number of transpositions in any factorisation of a given cycle is
always the same, for example (1, 3) = (2, 3)(1, 2)(2, 3). However, we will see that
the numbers of transpositions in any two decompositions of a given permutation are
either both even or both odd.

Definition. For any positive integer n, let ∆n be the polynomial in n variables
x1, . . . , xn defined by

∆n(x1, . . . , xn) =
∏

1≤i<j≤n

(
xi − xj

)
,

and for any permutation π ∈ Sn let π ·∆n be the polynomial∏
1≤i<j≤n

(
xπ(i) − xπ(j)

)
.
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The following properties are easily checked.

Fact 7.9.

(a) ι ·∆n = ∆n.
(b) (πρ) ·∆n = π · (ρ ·∆n).
(c) For any real number λ, π · (λ∆n) = λ(π ·∆n).

Definition. For any π ∈ Sn, the polynomial ∆n is either equal to π ·∆n, in which
case we say that the permutation π is even, or ∆n = −π ·∆n, in which case we say
that π is odd. We write sgn(π) = 1 if π is even and sgn(π) = −1 if π is odd, so that
π ·∆n = sgn(π) ∆n.

Theorem 7.10. The map sgn : Sn → C2 is a homomorphism.

Proof. We must show that sgn(πρ) = sgn(π) sgn(ρ):

sgn(πρ) ∆n = (πρ) ·∆n by definition

= π · (ρ ·∆n) by Fact 7.9 (b)

= π ·
(
sgn(ρ)∆n

)
by definition

= sgn(ρ)(π ·∆n) by Fact 7.9 (c)

= sgn(ρ) sgn(π)∆n by definition

Thus, sgn(πρ) = sgn(ρ) sgn(π) = sgn(π) sgn(ρ), as required. a

Corollary 7.11. For any permutation π ∈ Sn, sgn(π−1) = sgn(π), and for any
π, ρ ∈ Sn,

sgn(ρπρ−1) = sgn(π) .

Proof. By Fact 7.9 and from the definition we have sgn(ι) = 1. Thus, by Theo-
rem 7.10, we have

1 = sgn(ι) = sgn(ππ−1) = sgn(π) sgn(π−1) ,

which implis sgn(π) = sgn(π−1).

Further, since
sgn(π) sgn(ρ) = sgn(ρ) sgn(π) ,

by Theorem 7.10 it follows that

sgn(ρπρ−1) = sgn(ρ) sgn(π) sgn(ρ−1) = sgn(π) sgn(ρ) sgn(ρ−1) = sgn(π) .

a

Corollary 7.12. All transpositions are odd, and a k-cycle is odd if and only if k is
even.

Proof. Firstly notice that by the definition of sgn, every elementary transposition
(i, i+ 1) is odd. Indeed, we change the sign of just one factor of the polynomial ∆n,
namely of the factor

(
xi − xi+1

)
. Now, by Lemma 7.7, every transposition can be

written as product of an odd number of elementary transpositions, and therefore, by
Theorem 7.10, all transpositions are odd.
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Again by Lemma 7.7, every k-cycle can be written as a product of k−1 transpositions,
and therefore, by Theorem 7.10, a k-cycle is odd if and only if k is even. a
As an immediate consequence of Corollary 7.12 we get

Corollary 7.13. A permutation is even (odd) if and only if it can be written as a
product of an even (odd) number of transpositions. In particular, ι is even.

By the way, if A = (ai,j) is an n× n matrix, then

det(A) :=
∑
π∈Sn

(
sgn(π)

n∏
i=1

ai,π(i)

)
.

Definition. The kernel of the homomorphism sgn : Sn → C2 is the alternating
group An. Or in other words,

An = {π ∈ Sn : π is even } .
For example, A3 =

{
ι, (1, 2, 3), (3, 2, 1)

}
, and therefore, A3

∼= C3. But for n ≥ 4,
An is a non-abelian group of order n!/2. In particular, as we will see later, A4 is
isomorphic to the tetrahedron-group T and A5 is isomorphic to the dodecahedron-
group D, whereas the cube-group C is isomorphic to S4.

By the First Isomorphism Theorem and the fact that for n ≥ 2 the map sgn is
surjective, for every n ≥ 2, An E Sn and |Sn : An| = 2. This implies that for every
n ≥ 3, Sn is not simple. It is easy to see that A3 is the only non-trivial normal
subgroup of S3 and that A3 is simple (since it is isomorphic to C3). On the other
hand, the group S4 has a normal subgroup of order 4 (cf. Hw10.Q50 (c)) which is also
a normal subgroup of A4, thus, A4 is not the only non-trivial normal subgroup of S4

and A4 is not simple. But one can show that for every n ≥ 5, An is simple and it is
the only non-trivial normal subgroup of Sn (we omit the proof).

