
6. The Homomorphism Theorems

In this section, we investigate maps between groups which preserve the group-
operations.

Definition. Let G and H be groups and let ϕ : G → H be a mapping from G to
H. Then ϕ is called a homomorphism if for all x, y ∈ G we have:

ϕ(xy) = ϕ(x)ϕ(y) .

A homomorphism which is also bijective is called an isomorphism.

A homomorphism from G to itself is called an endomorphism.

An isomorphism from G to itself is called an automorphism, and the set of all
automorphisms of a group G is denoted by Aut(G).

Before we show that Aut(G) is a group under compositions of maps, let us prove
that a homomorphism preserves the group structure.

Proposition 6.1. If ϕ : G → H is a homomorphism, then ϕ(eG) = eH and for all
x ∈ G, ϕ(x−1) = ϕ(x)−1.

Proof. Since ϕ is a homomorphism, for all x, y ∈ G we have ϕ(xy) = ϕ(x)ϕ(y).
In particular, ϕ(y) = ϕ(eGy) = ϕ(eG)ϕ(y), which implies ϕ(eG) = eH . Further,
ϕ(eG) = ϕ(xx−1) = ϕ(x)ϕ(x−1) = eH , which implies ϕ(x−1) = ϕ(x)−1. a
Corollary 6.2. If ϕ : G→ H is a homomorphism, then the image of ϕ is a subgroup
of H.

Proof. Let a and b be in the image of ϕ. We have to show that also ab−1 is in the
image of ϕ. If a and b are in the image of ϕ, then there are x, y ∈ G such that
ϕ(x) = a and ϕ(y) = b. Now, by Proposition 6.1 we get

ab−1 = ϕ(x)ϕ(y)−1 = ϕ(x)ϕ(y−1) = ϕ(xy−1) .

a
Proposition 6.3. For any group G, the set Aut(G) is a group under compositions
of maps.

Proof. Let ϕ, ψ ∈ Aut(G). First we have to show that ϕ ◦ψ ∈ Aut(G): Since ϕ and
ψ are both bijections, ϕ ◦ψ is a bijection too, and since ϕ and ψ are both homomor-
phisms, we have

(ϕ ◦ψ)(xy) = ϕ
(
ψ(xy)

)
= ϕ

(
ψ(x)ψ(y)

)
=

ϕ
(
ψ(x)

)
ϕ
(
ψ(y)

)
= (ϕ ◦ψ)(x) (ϕ ◦ψ)(y) .

Hence, ϕ ◦ψ ∈ Aut(G). Now, let us show that
(
Aut(G), ◦

)
is a group:

(A0) Let ϕ1, ϕ2, ϕ3 ∈ Aut(G). Then for all x ∈ G we have(
ϕ1 ◦ (ϕ2 ◦ϕ3)

)
(x) = ϕ1

(
ϕ2 ◦ϕ3)(x)

)
= ϕ1

(
ϕ2

(
ϕ3(x)

))
=(

ϕ1 ◦ϕ2

)(
ϕ3(x)

)
=

(
(ϕ1 ◦ϕ2) ◦ϕ3

)
(x) ,

which implies that ϕ1 ◦ (ϕ2 ◦ϕ3) = (ϕ1 ◦ϕ2) ◦ϕ3, thus, “ ◦ ” is associative.
(A1) The identity mapping ι on G is of course a bijective homomorphism from G

to itself, and in fact, ι is the neutral element of
(
Aut(G), ◦

)
.
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(A2) Let ϕ ∈ Aut(G), and let ϕ−1 be such that for every x ∈ G, ϕ
(
ϕ−1(x)

)
= x.

It is obvious that ϕ ◦ϕ−1 = ι and it remains to show that ϕ−1 is a homomorphism:
Since ϕ is a homomorphism, for all x, y ∈ G we have

ϕ−1(xy) = ϕ−1
(
ϕ(ϕ−1(x))︸ ︷︷ ︸

=x

ϕ(ϕ−1(y))︸ ︷︷ ︸
=y

)
= ϕ−1

(
ϕ
(
ϕ−1(x)ϕ−1(y)

))
= ϕ−1(x)ϕ−1(y) ,

which shows that ϕ−1 ∈ Aut(G). a

Definition. If ϕ : G→ H is a homomorphism, then
{
x ∈ G : ϕ(x) = eH

}
is called

the kernel of ϕ and is denoted by ker(ϕ).

