7. Permutation Groups

Recall that the set of all permutations of $\{1, \ldots, n\}$ under composition is a group of oder n !, denoted by S_{n}, which is called the symmetric group or permutation group of degree n. Permutations are usually denoted by Greek letters like π, ρ, and σ.
The following theorem indicates that permutation groups and their subgroups play a key-role in the investigation of finite groups.

Theorem 7.1. If G is a finite group of order n, then G is isomorphic to a subgroup of S_{n}.
Proof. Let $G=\left\{a_{1}, \ldots, a_{n}\right\}$ and let

$$
\begin{aligned}
\varphi: \quad & \rightarrow S_{n} \\
x & \mapsto \pi_{x}
\end{aligned}
$$

where for $i \in\{1, \ldots, n\}, \pi_{x}(i)$ is such that $x a_{i}=a_{\pi_{x}(i)}$.
φ is well-defined: We have to show that for all $x \in G, \varphi(x) \in S_{n}$. Let $x \in G$, then for all $i, j \in\{1, \ldots, n\}$ we have

$$
\pi_{x}(i)=\pi_{x}(j) \Longleftrightarrow x a_{i}=x a_{j} \Longleftrightarrow a_{i}=a_{j} \Longleftrightarrow i=j .
$$

Thus, for each $x \in G, \varphi(x)=\pi_{x}$ is an injective mapping from $\{1, \ldots, n\}$ into $\{1, \ldots, n\}$, which implies - since $\{1, \ldots, n\}$ is a finite set - that $\varphi(x)$ is a permutation of $\{1, \ldots, n\}$, or equivalently, $\varphi(x) \in S_{n}$.
φ is injective: If $\varphi(x)=\varphi(y)$, then for each $i \in\{1, \ldots, n\}$ we have $\pi_{x}(i)=\pi_{y}(i)$, thus

$$
x a_{i}=a_{\pi_{x}(i)}=a_{\pi_{y}(i)}=y a_{i}
$$

which implies $x=y$.
φ is a homomorphism: We have to show that $\varphi(x y)=\varphi(x) \varphi(y)$. For $x, y \in G$ and for any $i \in\{1, \ldots, n\}$ we have

$$
a_{\pi_{x y}(i)}=(x y) a_{i}=x\left(y a_{i}\right)=x a_{\pi_{y}(i)}=a_{\pi_{x}\left(\pi_{y}(i)\right)} .
$$

Thus, $\pi_{x y}(i)=\pi_{x}\left(\pi_{y}(i)\right)$ (for all $i \in\{1, \ldots, n\}$), and hence, $\varphi(x y)=\varphi(x) \varphi(y)$.
By Corollary 6.2 and since φ is injective, G is isomorphic to a subgroup of S_{n}, namely to the image of φ.

It is common to write a permutation $\pi \in S_{n}$ in two-row notation, in which the top row of the $2 \times n$ matrix contains the integers $1, \ldots, n$ and the effect of π on the integer i is written under i :

$$
\pi=\left(\begin{array}{cccccc}
1 & 2 & \ldots & i & \ldots & n \\
\pi(1) & \pi(2) & \ldots & \pi(i) & \ldots & \pi(n)
\end{array}\right)
$$

In particular, the identity permutation is

$$
\left(\begin{array}{llllll}
1 & 2 & \ldots & i & \ldots & n \\
1 & 2 & \ldots & i & \ldots & n
\end{array}\right)
$$

and is denoted by ι. For any permutation π and any integer k we set $\pi^{0}:=\iota$ and $\pi^{k+1}:=\pi\left(\pi^{k}\right)$.

A more compact notation is the so-called cycle notation, which avoids repeating the same first row in each permutation. The theoretical basis for this notation is in the following result.

