6. THE HOMOMORPHISM THEOREMS

In this section, we investigate maps between groups which preserve the group-
operations.

DEFINITION. Let G and H be groups and let ¢ : G — H be a mapping from G to
H. Then ¢ is called a homomorphism if for all z,y € G we have:

p(ry) = () e(y).
A homomorphism which is also bijective is called an isomorphism.
A homomorphism from G to itself is called an endomorphism.

An isomorphism from G to itself is called an automorphism, and the set of all
automorphisms of a group G is denoted by Aut(G).

Before we show that Aut(G) is a group under compositions of maps, let us prove
that a homomorphism preserves the group structure.

PROPOSITION 6.1. If ¢ : G — H is a homomorphism, then ¢(eq) = ey and for all
v €G, p(z™h) = o).

Proof. Since ¢ is a homomorphism, for all x,y € G we have p(zy) = ¢(x) p(y).
In particular, o(y) = p(eqy) = p(eg) ¢(y), which implies ¢(eg) = ey. Further,
plec) = p(za™") = p(z) p(z7!) = ey, which implies p(z7") = p(z)". n
COROLLARY 6.2. If ¢ : G — H is a homomorphism, then the image of ¢ is a subgroup
of H.

Proof. Let a and b be in the image of . We have to show that also ab™! is in the
image of . If @ and b are in the image of ¢, then there are x,y € G such that
¢(x) = a and ¢(y) = b. Now, by Proposition 6.1 we get

ab™! = o(x) e(y) ™ = p(x) oly™) = p(zy™").
_|

PROPOSITION 6.3. For any group G, the set Aut(G) is a group under compositions
of maps.

Proof. Let ¢,1¢ € Aut(G). First we have to show that @t € Aut(G): Since ¢ and
1 are both bijections, po1) is a bijection too, and since ¢ and v are both homomor-
phisms, we have

(o) (zy) = @(v(zy)) = e(v(x) Y(y)) =
e(¥(x) e(P(y)) = (povp)(x) (po)(y).

Hence, @1 € Aut(G). Now, let us show that (Aut(G), ) is a group:
(A0) Let o1, @2, 3 € Aut(G). Then for all z € G we have

(p1°(p2093))(2) = @1 (P20 93) () = @1 (p2(3(2))) =
(S01 ° 802) (803(30)) = ((<P1 ° 902) © 903) (x) )

(13

which implies that ¢ 0 (pg093) = (@1 °¢@2) @3, thus, “o” is associative.
(A1) The identity mapping ¢ on G is of course a bijective homomorphism from G

to itself, and in fact, ¢ is the neutral element of (Aut(G), < ).
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(A2) Let ¢ € Aut(G), and let ¢! be such that for every z € G, p(¢™(z)) = =.
It is obvious that ¢ oo™ = ¢ and it remains to show that ¢! is a homomorphism:
Since ¢ is a homomorphism, for all x,y € G we have

v (zy) = o el (@) w07 (y) = 0 (P (@) e (W) = ¢ (@) 97 (1)

= =y
which shows that ¢! € Aut(G). —

DEFINITION. If ¢ : G — H is a homomorphism, then {z € G : p(z) = ey} is called
the kernel of ¢ and is denoted by ker(yp).

THEOREM 6.4. Let ¢ : G — H be a homomorphism, then ker(yp) < G.
Proof. First we have to show that ker(¢) < G: If a,b € ker(p), then
plab™) = p(a) o(07") = p(a) ()™ =en ey’ =en,
thus, ab™! € ker(y), which implies ker(y) < G.
Now we show that ker(G) < G: Let x € G and a € ker(p), then
plzaz™t) = p(x) p(a) p(z) ™" = p(z) en p(z) ™ = p(z) p(z) " =en,
thus, zaz™! € ker(y), which implies ker(¢) < G. =

Let us give some examples of homomorphisms:

(1) The mapping
T2 (R7 +) - (R+7 )
T e

is an isomorphism, and ¢! = In.

(2) Let n be a positive integer. Then
2 (O<n)7 ) - ({17_1}7 )
A — det(A)

is a surjective homomorphism and ker(¢) = SO(n). Further, for n =1, ¢ is
even an isomorphism.

(3) The mapping
QY R3 — R?
({L’, y7 Z) = («T, Z)
is a surjective homomorphism and ker(p) = {(0,,0) : y € R}.

(4) Let n > 3 be an integer, let C,, = {a°,... ,a" "'}, and let p € D,, be the rota-
tion through 27 /n. Then ¢ : C,, — D,,, defined by ¢(a*) := p* is an injective
homomorphism from C,, into D,,. Thus, C, is isomorphic to a subgroup of
D,.
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(5) Let n > 3 be an integer. For any = € D,, let
1 if x is a rotation,
sg(r) = o .
—1 if x is a reflection,

then
eo: D, — ({1,—1}, )
z — sg(z)
is a surjective homomorphism.