We have seen that Sn is generated by its transpositions and that all transpositions
are odd. Thus, no transposition belongs to An. To find simple generators for An,
we have to consider even permutations. The simplest even permutations, beside the
identity, are 3-cycles, and indeed:

Proposition 7.14. The alternating group An is generated by its 3-cycles.

Proof. Let π be an element of An. By Corollary 7.13, π can be written as a product
of an even number of transpositions. So, it is enough to show that any product of
two different transpositions can be written as a product of 3-cycles. Let us consider
the product (i, j)(r, s):

If the four integers i, j, r, s are distinct, then

(i, j)(r, s) = (i, r, j)(i, r, s) .

Otherwise, we may assume without loss of generality that i = r, in which case

(i, j)(i, s) = (i, s, j) .

a
Let us now consider the centres of Sn and An. Since S1 = A1

∼= A2
∼= C1, Z(S1) =

Z(A1) ∼= Z(A2) = {ι}. Further, S2
∼= C2 and A3

∼= C3, which implies that S2 and
A3 are abelian, and therefore, Z(S2) = S2 and Z(A3) = A3. In general, we get the
following:
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Theorem 7.15.
(a) For any n ≥ 3, Z(Sn) = {ι}.
(b) For any n ≥ 4, Z(An) = {ι}.

Proof. (a) Let σ ∈ Sn be any permutation except the identity: Since σ 6= ι, there is
an i ∈ {1, . . . , n} such that σ(i) = j 6= i. Pick any k ∈ {1, . . . , n} distinct from i and
j. Now, σ (i, k)σ−1 =

(
j, σ(k)

)
6= (i, k), since j /∈ {i, k}. Hence, σ (i, k) 6= (i, k)σ,

which implies that σ /∈ Z(Sn).

(b) Let π ∈ An be any permutation except the identity: Since π 6= ι, there is an i ∈
{1, . . . , n} such that π(i) = j 6= i. Pick any distinct k, ` ∈ {1, . . . , n}, both distinct
from i and j. Now, π (i, k, `)π−1 =

(
j, π(k), π(`)

)
6= (i, k, `), since j /∈ {i, k, `}.

Hence, π (i, k, `) 6= (i, k, `) π, which implies that π /∈ Z(An). a
Finally, let us consider the automorphism group of Sn:

For any group G and for any x ∈ G, the mapping ϕx : G → G defined by ϕx(a) :=
xax−1 is an automorphism of G (cf. Hw8.Q38). Such an automorphism is called an
inner automorphism of G. Let Inn(G) denote the set of all inner automorphisms of
G. Further, the mapping ψ : G→ Aut(G) defined by ψ(x) := ϕx is a homomorphism
from G to Aut(G), which implies that Inn(G) is a subgroup of Aut(G) and, by the
First Isomorphism Theorem, that G/Z(G) ∼= Inn(G) (cf. Hw10.Q46).

Let us turn back to the group Sn. As an immediate consequence of Theorem 7.15 we
get the following:

Proposition 7.16. For any n ≥ 3, Inn(Sn) ∼= Sn.

In the following we will show that for any n ≥ 3, where n 6= 6, every automorphism
of Sn is an inner automorphism. Let us first consider what an automorphism is doing
with transpositions.

Lemma 7.17. Let n ≥ 3, where n 6= 6, ϕ ∈ Aut(Sn) and (i, j) a transposition in Sn.
Then ϕ(i, j) is a transposition.

Proof. The transposition (i, j) has order 2, and therefore, ϕ(i, j) has order 2 (see
Hw9.Q44 (c)). Thus, ϕ(i, j) must be the product of r disjoint transpositions where
2r ≤ n. There are

(
n
2

)
transpositions in Sn, and there are(
n

2

)
·
(
n− 2

2

)
· . . . ·

(
n− 2(r − 1)

2

)
︸ ︷︷ ︸

r factors

· 1

r!

products of r disjoint transpositions. Now, if ϕ
(
(i, j)

)
is a product of r disjoint

transpositions, then for every transposition (k, `), ϕ
(
(k, `

)
) is also a product of r

disjoint transpositions. Indeed, by Proposition 7.6 there exists a permutation ρ such
that ρ (i, j) ρ−1 = (k, `), and since ϕ is an automorphism we get ϕ