Theorem 6.4. Let ϕ : G→ H be a homomorphism, then ker(ϕ) E G.

Proof. First we have to show that ker(ϕ) 6 G: If a, b ∈ ker(ϕ), then

ϕ(ab−1) = ϕ(a)ϕ(b−1) = ϕ(a)ϕ(b)−1 = eH e
−1
H = eH ,

thus, ab−1 ∈ ker(ϕ), which implies ker(ϕ) 6 G.

Now we show that ker(G) E G: Let x ∈ G and a ∈ ker(ϕ), then

ϕ(xax−1) = ϕ(x)ϕ(a)ϕ(x)−1 = ϕ(x) eH ϕ(x)−1 = ϕ(x)ϕ(x)−1 = eH ,

thus, xax−1 ∈ ker(ϕ), which implies ker(ϕ) E G. a
Let us give some examples of homomorphisms:

(1) The mapping
ϕ : (R,+) → (R+, · )

x 7→ ex

is an isomorphism, and ϕ−1 = ln.

(2) Let n be a positive integer. Then

ϕ : (O(n), · ) →
(
{1,−1}, ·

)
A 7→ det(A)

is a surjective homomorphism and ker(ϕ) = SO(n). Further, for n = 1, ϕ is
even an isomorphism.

(3) The mapping
ϕ : R3 → R2

(x, y, z) 7→ (x, z)

is a surjective homomorphism and ker(ϕ) =
{
(0, y, 0) : y ∈ R

}
.

(4) Let n ≥ 3 be an integer, let Cn = {a0, . . . , an−1}, and let ρ ∈ Dn be the rota-
tion through 2π/n. Then ϕ : Cn → Dn, defined by ϕ(ak) := ρk is an injective
homomorphism from Cn into Dn. Thus, Cn is isomorphic to a subgroup of
Dn.
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(5) Let n ≥ 3 be an integer. For any x ∈ Dn, let

sg(x) =

{
1 if x is a rotation,

−1 if x is a reflection,

then
ϕ : Dn →

(
{1,−1}, ·

)
x 7→ sg(x)

is a surjective homomorphism.

(6) The mapping
ϕ : (Z12,+) → (Z12,+)

x 7→ 4x

is an endomorphism of (Z12,+), where ker(ϕ) = {0, 3, 6, 9} and the image of
ϕ is {0, 4, 8}.

(7) For every r ∈ Q∗, the mapping

ϕ : (Q,+) → (Q,+)

q 7→ rq

is an automorphism of (Q,+).

(8) Let C2 × C2 = {e, a, b, c}, then every permutation of {a, b, c} is a bijective
homomorphism from C2 × C2 to itself. Hence, Aut(C2 × C2) is isomorphic to
S3 (or to D3).

In order to define an operation on the set G/N , where N E G, we need the following:

Fact 6.5. If N E G, then for all x, y ∈ G, (xN) (yN) = (xy)N .

Proof. Since N is a normal subgroup of G, we have

(xN) (yN) =
(
x(yNy−1︸ ︷︷ ︸

=N

)
)
(yN) = (xy)(NN) = (xy)N .

a
This leads to the following:

Proposition 6.6. If N E G, then the set G/N = {xN : x ∈ G} is a group under the
operation (xN) (yN) := (xy)N .
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Proof. First we have to show that the operation (xN) (yN) is well-defined: If (xN) =
(x̃N) and (yN) = (ỹN), then, by Lemma 3.6 (d), x−1x̃, y−1ỹ ∈ N . Now, since N is a
normal subgroup of G,

(xy)−1(x̃ỹ) = y−1 (x−1x̃︸︷︷︸
∈N

) ỹ ∈ y−1Nỹ = y−1N(y︸ ︷︷ ︸
=N

y−1)ỹ = N(y−1ỹ) = N ,

which implies (xN) (yN) = (xy)N = (x̃ỹ)N = (x̃N) (ỹN).
Now, let us show that G/N is a group:

(A0) (xN)
(
(yN) (zN)

)
=

(
x(yz)

)
N =

(
(xy)z

)
N =

(
(xN) (yN)

)
(zN).