(6) The mapping
¢ (Znz,+) — (Zn2,+)

r — 4x

is an endomorphism of (Zjs, +), where ker(¢) = {0,3,6,9} and the image of
¢ is {0, 4, 8}.

(7) For every r € Q*, the mapping
p: (Q+) — (@Q+)
q = Tq
is an automorphism of (Q, +).

(8) Let Cy x Cy = {e,a,b,c}, then every permutation of {a,b,c} is a bijective
homomorphism from Cy x Cy to itself. Hence, Aut(Cy x Cy) is isomorphic to
Ss (or to Ds).

In order to define an operation on the set G/N, where N < G, we need the following:
Fact 6.5. If N < G, then for all z,y € G, (zN) (yN) = (zy)N.

Proof. Since N is a normal subgroup of GG, we have
N)(yN) = Ny H)(yN) = NN) = N.
(«N) (yN) = (z(yNy ) (yN) = (zy)(NN) = (zy)

=N

This leads to the following:

PROPOSITION 6.6. If N < G, then the set G/N = {zN : x € G} is a group under the
operation (xN) (yN) := (xy)N.
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Proof. First we have to show that the operation (zNV) (yN) is well-defined: If (zN) =
(zN) and (yN) = (yN), then, by Lemma 3.6 (d), z7'Z,y~'y € N. Now, since N is a
normal subgroup of G,

(xy) (@9 =y (@ 2)§ € y 'Ng=y 'N(yy )g=N(y '9) =N,
~—~ —
eN N

which implies (xN) (yN) = (zy)N = (Zg)N = (zN) (gN).

Now, let us show that G/N is a group:

(A0) (aN)((yN) (2NV)) = (z(y2))N = ((zy)2) N = ((zN) (yN)) (=N).
(A1) For all x € G we have

(eN)(zN) = (ex)N =xN ,
therefore, eN = N is the neutral element of G/N.
(A2) For all x € G we have
(xN) (z7'N) = (zz7' )N =eN = N = (z'2)N = (z7'N) (zN),
therefore, (zN)™! = (z7'N). —
For example, let C' be the cube-group and let N be the normal subgroup of C' which

is isomorphic to Cy x Cy. Then, by Proposition 6.6, C'//N is a group, and in fact, C/N
is isomorphic to S5 (see Hw9.Q41).

LEMMA 6.7. If N < G, then
T G — G/N
z — xN

is a surjective homomorphism, called the natural homomorphism from G onto G/N,
and ker(m) = N.

Proof. For all z,y € G we have n(zy) = (2y)N = (zN) (yN) = w(x) 7(y), thus, 7 is
a homomorphism. Further, let xtN € G/N, then m(x) = N, which shows that 7 is
surjective. Finally, by Lemma 3.6 (c), ker(7) = {zr € G: 2N = N} = N. =

By Theorem 6.4 we know that if ¢ : G — H is a homomorphism, then ker(¢) < G.
On the other hand, by Lemma 6.7, we get the following:

COROLLARY 6.8. If N < @G, then there exists a group H and a homomorphism
¢ : G — H such that N = ker(y).

Proof. Let H = G/N and let ¢ be the natural homomorphism from G onto H. -

THEOREM 6.9 (First Isomorphism Theorem). Let v : G — H be a surjective homo-
morphism, let N = ker(1)) < G and let 7 : G — G/N be the natural homomorphism
from G onto G/N. Then there is a unique isomorphism ¢ : G/N — H such that
Y = @om. In other words, the following diagram “commutes”:

Y

G H

G/N
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Proof. Define ¢ : G/N — H by stipulating ¢(zN) := ¢ (z) (for every x € G). Then
1 = pom and it remains to be shown that ¢ is well-defined, a bijective homomorphism
and unique.

¢ is well-defined: If N = yN, then 7'y € N (by Lemma 3.6 (d)). Thus, since
N = ker(¢), ¢¥(x7'y) = ey and since ¢ is a homomorphism we have ey = ¢ (x7ly) =
(x)™" ¢(y), which implies 1(x) = 1(y). Therefore, p(zN) = ¢(z) = ¥(y) = @(yN).
¢ is a homomorphism: Let xN,yN € G/N, then

p((@N)(yN)) = ((zy)N) = d(zy) = ¥(2) Y (y) = ¢(xN) ¢(yN).
@ 1 injective:

p(aN) = p(yN) = d(z)=1y)
= en=v() Uy =YvE ey =Ty =
— s 'ye N < zN=yN.
@ Is surjective: Since 1) is surjective, for all z € H there is an x € G such that
(zx) = z, thus, p(zN) = z.