(
ρ (i, j) ρ−1) =

ϕ(ρ)ϕ
(
(i, j)

)
ϕ(ρ)−1 = ϕ

(
(k, `)

)
, and therefore, by Proposition 7.6 again, ϕ

(
(i, j)

)
has the same cycle structure as ϕ

(
(k, `)

)
. So, the number of transpositions in Sn

must correspond to the number of products of r disjoint transpositions in Sn. In
other words, we must have

n(n− 1)

2
=
n(n− 1)(n− 2) · . . . · (n− 2r + 1)

2r · r!
,
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or equivalently,

2r−1 · r! = (n− 2)(n− 3) · . . . · (n− 2r + 1) . (∗)
Obviously, equation (∗) holds for r = 1. So, let us consider the other cases:

For r = 2 we get 4 = (n− 2)(n− 3), which is impossible.

For r = 3 we get 24 = (n − 2)(n − 3)(n − 4)(n − 5) which holds just for n = 6, but
we excluded this case.

For n ≥ 4 we get

(n− 2)(n− 3) · . . . · (n− 2r + 1) ≥
↑

n≥2r

(2r − 2)(2r − 3) · . . . · 1 = (2r − 2)! =

= (2r − 2) · . . . · (r + 1)︸ ︷︷ ︸
r − 2 factors, each > 4

· r! ≥ 4r−2 · r! = 22(r−2) · r! > 2r−1 · r! ,

which shows that also in this case the equation (∗) does not hold.

Thus, r = 1, or in other words, ϕ
(
(i, j)

)
is a transposition. a

Theorem 7.18. Let n ≥ 3, where n 6= 6, then Aut(Sn) ∼= Sn.

Proof. By Proposition 7.16 it is enough to show that every automorphism of Sn is an
inner automorphism. By Proposition 7.8 we know that Sn is generated by the trans-
positions (1, 2), (1, 3), . . . , (1, n), so, it is enough to consider these transpositions. By
Lemma 7.17 we know that for any ϕ ∈ Aut(Sn) and for any i ∈ {2, . . . , n}, ϕ

(
(1, i)

)
is a transposition. Pick any two distinct numbers i, j from the set {2, 3, . . . , n} and
let

ϕ
(
(1, i)

)
= (k, `) and ϕ

(
(1, j)

)
= (p, q) .

Now, (1, i)(1, j) = (1, j, i) and has order 3, and hence, (k, `)(p, q) must also have order
3, which implies that two of the four element k, `, p, q must be equal. Without loss of
generality, let us assume that p = k. Then ϕ

(
(1, i)

)
= (k, `) and ϕ

(
(1, j)

)
= (k, q). If

n > 3, then we can pick an number h ∈ {1, . . . , n} \ {1, i, j}. Let ϕ
(
(1, h)

)
= (r, s),

then {r, s} has one element in common with {k, `} and with {k, q}. If r = ` and
s = q, then we would have

ϕ
(
(1, j, i)

)
= ϕ

(
(1, i)(1, j)

)
= (k, `)(k, q) = (k, q, `) =

= (q, `, k) = (k, q)(`, q) = ϕ
(
(1, j)(1, h)

)
= ϕ

(
(1, h, j)

)
,

but this is a contradiction since ϕ is injective and (1, j, i) 6= (1, h, j). So, we have
either r = k or s = k.

In general, for every i ∈ {2, . . . , n} there exists a unique π(i) ∈ {1, . . . , n} \ {k} such
that

ϕ
(
(1, i)

)
=

(
k, π(i)

)
.

Further, it is not hard to see that we stipulate π(1) := k, then π is a permutation of
{1, . . . , n}. Hence, by Proposition 7.6 we finally have

ϕ
(
(1, i)

)
=

(
k, π(i)

)
=

(
π(1), π(i)

)
= π (1, i) π−1 ,

which shows that every automorphism of Sn is an inner automorphism, which com-
pletes the proof. a



37

What about Aut(S6) ? One can show that there exists an automorphism ϕ ∈
Aut(S6) such that ϕ(i, j) is the product of 3 disjoint transpositions, and hence, by
Proposition 7.6, ϕ /∈ Inn(S6). Moreover one can show that |Aut(S6)| = 1440, and
since Inn(S6) ∼= S6 and |S6| = 720, this implies that |Aut(S6) : Inn(S6)| = 2, and
therefore Inn(S6) C Aut(S6) (we omit the proof).