(A1) For all x ∈ G we have

(eN) (xN) = (ex)N = xN ,

therefore, eN = N is the neutral element of G/N .
(A2) For all x ∈ G we have

(xN) (x−1N) = (xx−1)N = eN = N = (x−1x)N = (x−1N) (xN) ,

therefore, (xN)−1 = (x−1N). a
For example, let C be the cube-group and let N be the normal subgroup of C which

is isomorphic to C2×C2. Then, by Proposition 6.6, C/N is a group, and in fact, C/N
is isomorphic to S3 (see Hw9.Q41).

Lemma 6.7. If N E G, then

π : G → G/N

x 7→ xN

is a surjective homomorphism, called the natural homomorphism from G onto G/N ,
and ker(π) = N .

Proof. For all x, y ∈ G we have π(xy) = (xy)N = (xN) (yN) = π(x)π(y), thus, π is
a homomorphism. Further, let xN ∈ G/N , then π(x) = xN , which shows that π is
surjective. Finally, by Lemma 3.6 (c), ker(π) = {x ∈ G : xN = N} = N . a

By Theorem 6.4 we know that if ϕ : G→ H is a homomorphism, then ker(ϕ) E G.
On the other hand, by Lemma 6.7, we get the following:

Corollary 6.8. If N E G, then there exists a group H and a homomorphism
ϕ : G→ H such that N = ker(ϕ).

Proof. Let H = G/N and let ϕ be the natural homomorphism from G onto H. a
Theorem 6.9 (First Isomorphism Theorem). Let ψ : G → H be a surjective homo-
morphism, let N = ker(ψ) E G and let π : G→ G/N be the natural homomorphism
from G onto G/N . Then there is a unique isomorphism ϕ : G/N → H such that
ψ = ϕ ◦π. In other words, the following diagram “commutes”:

G

��

ψ
// H

π

G/N

ϕ

>>
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
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Proof. Define ϕ : G/N → H by stipulating ϕ(xN) := ψ(x) (for every x ∈ G). Then
ψ = ϕ ◦π and it remains to be shown that ϕ is well-defined, a bijective homomorphism
and unique.

ϕ is well-defined: If xN = yN , then x−1y ∈ N (by Lemma 3.6 (d)). Thus, since
N = ker(ψ), ψ(x−1y) = eH and since ψ is a homomorphism we have eH = ψ(x−1y) =
ψ(x)−1 ψ(y), which implies ψ(x) = ψ(y). Therefore, ϕ(xN) = ψ(x) = ψ(y) = ϕ(yN).

ϕ is a homomorphism: Let xN, yN ∈ G/N , then

ϕ
(
(xN)(yN)

)
= ϕ

(
(xy)N

)
= ψ(xy) = ψ(x)ψ(y) = ϕ(xN)ϕ(yN) .

ϕ is injective:

ϕ(xN) = ϕ(yN) ⇐⇒ ψ(x) = ψ(y) ⇐⇒
⇐⇒ eH = ψ(x)−1 ψ(y) = ψ(x−1)ψ(y) = ψ(x−1y) ⇐⇒

⇐⇒ x−1y ∈ N ⇐⇒ xN = yN .

ϕ is surjective: Since ψ is surjective, for all z ∈ H there is an x ∈ G such that
ψ(x) = z, thus, ϕ(xN) = z.

ϕ is unique: Assume towards a contradiction that there exists an isomorphism ϕ̃ :
G/N → H different from ϕ such that ϕ̃ ◦ π = ψ. Then there is a coset xN ∈ G/N
such that ϕ̃(xN) 6= ϕ(xN), which implies

ψ(x) = (ϕ̃ ◦π)(x) = ϕ̃
(
π(x)

)
= ϕ̃(xN) 6= ϕ(xN) = ϕ

(
π(x)

)
= (ϕ ◦π)(x) = ψ(x) ,

a contradiction. a
For example, let m be a positive integer and let Cm = {a0, . . . , am−1} be the cyclic

group of order m. Further, let ψ : Z → Cm, where ψ(k) := ak. Then ψ is a
surjective homomorphism from Z to Cm and ker(ψ) = mZ. Thus, by Theorem 6.9,
Z/mZ and Cm are isomorphic and the isomorphism ϕ : Z/mZ → Cm is defined by
ϕ(k +mZ) := ak.

Let us consider some other applications of Theorem 6.9:

(1) Let n be a positive integer. Then

ψ : (O(n), · ) →
(
{1,−1}, ·

)
A 7→ det(A)

is a surjective homomorphism with ker(ψ) = SO(n), and thus, O(n)/ SO(n)
and {1,−1} are isomorphic (where {1,−1} ∼= C2).