¢ is unique: Assume towards a contradiction that there exists an isomorphism ¢ :
G/N — H different from ¢ such that ¢gom = 1. Then there is a coset tN € G/N
such that ¢(xN) # ¢(xN), which implies

d(x) = (¢om)(x) = ¢(r(x) = @(xN) # p(aN) = p(n(x)) = (pem)(z) = ¥(),
a contradiction. —
For example, let m be a positive integer and let C,, = {a®,... ,a™ '} be the cyclic
group of order m. Further, let ¢ : Z — C,,, where (k) := a*. Then ¢ is a
surjective homomorphism from Z to C,, and ker(y)) = mZ. Thus, by Theorem 6.9,
Z/mZ and C,, are isomorphic and the isomorphism ¢ : Z/mZ — C,, is defined by
o(k +mZ) = a*.

Let us consider some other applications of Theorem 6.9:

(1) Let n be a positive integer. Then
1/}: (O(n), ) - ({17_1}7 )
A — det(A)

is a surjective homomorphism with ker(¢)) = SO(n), and thus, O(n)/SO(n)
and {1, —1} are isomorphic (where {1, -1} = Cj).

(2) Let n be a positive integer and let GL(n)* = {A € GL(n) : det(A4) > 0}.
Then
¢ (GL()*, ) — (R, )
A — det(A)

is a surjective homomorphism with ker(¢)) = SL(n), and thus, GL(n)"/SL(n)
and R* are isomorphic.
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(3) The mapping
v (€ ) — (RT, )
z — e
is a surjective homomorphism with ker(y)) = U = {z € C : |z|}, and thus,
C*/U and R" are isomorphic.

(4) The mapping
(R R? — R?
(m7 y7 Z) = (LE’ Z)

is a surjective homomorphism with ker(y) = {(O,y, 0) :y € ]R} ~ R, and
thus, R?/R and R? are isomorphic.

(5) The mapping
¢ : <Z127 +) - (Z37 +)
x +— x (mod 3)

is a surjective homomorphism with ker(¢)) = {0,3,6,9} = 3Z2, and thus,
Z15/3715 and Zs are isomorphic.

THEOREM 6.10 (Second Isomorphism Theorem). Let N < G and K < G. Then
(1) KN =NK <G.
(2) NI KN.
3) (NNK)JK.
(4) The mapping
¢: K/(NNK) — KN/N
r(NNK) — zN

is an isomorphism.
Proof. (1) This is Theorem 5.8.
(2) Since KN < Gand N C KN, N < KN. Hence, since N <G, N < KN.

(3) Let z € K and a € NN K. Then zaz~! belongs to K, since x,a € K, but also to
N, since N < G, thus, zax™' € NN K.

(4) Let v : K — KN/N be defined by stipulating ¥ (k) := kN. Then v is a surjective
homomorphism and ker(y) ={k € K: ke N} =NNK.

Consider the following diagram:

K Y L KN/N
m ¢
K/(NNK)

Since 1 is a surjective homomorphism, by Theorem 6.9, ¢ is an isomorphism. —



28

For example, let m and n be two positive integers. Then mZ and nZ are normal sub-
groups of Z, and by Theorem 6.10, mZ/(mZNnZ) and (mZ+nZ)/nZ are isomorphic.
In particular, for m = 6 and n = 9 we have mZ N nZ = 18Z and mZ + nZ = 37Z.
Thus, 67 /187 and 3Z/9Z are isomorphic, in fact, both groups are isomorphic to Cs.

THEOREM 6.11 (Third Isomorphism Theorem). Let K I G, N < G, and N < K. Then
K/N <4 G/N and
v: G/K — G/N/K/N

K — (zN)(K/N)
is an isomorphism.
Proof. First we show that K/N < G/N. So, for any = € G and k € K, we must have
(xN)(kN)(zN)~' € K/N:
(xN)(kEN)(zN)™' = 2NkNz 'N = s Nkz ' gN2 ' N =
=N
=aNka 'N = aNo ' gka™ ' N = NK'N =kK'NN =k'N € K/N .
e &~
—N  =keK
Let
v G — G/N/K/N
x — (zN)(K/N)

Then ) is a surjective homomorphism and ker(¢)) = {x € G: 2N € K/N} = K.
Consider the following diagram:

G GIN [ kv
T @
G/K
Since 1 is a surjective homomorphism, by Theorem 6.9, ¢ is an isomorphism. —

For example, let m and n be two positive integers such that m } n. Then mZ and
nZ are normal subgroups of Z, nZ < mZ, and by Theorem 6.11,

Z/mZ = Z/”Z/mZ/nZ-
In particular, for m = 6 and n = 18,

Ze = Z18/6Z/18Z,

and in fact, both groups are isomorphic to Cj.



