7. Permutation Groups

Recall that the set of all permutations of $\{1, \ldots, n\}$ under composition is a group of oder n!, denoted by S_n , which is called the **symmetric group** or **permutation group** of degree n. Permutations are usually denoted by Greek letters like π , ρ , and σ .

The following theorem indicates that permutation groups and their subgroups play a key-role in the investigation of finite groups.

THEOREM 7.1. If G is a finite group of order n, then G is isomorphic to a subgroup of S_n .

Proof. Let $G = \{a_1, \ldots, a_n\}$ and let

$$\begin{array}{rcccc} \varphi: & G & \to & S_n \\ & x & \mapsto & \pi_x \end{array}$$

where for $i \in \{1, \ldots, n\}$, $\pi_x(i)$ is such that $xa_i = a_{\pi_x(i)}$.

 φ is well-defined: We have to show that for all $x \in G$, $\varphi(x) \in S_n$. Let $x \in G$, then for all $i, j \in \{1, \ldots, n\}$ we have

$$\pi_x(i) = \pi_x(j) \iff xa_i = xa_j \iff a_i = a_j \iff i = j.$$

Thus, for each $x \in G$, $\varphi(x) = \pi_x$ is an injective mapping from $\{1, \ldots, n\}$ into $\{1, \ldots, n\}$, which implies – since $\{1, \ldots, n\}$ is a finite set – that $\varphi(x)$ is a permutation of $\{1, \ldots, n\}$, or equivalently, $\varphi(x) \in S_n$.

 φ is injective: If $\varphi(x) = \varphi(y)$, then for each $i \in \{1, \ldots, n\}$ we have $\pi_x(i) = \pi_y(i)$, thus

$$xa_i = a_{\pi_x(i)} = a_{\pi_y(i)} = ya_i$$
,

which implies x = y.

 φ is a homomorphism: We have to show that $\varphi(xy) = \varphi(x) \varphi(y)$. For $x, y \in G$ and for any $i \in \{1, \ldots, n\}$ we have

$$a_{\pi_{xy}(i)} = (xy)a_i = x(ya_i) = xa_{\pi_y(i)} = a_{\pi_x(\pi_y(i))}.$$

Thus, $\pi_{xy}(i) = \pi_x(\pi_y(i))$ (for all $i \in \{1, \ldots, n\}$), and hence, $\varphi(xy) = \varphi(x)\varphi(y)$.

By Corollary 6.2 and since φ is injective, G is isomorphic to a subgroup of S_n , namely to the image of φ .

It is common to write a permutation $\pi \in S_n$ in *two-row* notation, in which the top row of the $2 \times n$ matrix contains the integers $1, \ldots, n$ and the effect of π on the integer *i* is written under *i*:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(i) & \dots & \pi(n) \end{pmatrix}$$

In particular, the identity permutation is

$$\begin{pmatrix} 1 & 2 & \dots & i & \dots & n \\ 1 & 2 & \dots & i & \dots & n \end{pmatrix}$$

and is denoted by ι . For any permutation π and any integer k we set $\pi^0 := \iota$ and $\pi^{k+1} := \pi(\pi^k)$.

A more compact notation is the so-called *cycle notation*, which avoids repeating the same first row in each permutation. The theoretical basis for this notation is in the following result.

PROPOSITION 7.2. Let $\pi \in S_n$, $i \in \{1, \ldots, n\}$, and let k be the smallest positive integer for which $\pi^k(i)$ is in the set $\{i, \pi(i), \pi^2(i), \ldots, \pi^{k-1}(i)\}$. Then $\pi^k(i) = i$.

Proof. If $\pi^k(i) = \pi^r(i)$ for some non-negative r < k - 1, then, for k' = k - r we have $k \ge k' > 0$ and $\pi^{k'} = \iota$, which implies $\pi^{k'}(i) = i \in \{i, \pi(i), \ldots, \pi^{k-1}(i)\}$, and therefore, by our assumption, k' = k.