(2) Let n be a positive integer and let GL(n)+ = {A ∈ GL(n) : det(A) > 0}.
Then

ψ : (GL(n)+, · ) → (R+, · )
A 7→ det(A)

is a surjective homomorphism with ker(ψ) = SL(n), and thus, GL(n)+/ SL(n)
and R+ are isomorphic.
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(3) The mapping
ψ : (C∗, · ) → (R+, · )

z 7→ |z|
is a surjective homomorphism with ker(ψ) = U = {z ∈ C : |z|}, and thus,
C∗/U and R+ are isomorphic.

(4) The mapping
ψ : R3 → R2

(x, y, z) 7→ (x, z)

is a surjective homomorphism with ker(ψ) =
{
(0, y, 0) : y ∈ R

} ∼= R, and
thus, R3/R and R2 are isomorphic.

(5) The mapping
ψ : (Z12,+) → (Z3,+)

x 7→ x (mod 3)

is a surjective homomorphism with ker(ψ) = {0, 3, 6, 9} = 3Z12, and thus,
Z12/3Z12 and Z3 are isomorphic.

Theorem 6.10 (Second Isomorphism Theorem). Let N E G and K 6 G. Then

(1) KN = NK 6 G.
(2) N E KN .
(3) (N ∩K) E K.
(4) The mapping

ϕ : K/(N ∩K) → KN/N

x(N ∩K) 7→ xN

is an isomorphism.

Proof. (1) This is Theorem 5.8.

(2) Since KN 6 G and N ⊆ KN , N 6 KN . Hence, since N E G, N E KN .

(3) Let x ∈ K and a ∈ N ∩K. Then xax−1 belongs to K, since x, a ∈ K, but also to
N , since N E G, thus, xax−1 ∈ N ∩K.

(4) Let ψ : K → KN/N be defined by stipulating ψ(k) := kN . Then ψ is a surjective
homomorphism and ker(ψ) = {k ∈ K : k ∈ N} = N ∩K.
Consider the following diagram:

K

��

ψ
// KN/N

π

K/(N ∩K)

ϕ

::
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

Since ψ is a surjective homomorphism, by Theorem 6.9, ϕ is an isomorphism. a
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For example, let m and n be two positive integers. Then mZ and nZ are normal sub-
groups of Z, and by Theorem 6.10, mZ/(mZ∩nZ) and (mZ+nZ)/nZ are isomorphic.
In particular, for m = 6 and n = 9 we have mZ ∩ nZ = 18Z and mZ + nZ = 3Z.
Thus, 6Z/18Z and 3Z/9Z are isomorphic, in fact, both groups are isomorphic to C3.

Theorem 6.11 (Third Isomorphism Theorem). Let K E G, N E G, and N E K. Then
K/N E G/N and

ϕ : G/K → G/N
/
K/N

xK 7→ (xN)(K/N)

is an isomorphism.

Proof. First we show that K/N E G/N . So, for any x ∈ G and k ∈ K, we must have
(xN)(kN)(xN)−1 ∈ K/N :

(xN)(kN)(xN)−1 = xNkNx−1N = xNkx−1 xNx−1︸ ︷︷ ︸
=N

N =

= xNkx−1N = xNx−1︸ ︷︷ ︸
=N

xkx−1︸ ︷︷ ︸
=:k′∈K

N = Nk′N = k′NN = k′N ∈ K/N .

Let
ψ : G → G/N

/
K/N

x 7→ (xN)(K/N)

Then ψ is a surjective homomorphism and ker(ψ) = {x ∈ G : xN ∈ K/N} = K.
Consider the following diagram:

G

��

ψ
// G/N

/
K/N

π

G/K

ϕ

<<
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Since ψ is a surjective homomorphism, by Theorem 6.9, ϕ is an isomorphism. a
For example, let m and n be two positive integers such that m

∣∣ n. Then mZ and
nZ are normal subgroups of Z, nZ E mZ, and by Theorem 6.11,

Z/mZ ∼= Z/nZ
/
mZ/nZ .

In particular, for m = 6 and n = 18,

Z6
∼= Z18

/
6Z/18Z ,

and in fact, both groups are isomorphic to C6.