Proposition 7.2. Let $\pi \in S_{n}, i \in\{1, \ldots, n\}$, and let k be the smallest positive integer for which $\pi^{k}(i)$ is in the set $\left\{i, \pi(i), \pi^{2}(i), \ldots, \pi^{k-1}(i)\right\}$. Then $\pi^{k}(i)=i$.

Proof. If $\pi^{k}(i)=\pi^{r}(i)$ for some non-negative $r<k-1$, then, for $k^{\prime}=k-r$ we have $k \geq k^{\prime}>0$ and $\pi^{k^{\prime}}=\iota$, which implies $\pi^{k^{\prime}}(i)=i \in\left\{i, \pi(i), \ldots, \pi^{k-1}(i)\right\}$, and therefore, by our assumption, $k^{\prime}=k$.
Definition. A permutation $\rho \in S_{n}$ is a \boldsymbol{k}-cycle if there exists a positive integer k and an integer $i \in\{1, \ldots, n\}$ such that
(1) k is the smallest positive integer such that $\rho^{k}(i)=i$, and
(2) ρ fixes each $j \in\{1, \ldots, n\} \backslash\left\{i, \rho(i), \ldots, \rho^{k-1}(i)\right\}$.

The k-cycle ρ is usually denoted $\left(i, \rho(i), \ldots, \rho^{k-1}(i)\right)$.
For example the five non-identity elements of S_{3} are all cycles, and may be written as

$$
(1,2,3),(3,2,1),(1,2),(1,3), \text { and }(2,3) .
$$

Notice that for example $(1,2,3)=(2,3,1)=(3,1,2)$ and that not every permutation is a cycle, e.g.,

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

is not a cycle.
Definition. Two permutations ρ and σ are disjoint if each number moved by ρ is fixed by σ, or equivalently, each number moved by σ is fixed by ρ.
It is quite easy to see that disjoint permutations commute.
FACT 7.3. Let σ and ρ be disjoint permutations, then $\sigma \rho=\rho \sigma$, and in general, for all positive integers $k,(\sigma \rho)^{k}=\sigma^{k} \rho^{k}$.
Proof. Since σ and ρ are disjoint permutations, each number moved by σ is fixed by ρ and vice versa. So, the set of numbers moved by σ is disjoint from the set of numbers moved by ρ, and therefore it does not matter which permutation we carry out first. Consequently we get $(\sigma \rho)^{k}=\sigma^{k} \rho^{k}$ (for all positive integers k).
The next result shows that cycles are the "atoms" of permutations.
Proposition 7.4. Every permutation $\pi \in S_{n}$ may be written as a product of disjoint cycles.
Proof. Let $\pi \in S_{n}$. By Proposition 7.2 and since the set $\{1, \ldots, n\}$ is finite, for every $i \in\{1, \ldots, n\}$ there is a positive integer k_{i} such that $\pi^{k_{i}}(i)=i$ and $\rho_{i}=$ $\left(i, \pi(i), \ldots, \pi^{k_{i}-1}(i)\right)$ is a k_{i}-cycle. We proceed by induction. Let $i_{1}:=1$ and for $j \geq 1$ with $\sum_{\ell=1}^{j} k_{i_{\ell}}<n$ let i_{j+1} be the least number of the non-empty set

$$
\{1, \ldots, n\} \backslash \bigcup\left\{\pi^{k}\left(i_{\ell}\right): k \in \mathbb{Z} \text { and } 1 \leq \ell \leq j\right\}
$$

Further, let m be the least positive integer such that $\sum_{\ell=1}^{m} k_{i_{\ell}}=n$, then, by construction, $\pi=\rho_{i_{1}} \rho_{i_{2}} \ldots \rho_{i_{m}}$ and the ρ 's are disjoint cycles.

Definition. A decomposition of a permutation π into disjoint cycles is called a cycle decomposition of π.