DEFINITION. A permutation $\rho \in S_n$ is a *k***-cycle** if there exists a positive integer k and an integer $i \in \{1, \ldots, n\}$ such that

- (1) k is the smallest positive integer such that $\rho^k(i) = i$, and
- (2) ρ fixes each $j \in \{1, \ldots, n\} \setminus \{i, \rho(i), \ldots, \rho^{k-1}(i)\}.$
- The k-cycle ρ is usually denoted $(i, \rho(i), \dots, \rho^{k-1}(i))$.

For example the five non-identity elements of S_3 are all cycles, and may be written as

(1, 2, 3), (3, 2, 1), (1, 2), (1, 3), and (2, 3).

Notice that for example (1, 2, 3) = (2, 3, 1) = (3, 1, 2) and that not every permutation is a cycle, e.g.,

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

is not a cycle.

DEFINITION. Two permutations ρ and σ are **disjoint** if each number moved by ρ is fixed by σ , or equivalently, each number moved by σ is fixed by ρ .

It is quite easy to see that disjoint permutations commute.

FACT 7.3. Let σ and ρ be disjoint permutations, then $\sigma \rho = \rho \sigma$, and in general, for all positive integers k, $(\sigma \rho)^k = \sigma^k \rho^k$.

Proof. Since σ and ρ are disjoint permutations, each number moved by σ is fixed by ρ and vice versa. So, the set of numbers moved by σ is disjoint from the set of numbers moved by ρ , and therefore it does not matter which permutation we carry out first. Consequently we get $(\sigma \rho)^k = \sigma^k \rho^k$ (for all positive integers k).

The next result shows that cycles are the "atoms" of permutations.

PROPOSITION 7.4. Every permutation $\pi \in S_n$ may be written as a product of disjoint cycles.

Proof. Let $\pi \in S_n$. By Proposition 7.2 and since the set $\{1, \ldots, n\}$ is finite, for every $i \in \{1, \ldots, n\}$ there is a positive integer k_i such that $\pi^{k_i}(i) = i$ and $\rho_i = (i, \pi(i), \ldots, \pi^{k_i-1}(i))$ is a k_i -cycle. We proceed by induction. Let $i_1 := 1$ and for $j \ge 1$ with $\sum_{\ell=1}^{j} k_{i_\ell} < n$ let i_{j+1} be the least number of the non-empty set

$$\{1,\ldots,n\}\setminus \bigcup \{\pi^k(i_\ell):k\in\mathbb{Z} \text{ and } 1\leq \ell\leq j\}.$$

Further, let *m* be the least positive integer such that $\sum_{\ell=1}^{m} k_{i_{\ell}} = n$, then, by construction, $\pi = \rho_{i_1} \rho_{i_2} \dots \rho_{i_m}$ and the ρ 's are disjoint cycles.

DEFINITION. A decomposition of a permutation π into disjoint cycles is called a **cycle** decomposition of π .

For example the cycle decomposition of the permutation

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 2 & 5 & 3 & 4 & 1 & 7 & 9 & 8 \end{pmatrix}$$

is (1, 6)(2)(3, 5, 4)(7)(8, 9). It is usual to omit cycles of length 1, those integers fixed by π , and so π is abbreviated to (1, 6)(3, 5, 4)(8, 9).

PROPOSITION 7.5. If ρ is a k-cycle, then $\operatorname{ord}(\rho) = k$, and consequently, if π is a product of disjoint cycles of length k_1, \ldots, k_r , then $\operatorname{ord}(\pi) = \operatorname{lcm}(k_1, \ldots, k_r)$, where $\operatorname{lcm}(k_1, \ldots, k_r)$ is the lowest common multiple of the integers k_1, \ldots, k_r .

Proof. If ρ is a k-cycle, then there is an $i \in \{1, \ldots, n\}$ such that $\rho = (i, \rho(i), \ldots, \rho^{k-1}(i))$ where $\rho^k(i) = i$. Hence, for every non-negative $\ell < k$ we have $\rho^k(\rho^\ell(i)) = \rho^\ell(\rho^k(i)) = \rho^\ell(i)$, which shows that $\rho^k = \iota$, thus $\operatorname{ord}(\rho) \ge k$. On the other hand, by definition of $k, \rho^\ell \neq \iota$ for any positive $\ell < k$, thus, $\operatorname{ord}(\rho) = k$.