For example the cycle decomposition of the permutation

$$
\pi=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
6 & 2 & 5 & 3 & 4 & 1 & 7 & 9 & 8
\end{array}\right)
$$

is $(1,6)(2)(3,5,4)(7)(8,9)$. It is usual to omit cycles of length 1 , those integers fixed by π, and so π is abbreviated to $(1,6)(3,5,4)(8,9)$.

Proposition 7.5. If ρ is a k-cycle, then $\operatorname{ord}(\rho)=k$, and consequently, if π is a product of disjoint cycles of length k_{1}, \ldots, k_{r}, then $\operatorname{ord}(\pi)=\operatorname{lcm}\left(k_{1}, \ldots, k_{r}\right)$, where $\operatorname{lcm}\left(k_{1}, \ldots, k_{r}\right)$ is the lowest common multiple of the integers k_{1}, \ldots, k_{r}.

Proof. If ρ is a k-cycle, then there is an $i \in\{1, \ldots, n\}$ such that $\rho=\left(i, \rho(i), \ldots, \rho^{k-1}(i)\right)$ where $\rho^{k}(i)=i$. Hence, for every non-negative $\ell<k$ we have $\rho^{k}\left(\rho^{\ell}(i)\right)=\rho^{\ell}\left(\rho^{k}(i)\right)=$ $\rho^{\ell}(i)$, which shows that $\rho^{k}=\iota$, thus $\operatorname{ord}(\rho) \geq k$. On the other hand, by definition of $k, \rho^{\ell} \neq \iota$ for any positive $\ell<k$, thus, $\operatorname{ord}(\rho)=k$.
Let π be a product of disjoint cycles $\rho_{1}, \ldots, \rho_{r}$ of length k_{1}, \ldots, k_{r} and let $\operatorname{ord}(\pi)=k$. By Fact 7.3 we have $\iota=\pi^{k}=\rho_{1}^{k} \ldots \rho_{r}^{k}$ which implies that for every $1 \leq j \leq r, k_{j}$ divides k, thus, $\operatorname{ord}(\pi) \geq \operatorname{lcm}\left(k_{1}, \ldots, k_{r}\right)$. On the other hand, it is easy to see that for $k=\operatorname{lcm}\left(k_{1}, \ldots, k_{r}\right), \pi^{k}=\iota$, thus, $\operatorname{ord}(\pi)=k$.

For example, the order of $(1,2,3,4)(5,6,7)(8,9)$ is equal to $\operatorname{lcm}(4,3,2)=12$. However, the permutation $(1,2,3,4)(2,6,7)(3,9)$ is not a product of disjoint cycles (and so need not have order 12). In fact,

$$
(1,2,3,4)(2,6,7)(3,9)=(1,2,6,7,3,9,4)
$$

and therefore has order 7 .
The following result shows that for any permutations π and ρ, π has the same cycle structure as $\rho \pi \rho^{-1}$.

Proposition 7.6. Let π and ρ be permutations in S_{n}. The cycle decomposition of the permutation $\rho \pi \rho^{-1}$ is obtained from that of π by replacing each integer i in the cycle decomposition of π with the integer $\rho(i)$.

Proof. Consider the effect that $\rho \pi \rho^{-1}$ has on the integer $\rho(i)$:

$$
\rho \pi \rho^{-1}(\rho(i))=\rho(\pi(i)),
$$

or in other words, $\rho \pi \rho^{-1}$ maps $\rho(i)$ to $\rho(\pi(i))$. Hence, in the cycle decomposition of $\rho \pi \rho^{-1}$, the number $\rho(i)$ stands to the left of $\rho(\pi(i))$, so

$$
\rho \pi \rho^{-1}=\ldots(\ldots \rho(i), \rho(\pi(i)) \ldots) \ldots,
$$

whereas in the cycle decomposition of π, i stands to the left of $\pi(i)$, so

$$
\pi=\ldots(\ldots i, \pi(i) \ldots) \ldots
$$

which completes the proof.

Definition. A transposition is a cycle of length 2, and an elementary transposition is a transposition of the form $(i, i+1)$.