Let π be a product of disjoint cycles ρ_1, \ldots, ρ_r of length k_1, \ldots, k_r and let $\operatorname{ord}(\pi) = k$. By Fact 7.3 we have $\iota = \pi^k = \rho_1^k \ldots \rho_r^k$ which implies that for every $1 \leq j \leq r, k_j$ divides k, thus, $\operatorname{ord}(\pi) \geq \operatorname{lcm}(k_1, \ldots, k_r)$. On the other hand, it is easy to see that for $k = \operatorname{lcm}(k_1, \ldots, k_r), \ \pi^k = \iota$, thus, $\operatorname{ord}(\pi) = k$.

For example, the order of (1, 2, 3, 4)(5, 6, 7)(8, 9) is equal to lcm(4, 3, 2) = 12. However, the permutation (1, 2, 3, 4)(2, 6, 7)(3, 9) is not a product of disjoint cycles (and so need not have order 12). In fact,

$$(1, 2, 3, 4)(2, 6, 7)(3, 9) = (1, 2, 6, 7, 3, 9, 4),$$

and therefore has order 7.

The following result shows that for any permutations π and ρ , π has the same cycle structure as $\rho \pi \rho^{-1}$.

PROPOSITION 7.6. Let π and ρ be permutations in S_n . The cycle decomposition of the permutation $\rho \pi \rho^{-1}$ is obtained from that of π by replacing each integer i in the cycle decomposition of π with the integer $\rho(i)$.

Proof. Consider the effect that $\rho \pi \rho^{-1}$ has on the integer $\rho(i)$:

$$\rho \pi \rho^{-1} \big(\rho(i) \big) = \rho \big(\pi(i) \big) \,,$$

or in other words, $\rho \pi \rho^{-1}$ maps $\rho(i)$ to $\rho(\pi(i))$. Hence, in the cycle decomposition of $\rho \pi \rho^{-1}$, the number $\rho(i)$ stands to the left of $\rho(\pi(i))$, so

$$\rho \pi \rho^{-1} = \dots \left(\dots \rho(i), \rho(\pi(i)) \dots \right) \dots,$$

whereas in the cycle decomposition of π , *i* stands to the left of $\pi(i)$, so

$$\pi = \dots (\dots i, \pi(i) \dots) \dots$$

which completes the proof.

Ч

DEFINITION. A transposition is a cycle of length 2, and an elementary transposition is a transposition of the form (i, i + 1).

LEMMA 7.7. Every k-cycle can be written as a product of k - 1 transpositions and every transposition can be written as product of an odd number of elementary transpositions.

Proof. It is easily verified that

$$(i_1, i_2, \ldots, i_k) = (i_1, i_2)(i_2, i_3) \ldots (i_{k-1}, i_k),$$

thus, every k-cycle can be written as a product of k-1 transpositions. Further, let j be a positive integer and let (i, i + j) be a transposition. If j = 1, then (i, i + 1) is an elementary transposition and we are done. Otherwise, it is easy to see that

$$(i, i+j) = \underbrace{(i, i+1) \dots (i+j-1, i+j)}_{j \text{ elementary transpositions}} \underbrace{(i+j-2, i+j-1) \dots (i, i+1)}_{j-1 \text{ elementary transpositions}},$$

thus, (i, i + j) is the product of 2j - 1 elementary transpositions and 2j - 1 is always odd.

PROPOSITION 7.8.

- (1) Each permutation can be written as a product of (elementary) transpositions.
- (2) S_n is generated by the transpositions $(1, 2), (1, 3), \ldots, (1, n)$.
- (3) S_n is generated by the two permutations (1,2) and $(1,2,\ldots,n)$.

Proof. (1) follows from Proposition 7.4 and Lemma 7.7.

(2) By (1), it is enough to show that every transposition (i, j), where i < j, belongs to $\langle \{(1, 2), (1, 3), \dots, (1, n)\} \rangle$. Now, if i = 1, then we are done. Otherwise, it is easy to see that (i, j) = (1, i)(1, j)(1, i).

 \neg

(3) See Hw10.Q47.

The factorisation of a cycle into transpositions is not unique. Moreover, it is not even true that the number of transpositions in any factorisation of a given cycle is always the same, for example (1,3) = (2,3)(1,2)(2,3). However, we will see that the numbers of transpositions in any two decompositions of a given permutation are either both even or both odd.

DEFINITION. For any positive integer n, let Δ_n be the polynomial in n variables x_1, \ldots, x_n defined by

$$\Delta_n(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} (x_i - x_j),$$

and for any permutation $\pi \in S_n$ let $\pi \cdot \Delta_n$ be the polynomial

$$\prod_{1 \le i < j \le n} \left(x_{\pi(i)} - x_{\pi(j)} \right).$$

The following properties are easily checked.

Fact 7.9.

- (a) $\iota \cdot \Delta_n = \Delta_n$.
- (b) $(\pi \rho) \cdot \Delta_n = \pi \cdot (\rho \cdot \Delta_n).$
- (c) For any real number λ , $\pi \cdot (\lambda \Delta_n) = \lambda (\pi \cdot \Delta_n)$.

DEFINITION. For any $\pi \in S_n$, the polynomial Δ_n is either equal to $\pi \cdot \Delta_n$, in which case we say that the permutation π is **even**, or $\Delta_n = -\pi \cdot \Delta_n$, in which case we say that π is **odd**. We write $\operatorname{sgn}(\pi) = 1$ if π is even and $\operatorname{sgn}(\pi) = -1$ if π is odd, so that $\pi \cdot \Delta_n = \operatorname{sgn}(\pi) \Delta_n$.

THEOREM 7.10. The map sgn : $S_n \to C_2$ is a homomorphism.

Proof. We must show that $sgn(\pi\rho) = sgn(\pi) sgn(\rho)$:

 $\operatorname{sgn}(\pi\rho) \Delta_n = (\pi\rho) \cdot \Delta_n \qquad \text{by definition}$ $= \pi \cdot (\rho \cdot \Delta_n) \qquad \text{by Fact 7.9 (b)}$ $= \pi \cdot (\operatorname{sgn}(\rho)\Delta_n) \qquad \text{by definition}$ $= \operatorname{sgn}(\rho)(\pi \cdot \Delta_n) \qquad \text{by Fact 7.9 (c)}$ $= \operatorname{sgn}(\rho)\operatorname{sgn}(\pi)\Delta_n \qquad \text{by definition}$

Thus, $\operatorname{sgn}(\pi\rho) = \operatorname{sgn}(\rho) \operatorname{sgn}(\pi) = \operatorname{sgn}(\pi) \operatorname{sgn}(\rho)$, as required.

COROLLARY 7.11. For any permutation $\pi \in S_n$, $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$, and for any $\pi, \rho \in S_n$,

$$\operatorname{sgn}(\rho\pi\rho^{-1}) = \operatorname{sgn}(\pi).$$

Proof. By Fact 7.9 and from the definition we have $sgn(\iota) = 1$. Thus, by Theorem 7.10, we have

$$1 = \operatorname{sgn}(\iota) = \operatorname{sgn}(\pi\pi^{-1}) = \operatorname{sgn}(\pi) \operatorname{sgn}(\pi^{-1}),$$

which implies $\operatorname{sgn}(\pi) = \operatorname{sgn}(\pi^{-1})$.

Further, since

$$\operatorname{sgn}(\pi)\operatorname{sgn}(\rho) = \operatorname{sgn}(\rho)\operatorname{sgn}(\pi),$$

by Theorem 7.10 it follows that

$$\operatorname{sgn}(\rho \pi \rho^{-1}) = \operatorname{sgn}(\rho) \operatorname{sgn}(\pi) \operatorname{sgn}(\rho^{-1}) = \operatorname{sgn}(\pi) \operatorname{sgn}(\rho) \operatorname{sgn}(\rho^{-1}) = \operatorname{sgn}(\pi) .$$

COROLLARY 7.12. All transpositions are odd, and a k-cycle is odd if and only if k is even.