Lemma 7.7. Every k-cycle can be written as a product of $k-1$ transpositions and every transposition can be written as product of an odd number of elementary transpositions.

Proof. It is easily verified that

$$
\left(i_{1}, i_{2}, \ldots, i_{k}\right)=\left(i_{1}, i_{2}\right)\left(i_{2}, i_{3}\right) \ldots\left(i_{k-1}, i_{k}\right),
$$

thus, every k-cycle can be written as a product of $k-1$ transpositions. Further, let j be a positive integer and let $(i, i+j)$ be a transposition. If $j=1$, then $(i, i+1)$ is an elementary transposition and we are done. Otherwise, it is easy to see that

$$
(i, i+j)=\underbrace{(i, i+1) \ldots(i+j-1, i+j)}_{j \text { elementary transpositions }} \underbrace{(i+j-2, i+j-1) \ldots(i, i+1)}_{j-1 \text { elementary transpositions }},
$$

thus, $(i, i+j)$ is the product of $2 j-1$ elementary transpositions and $2 j-1$ is always odd.

Proposition 7.8 .
(1) Each permutation can be written as a product of (elementary) transpositions.
(2) S_{n} is generated by the transpositions $(1,2),(1,3), \ldots,(1, n)$.
(3) S_{n} is generated by the two permutations $(1,2)$ and $(1,2, \ldots, n)$.

Proof. (1) follows from Proposition 7.4 and Lemma 7.7.
(2) By (1), it is enough to show that every transposition (i, j), where $i<j$, belongs to $\langle\{(1,2),(1,3), \ldots,(1, n)\}\rangle$. Now, if $i=1$, then we are done. Otherwise, it is easy to see that $(i, j)=(1, i)(1, j)(1, i)$.
(3) See Hw10.Q47.

The factorisation of a cycle into transpositions is not unique. Moreover, it is not even true that the number of transpositions in any factorisation of a given cycle is always the same, for example $(1,3)=(2,3)(1,2)(2,3)$. However, we will see that the numbers of transpositions in any two decompositions of a given permutation are either both even or both odd.

Definition. For any positive integer n, let Δ_{n} be the polynomial in n variables x_{1}, \ldots, x_{n} defined by

$$
\Delta_{n}\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right),
$$

and for any permutation $\pi \in S_{n}$ let $\pi \cdot \Delta_{n}$ be the polynomial

$$
\prod_{1 \leq i<j \leq n}\left(x_{\pi(i)}-x_{\pi(j)}\right)
$$

The following properties are easily checked.
FACT 7.9.
(a) $\iota \cdot \Delta_{n}=\Delta_{n}$.
(b) $(\pi \rho) \cdot \Delta_{n}=\pi \cdot\left(\rho \cdot \Delta_{n}\right)$.
(c) For any real number $\lambda, \pi \cdot\left(\lambda \Delta_{n}\right)=\lambda\left(\pi \cdot \Delta_{n}\right)$.

Definition. For any $\pi \in S_{n}$, the polynomial Δ_{n} is either equal to $\pi \cdot \Delta_{n}$, in which case we say that the permutation π is even, or $\Delta_{n}=-\pi \cdot \Delta_{n}$, in which case we say that π is odd. We write $\operatorname{sgn}(\pi)=1$ if π is even and $\operatorname{sgn}(\pi)=-1$ if π is odd, so that $\pi \cdot \Delta_{n}=\operatorname{sgn}(\pi) \Delta_{n}$.
Theorem 7.10. The map sgn : $S_{n} \rightarrow C_{2}$ is a homomorphism.
Proof. We must show that $\operatorname{sgn}(\pi \rho)=\operatorname{sgn}(\pi) \operatorname{sgn}(\rho)$:

$$
\begin{aligned}
\operatorname{sgn}(\pi \rho) \Delta_{n} & =(\pi \rho) \cdot \Delta_{n} & & \text { by definition } \\
& =\pi \cdot\left(\rho \cdot \Delta_{n}\right) & & \text { by Fact } 7.9(\mathrm{~b}) \\
& =\pi \cdot\left(\operatorname{sgn}(\rho) \Delta_{n}\right) & & \text { by definition } \\
& =\operatorname{sgn}(\rho)\left(\pi \cdot \Delta_{n}\right) & & \text { by Fact } 7.9(\mathrm{c}) \\
& =\operatorname{sgn}(\rho) \operatorname{sgn}(\pi) \Delta_{n} & & \text { by definition }
\end{aligned}
$$

Thus, $\operatorname{sgn}(\pi \rho)=\operatorname{sgn}(\rho) \operatorname{sgn}(\pi)=\operatorname{sgn}(\pi) \operatorname{sgn}(\rho)$, as required.
Corollary 7.11. For any permutation $\pi \in S_{n}, \operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$, and for any $\pi, \rho \in S_{n}$,

$$
\operatorname{sgn}\left(\rho \pi \rho^{-1}\right)=\operatorname{sgn}(\pi)
$$

Proof. By Fact 7.9 and from the definition we have $\operatorname{sgn}(\iota)=1$. Thus, by Theorem 7.10, we have

$$
1=\operatorname{sgn}(\iota)=\operatorname{sgn}\left(\pi \pi^{-1}\right)=\operatorname{sgn}(\pi) \operatorname{sgn}\left(\pi^{-1}\right),
$$

which implis $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{-1}\right)$.
Further, since

$$
\operatorname{sgn}(\pi) \operatorname{sgn}(\rho)=\operatorname{sgn}(\rho) \operatorname{sgn}(\pi)
$$

by Theorem 7.10 it follows that

$$
\operatorname{sgn}\left(\rho \pi \rho^{-1}\right)=\operatorname{sgn}(\rho) \operatorname{sgn}(\pi) \operatorname{sgn}\left(\rho^{-1}\right)=\operatorname{sgn}(\pi) \operatorname{sgn}(\rho) \operatorname{sgn}\left(\rho^{-1}\right)=\operatorname{sgn}(\pi)
$$

Corollary 7.12. All transpositions are odd, and a k-cycle is odd if and only if k is even.

Proof. Firstly notice that by the definition of sgn, every elementary transposition $(i, i+1)$ is odd. Indeed, we change the sign of just one factor of the polynomial Δ_{n}, namely of the factor $\left(x_{i}-x_{i+1}\right)$. Now, by Lemma 7.7, every transposition can be written as product of an odd number of elementary transpositions, and therefore, by Theorem 7.10, all transpositions are odd.

Again by Lemma 7.7, every k-cycle can be written as a product of $k-1$ transpositions, and therefore, by Theorem 7.10, a k-cycle is odd if and only if k is even.
As an immediate consequence of Corollary 7.12 we get
Corollary 7.13. A permutation is even (odd) if and only if it can be written as a product of an even (odd) number of transpositions. In particular, ι is even.
By the way, if $A=\left(a_{i, j}\right)$ is an $n \times n$ matrix, then

$$
\operatorname{det}(A):=\sum_{\pi \in S_{n}}\left(\operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}\right)
$$

Definition. The kernel of the homomorphism sgn : $S_{n} \rightarrow C_{2}$ is the alternating group A_{n}. Or in other words,