Proof. Firstly notice that by the definition of sgn, every elementary transposition (i, i + 1) is odd. Indeed, we change the sign of just one factor of the polynomial Δ_n , namely of the factor $(x_i - x_{i+1})$. Now, by Lemma 7.7, every transposition can be written as product of an odd number of elementary transpositions, and therefore, by Theorem 7.10, all transpositions are odd.

 \neg

Again by Lemma 7.7, every k-cycle can be written as a product of k-1 transpositions, and therefore, by Theorem 7.10, a k-cycle is odd if and only if k is even. \dashv

As an immediate consequence of Corollary 7.12 we get

COROLLARY 7.13. A permutation is even (odd) if and only if it can be written as a product of an even (odd) number of transpositions. In particular, ι is even.

By the way, if $A = (a_{i,j})$ is an $n \times n$ matrix, then

$$\det(A) := \sum_{\pi \in S_n} \left(\operatorname{sgn}(\pi) \prod_{i=1}^n a_{i,\pi(i)} \right).$$

DEFINITION. The kernel of the homomorphism sgn : $S_n \to C_2$ is the **alternating** group A_n . Or in other words,

$$A_n = \{ \pi \in S_n : \pi \text{ is even} \}.$$

For example, $A_3 = \{\iota, (1, 2, 3), (3, 2, 1)\}$, and therefore, $A_3 \cong C_3$. But for $n \ge 4$, A_n is a non-abelian group of order n!/2. In particular, as we will see later, A_4 is isomorphic to the tetrahedron-group T and A_5 is isomorphic to the dodecahedron-group D, whereas the cube-group C is isomorphic to S_4 .

By the First Isomorphism Theorem and the fact that for $n \ge 2$ the map sgn is surjective, for every $n \ge 2$, $A_n \le S_n$ and $|S_n : A_n| = 2$. This implies that for every $n \ge 3$, S_n is not simple. It is easy to see that A_3 is the only non-trivial normal subgroup of S_3 and that A_3 is simple (since it is isomorphic to C_3). On the other hand, the group S_4 has a normal subgroup of order 4 (cf. Hw10.Q50 (c)) which is also a normal subgroup of A_4 , thus, A_4 is not the only non-trivial normal subgroup of S_4 and A_4 is not simple. But one can show that for every $n \ge 5$, A_n is simple and it is the only non-trivial normal subgroup of S_n (we omit the proof).

We have seen that S_n is generated by its transpositions and that all transpositions are odd. Thus, no transposition belongs to A_n . To find simple generators for A_n , we have to consider even permutations. The simplest even permutations, beside the identity, are 3-cycles, and indeed:

PROPOSITION 7.14. The alternating group A_n is generated by its 3-cycles.

Proof. Let π be an element of A_n . By Corollary 7.13, π can be written as a product of an even number of transpositions. So, it is enough to show that any product of two different transpositions can be written as a product of 3-cycles. Let us consider the product (i, j)(r, s):

If the four integers i, j, r, s are distinct, then

$$(i,j)(r,s) = (i,r,j)(i,r,s)$$

Otherwise, we may assume without loss of generality that i = r, in which case

$$(i,j)(i,s) = (i,s,j).$$

Η

Let us now consider the centres of S_n and A_n . Since $S_1 = A_1 \cong A_2 \cong C_1$, $Z(S_1) = Z(A_1) \cong Z(A_2) = \{\iota\}$. Further, $S_2 \cong C_2$ and $A_3 \cong C_3$, which implies that S_2 and A_3 are abelian, and therefore, $Z(S_2) = S_2$ and $Z(A_3) = A_3$. In general, we get the following:

THEOREM 7.15.

- (a) For any $n \ge 3$, $Z(S_n) = \{\iota\}$.
- (b) For any $n \ge 4$, $Z(A_n) = \{\iota\}$.

Proof. (a) Let $\sigma \in S_n$ be any permutation except the identity: Since $\sigma \neq \iota$, there is an $i \in \{1, \ldots, n\}$ such that $\sigma(i) = j \neq i$. Pick any $k \in \{1, \ldots, n\}$ distinct from i and j. Now, $\sigma(i,k) \sigma^{-1} = (j,\sigma(k)) \neq (i,k)$, since $j \notin \{i,k\}$. Hence, $\sigma(i,k) \neq (i,k) \sigma$, which implies that $\sigma \notin Z(S_n)$.

(b) Let $\pi \in A_n$ be any permutation except the identity: Since $\pi \neq \iota$, there is an $i \in \{1, \ldots, n\}$ such that $\pi(i) = j \neq i$. Pick any distinct $k, \ell \in \{1, \ldots, n\}$, both distinct from i and j. Now, $\pi(i, k, \ell) \pi^{-1} = (j, \pi(k), \pi(\ell)) \neq (i, k, \ell)$, since $j \notin \{i, k, \ell\}$. Hence, $\pi(i, k, \ell) \neq (i, k, \ell) \pi$, which implies that $\pi \notin Z(A_n)$.

Finally, let us consider the automorphism group of S_n :

For any group G and for any $x \in G$, the mapping $\varphi_x : G \to G$ defined by $\varphi_x(a) := xax^{-1}$ is an automorphism of G (cf. Hw8.Q38). Such an automorphism is called an **inner automorphism** of G. Let Inn(G) denote the set of all inner automorphisms of G. Further, the mapping $\psi : G \to \operatorname{Aut}(G)$ defined by $\psi(x) := \varphi_x$ is a homomorphism from G to Aut(G), which implies that Inn(G) is a subgroup of Aut(G) and, by the First Isomorphism Theorem, that $G/Z(G) \cong \operatorname{Inn}(G)$ (cf. Hw10.Q46).

Let us turn back to the group S_n . As an immediate consequence of Theorem 7.15 we get the following:

PROPOSITION 7.16. For any $n \ge 3$, $\operatorname{Inn}(S_n) \cong S_n$.

In the following we will show that for any $n \ge 3$, where $n \ne 6$, every automorphism of S_n is an inner automorphism. Let us first consider what an automorphism is doing with transpositions.

LEMMA 7.17. Let $n \geq 3$, where $n \neq 6$, $\varphi \in Aut(S_n)$ and (i, j) a transposition in S_n . Then $\varphi(i, j)$ is a transposition.

Proof. The transposition (i, j) has order 2, and therefore, $\varphi(i, j)$ has order 2 (see Hw9.Q44 (c)). Thus, $\varphi(i, j)$ must be the product of r disjoint transpositions where $2r \leq n$. There are $\binom{n}{2}$ transpositions in S_n , and there are

$$\underbrace{\binom{n}{2} \cdot \binom{n-2}{2} \cdot \dots \cdot \binom{n-2(r-1)}{2}}_{r \text{ factors}} \cdot \frac{1}{r!}$$

products of r disjoint transpositions. Now, if $\varphi((i, j))$ is a product of r disjoint transpositions, then for every transposition (k, ℓ) , $\varphi((k, \ell))$ is also a product of r disjoint transpositions. Indeed, by Proposition 7.6 there exists a permutation ρ such that $\rho(i, j) \rho^{-1} = (k, \ell)$, and since φ is an automorphism we get $\varphi(\rho(i, j) \rho^{-1}) = \varphi(\rho) \varphi((i, j)) \varphi(\rho)^{-1} = \varphi((k, \ell))$, and therefore, by Proposition 7.6 again, $\varphi((i, j))$ has the same cycle structure as $\varphi((k, \ell))$. So, the number of transpositions in S_n must correspond to the number of products of r disjoint transpositions in S_n . In other words, we must have

$$\frac{n(n-1)}{2} = \frac{n(n-1)(n-2)\cdot\ldots\cdot(n-2r+1)}{2^r\cdot r!},$$

or equivalently,

$$2^{r-1} \cdot r! = (n-2)(n-3) \cdot \ldots \cdot (n-2r+1).$$
(*)

 \neg

Obviously, equation (*) holds for r = 1. So, let us consider the other cases:

For r = 2 we get 4 = (n - 2)(n - 3), which is impossible.