$$
A_{n}=\left\{\pi \in S_{n}: \pi \text { is even }\right\} .
$$

For example, $A_{3}=\{\iota,(1,2,3),(3,2,1)\}$, and therefore, $A_{3} \cong C_{3}$. But for $n \geq 4$, A_{n} is a non-abelian group of order $n!/ 2$. In particular, as we will see later, A_{4} is isomorphic to the tetrahedron-group T and A_{5} is isomorphic to the dodecahedrongroup D, whereas the cube-group C is isomorphic to S_{4}.
By the First Isomorphism Theorem and the fact that for $n \geq 2$ the map sgn is surjective, for every $n \geq 2, A_{n} \unlhd S_{n}$ and $\left|S_{n}: A_{n}\right|=2$. This implies that for every $n \geq 3, S_{n}$ is not simple. It is easy to see that A_{3} is the only non-trivial normal subgroup of S_{3} and that A_{3} is simple (since it is isomorphic to C_{3}). On the other hand, the group S_{4} has a normal subgroup of order 4 (cf. Hw10.Q50 (c)) which is also a normal subgroup of A_{4}, thus, A_{4} is not the only non-trivial normal subgroup of S_{4} and A_{4} is not simple. But one can show that for every $n \geq 5, A_{n}$ is simple and it is the only non-trivial normal subgroup of S_{n} (we omit the proof).
We have seen that S_{n} is generated by its transpositions and that all transpositions are odd. Thus, no transposition belongs to A_{n}. To find simple generators for A_{n}, we have to consider even permutations. The simplest even permutations, beside the identity, are 3-cycles, and indeed:
Proposition 7.14. The alternating group A_{n} is generated by its 3 -cycles.
Proof. Let π be an element of A_{n}. By Corollary 7.13, π can be written as a product of an even number of transpositions. So, it is enough to show that any product of two different transpositions can be written as a product of 3 -cycles. Let us consider the product $(i, j)(r, s)$:
If the four integers i, j, r, s are distinct, then

$$
(i, j)(r, s)=(i, r, j)(i, r, s) .
$$

Otherwise, we may assume without loss of generality that $i=r$, in which case

$$
(i, j)(i, s)=(i, s, j) .
$$

Let us now consider the centres of S_{n} and A_{n}. Since $S_{1}=A_{1} \cong A_{2} \cong C_{1}, Z\left(S_{1}\right)=$ $Z\left(A_{1}\right) \cong Z\left(A_{2}\right)=\{\iota\}$. Further, $S_{2} \cong C_{2}$ and $A_{3} \cong C_{3}$, which implies that S_{2} and A_{3} are abelian, and therefore, $Z\left(S_{2}\right)=S_{2}$ and $Z\left(A_{3}\right)=A_{3}$. In general, we get the following:

TheOrem 7.15.
(a) For any $n \geq 3, Z\left(S_{n}\right)=\{\iota\}$.
(b) For any $n \geq 4, Z\left(A_{n}\right)=\{\iota\}$.

Proof. (a) Let $\sigma \in S_{n}$ be any permutation except the identity: Since $\sigma \neq \iota$, there is an $i \in\{1, \ldots, n\}$ such that $\sigma(i)=j \neq i$. Pick any $k \in\{1, \ldots, n\}$ distinct from i and j. Now, $\sigma(i, k) \sigma^{-1}=(j, \sigma(k)) \neq(i, k)$, since $j \notin\{i, k\}$. Hence, $\sigma(i, k) \neq(i, k) \sigma$, which implies that $\sigma \notin Z\left(S_{n}\right)$.
(b) Let $\pi \in A_{n}$ be any permutation except the identity: Since $\pi \neq \iota$, there is an $i \in$ $\{1, \ldots, n\}$ such that $\pi(i)=j \neq i$. Pick any distinct $k, \ell \in\{1, \ldots, n\}$, both distinct from i and j. Now, $\pi(i, k, \ell) \pi^{-1}=(j, \pi(k), \pi(\ell)) \neq(i, k, \ell)$, since $j \notin\{i, k, \ell\}$. Hence, $\pi(i, k, \ell) \neq(i, k, \ell) \pi$, which implies that $\pi \notin Z\left(A_{n}\right)$.
Finally, let us consider the automorphism group of S_{n} :
For any group G and for any $x \in G$, the mapping $\varphi_{x}: G \rightarrow G$ defined by $\varphi_{x}(a):=$ $x a x^{-1}$ is an automorphism of $G(c f . H w 8 . Q 38)$. Such an automorphism is called an inner automorphism of G. Let $\operatorname{Inn}(G)$ denote the set of all inner automorphisms of G. Further, the mapping $\psi: G \rightarrow \operatorname{Aut}(G)$ defined by $\psi(x):=\varphi_{x}$ is a homomorphism from G to $\operatorname{Aut}(G)$, which implies that $\operatorname{Inn}(G)$ is a subgroup of $\operatorname{Aut}(G)$ and, by the First Isomorphism Theorem, that $G / Z(G) \cong \operatorname{Inn}(G)(c f$. Hw10.Q46).
Let us turn back to the group S_{n}. As an immediate consequence of Theorem 7.15 we get the following:
Proposition 7.16. For any $n \geq 3, \operatorname{Inn}\left(S_{n}\right) \cong S_{n}$.
In the following we will show that for any $n \geq 3$, where $n \neq 6$, every automorphism of S_{n} is an inner automorphism. Let us first consider what an automorphism is doing with transpositions.
Lemma 7.17. Let $n \geq 3$, where $n \neq 6, \varphi \in \operatorname{Aut}\left(S_{n}\right)$ and (i, j) a transposition in S_{n}. Then $\varphi(i, j)$ is a transposition.
Proof. The transposition (i, j) has order 2 , and therefore, $\varphi(i, j)$ has order 2 (see Hw9.Q44 (c)). Thus, $\varphi(i, j)$ must be the product of r disjoint transpositions where $2 r \leq n$. There are $\binom{n}{2}$ transpositions in S_{n}, and there are

$$
\underbrace{\binom{n}{2} \cdot\binom{n-2}{2} \cdot \ldots \cdot\binom{n-2(r-1)}{2}}_{r \text { factors }} \cdot \frac{1}{r!}
$$

products of r disjoint transpositions. Now, if $\varphi((i, j))$ is a product of r disjoint transpositions, then for every transposition $(k, \ell), \varphi((k, \ell))$ is also a product of r disjoint transpositions. Indeed, by Proposition 7.6 there exists a permutation ρ such that $\rho(i, j) \rho^{-1}=(k, \ell)$, and since φ is an automorphism we get $\varphi\left(\rho(i, j) \rho^{-1}\right)=$ $\varphi(\rho) \varphi((i, j)) \varphi(\rho)^{-1}=\varphi((k, \ell))$, and therefore, by Proposition 7.6 again, $\varphi((i, j))$ has the same cycle structure as $\varphi((k, \ell))$. So, the number of transpositions in S_{n} must correspond to the number of products of r disjoint transpositions in S_{n}. In other words, we must have

$$
\frac{n(n-1)}{2}=\frac{n(n-1)(n-2) \cdot \ldots \cdot(n-2 r+1)}{2^{r} \cdot r!}
$$

or equivalently,

$$
\begin{equation*}
2^{r-1} \cdot r!=(n-2)(n-3) \cdot \ldots \cdot(n-2 r+1) . \tag{*}
\end{equation*}
$$

Obviously, equation (*) holds for $r=1$. So, let us consider the other cases:
For $r=2$ we get $4=(n-2)(n-3)$, which is impossible.
For $r=3$ we get $24=(n-2)(n-3)(n-4)(n-5)$ which holds just for $n=6$, but we excluded this case.
For $n \geq 4$ we get

$$
\begin{aligned}
(n-2)(n-3) \cdot \ldots \cdot(n-2 r+1) & \underset{\substack{\uparrow \\
n \geq 2 r}}{\geq}(2 r-2)(2 r-3) \cdot \ldots \cdot 1=(2 r-2)!= \\
& =\underbrace{(2 r-2) \cdot \ldots \cdot(r+1)}_{r-2 \text { factors, each }>4} \cdot r!\geq 4^{r-2} \cdot r!=2^{2(r-2)} \cdot r!>2^{r-1} \cdot r!,
\end{aligned}
$$