For r = 3 we get 24 = (n-2)(n-3)(n-4)(n-5) which holds just for n = 6, but we excluded this case.

For $n \ge 4$ we get

$$(n-2)(n-3) \cdot \ldots \cdot (n-2r+1) \geq (2r-2)(2r-3) \cdot \ldots \cdot 1 = (2r-2)! = \sum_{\substack{n \ge 2r \\ n \ge 2r}} (2r-2) \cdot \ldots \cdot (r+1) \cdot r! \ge 4^{r-2} \cdot r! = 2^{2(r-2)} \cdot r! > 2^{r-1} \cdot r! ,$$

which shows that also in this case the equation (*) does not hold.

Thus, r = 1, or in other words, $\varphi((i, j))$ is a transposition.

THEOREM 7.18. Let $n \ge 3$, where $n \ne 6$, then $\operatorname{Aut}(S_n) \cong S_n$.

Proof. By Proposition 7.16 it is enough to show that every automorphism of S_n is an inner automorphism. By Proposition 7.8 we know that S_n is generated by the transpositions $(1, 2), (1, 3), \ldots, (1, n)$, so, it is enough to consider these transpositions. By Lemma 7.17 we know that for any $\varphi \in \operatorname{Aut}(S_n)$ and for any $i \in \{2, \ldots, n\}, \varphi((1, i))$ is a transposition. Pick any two distinct numbers i, j from the set $\{2, 3, \ldots, n\}$ and let

$$\varphi((1,i)) = (k,\ell) \text{ and } \varphi((1,j)) = (p,q).$$

Now, (1, i)(1, j) = (1, j, i) and has order 3, and hence, $(k, \ell)(p, q)$ must also have order 3, which implies that two of the four element k, ℓ, p, q must be equal. Without loss of generality, let us assume that p = k. Then $\varphi((1, i)) = (k, \ell)$ and $\varphi((1, j)) = (k, q)$. If n > 3, then we can pick an number $h \in \{1, \ldots, n\} \setminus \{1, i, j\}$. Let $\varphi((1, h)) = (r, s)$, then $\{r, s\}$ has one element in common with $\{k, \ell\}$ and with $\{k, q\}$. If $r = \ell$ and s = q, then we would have

$$\varphi((1,j,i)) = \varphi((1,i)(1,j)) = (k,\ell)(k,q) = (k,q,\ell) = (q,\ell,k) = (k,q)(\ell,q) = \varphi((1,j)(1,h)) = \varphi((1,h,j)),$$

but this is a contradiction since φ is injective and $(1, j, i) \neq (1, h, j)$. So, we have either r = k or s = k.

In general, for every $i \in \{2, ..., n\}$ there exists a unique $\pi(i) \in \{1, ..., n\} \setminus \{k\}$ such that

$$\varphi\bigl((1,i)\bigr) = \bigl(k,\pi(i)\bigr)\,.$$

Further, it is not hard to see that we stipulate $\pi(1) := k$, then π is a permutation of $\{1, \ldots, n\}$. Hence, by Proposition 7.6 we finally have

$$\varphi((1,i)) = (k,\pi(i)) = (\pi(1),\pi(i)) = \pi(1,i)\pi^{-1}$$

which shows that every automorphism of S_n is an inner automorphism, which completes the proof.

36

What about $\operatorname{Aut}(S_6)$? One can show that there exists an automorphism $\varphi \in \operatorname{Aut}(S_6)$ such that $\varphi(i, j)$ is the product of 3 disjoint transpositions, and hence, by Proposition 7.6, $\varphi \notin \operatorname{Inn}(S_6)$. Moreover one can show that $|\operatorname{Aut}(S_6)| = 1440$, and since $\operatorname{Inn}(S_6) \cong S_6$ and $|S_6| = 720$, this implies that $|\operatorname{Aut}(S_6) : \operatorname{Inn}(S_6)| = 2$, and therefore $\operatorname{Inn}(S_6) \lhd \operatorname{Aut}(S_6)$ (we omit the proof).