which shows that also in this case the equation $(*)$ does not hold.
Thus, $r=1$, or in other words, $\varphi((i, j))$ is a transposition.
Theorem 7.18. Let $n \geq 3$, where $n \neq 6$, then $\operatorname{Aut}\left(S_{n}\right) \cong S_{n}$.
Proof. By Proposition 7.16 it is enough to show that every automorphism of S_{n} is an inner automorphism. By Proposition 7.8 we know that S_{n} is generated by the transpositions $(1,2),(1,3), \ldots,(1, n)$, so, it is enough to consider these transpositions. By Lemma 7.17 we know that for any $\varphi \in \operatorname{Aut}\left(S_{n}\right)$ and for any $i \in\{2, \ldots, n\}, \varphi((1, i))$ is a transposition. Pick any two distinct numbers i, j from the set $\{2,3, \ldots, n\}$ and let

$$
\varphi((1, i))=(k, \ell) \text { and } \varphi((1, j))=(p, q) .
$$

Now, $(1, i)(1, j)=(1, j, i)$ and has order 3 , and hence, $(k, \ell)(p, q)$ must also have order 3 , which implies that two of the four element k, ℓ, p, q must be equal. Without loss of generality, let us assume that $p=k$. Then $\varphi((1, i))=(k, \ell)$ and $\varphi((1, j))=(k, q)$. If $n>3$, then we can pick an number $h \in\{1, \ldots, n\} \backslash\{1, i, j\}$. Let $\varphi((1, h))=(r, s)$, then $\{r, s\}$ has one element in common with $\{k, \ell\}$ and with $\{k, q\}$. If $r=\ell$ and $s=q$, then we would have

$$
\begin{aligned}
\varphi((1, j, i))=\varphi((1, i)(1, j)) & =(k, \ell)(k, q)=(k, q, \ell)= \\
= & (q, \ell, k)=(k, q)(\ell, q)=\varphi((1, j)(1, h))=\varphi((1, h, j)),
\end{aligned}
$$

but this is a contradiction since φ is injective and $(1, j, i) \neq(1, h, j)$. So, we have either $r=k$ or $s=k$.
In general, for every $i \in\{2, \ldots, n\}$ there exists a unique $\pi(i) \in\{1, \ldots, n\} \backslash\{k\}$ such that

$$
\varphi((1, i))=(k, \pi(i)) .
$$

Further, it is not hard to see that we stipulate $\pi(1):=k$, then π is a permutation of $\{1, \ldots, n\}$. Hence, by Proposition 7.6 we finally have

$$
\varphi((1, i))=(k, \pi(i))=(\pi(1), \pi(i))=\pi(1, i) \pi^{-1}
$$

which shows that every automorphism of S_{n} is an inner automorphism, which completes the proof.

What about $\operatorname{Aut}\left(S_{6}\right)$? One can show that there exists an automorphism $\varphi \in$ $\operatorname{Aut}\left(S_{6}\right)$ such that $\varphi(i, j)$ is the product of 3 disjoint transpositions, and hence, by Proposition 7.6, $\varphi \notin \operatorname{Inn}\left(S_{6}\right)$. Moreover one can show that $\left|\operatorname{Aut}\left(S_{6}\right)\right|=1440$, and since $\operatorname{Inn}\left(S_{6}\right) \cong S_{6}$ and $\left|S_{6}\right|=720$, this implies that $\left|\operatorname{Aut}\left(S_{6}\right): \operatorname{Inn}\left(S_{6}\right)\right|=2$, and therefore $\operatorname{Inn}\left(S_{6}\right) \triangleleft \operatorname{Aut}\left(S_{6}\right)$ (we omit the proof).

