6. The Homomorphism Theorems

In this section, we investigate maps between groups which preserve the groupoperations.
Definition. Let G and H be groups and let $\varphi: G \rightarrow H$ be a mapping from G to H. Then φ is called a homomorphism if for all $x, y \in G$ we have:

$$
\varphi(x y)=\varphi(x) \varphi(y)
$$

A homomorphism which is also bijective is called an isomorphism.
A homomorphism from G to itself is called an endomorphism.
An isomorphism from G to itself is called an automorphism, and the set of all automorphisms of a group G is denoted by $\operatorname{Aut}(G)$.

Before we show that $\operatorname{Aut}(G)$ is a group under compositions of maps, let us prove that a homomorphism preserves the group structure.
Proposition 6.1. If $\varphi: G \rightarrow H$ is a homomorphism, then $\varphi\left(e_{G}\right)=e_{H}$ and for all $x \in G, \varphi\left(x^{-1}\right)=\varphi(x)^{-1}$.

Proof. Since φ is a homomorphism, for all $x, y \in G$ we have $\varphi(x y)=\varphi(x) \varphi(y)$. In particular, $\varphi(y)=\varphi\left(e_{G} y\right)=\varphi\left(e_{G}\right) \varphi(y)$, which implies $\varphi\left(e_{G}\right)=e_{H}$. Further, $\varphi\left(e_{G}\right)=\varphi\left(x x^{-1}\right)=\varphi(x) \varphi\left(x^{-1}\right)=e_{H}$, which implies $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$.
Corollary 6.2. If $\varphi: G \rightarrow H$ is a homomorphism, then the image of φ is a subgroup of H.

Proof. Let a and b be in the image of φ. We have to show that also $a b^{-1}$ is in the image of φ. If a and b are in the image of φ, then there are $x, y \in G$ such that $\varphi(x)=a$ and $\varphi(y)=b$. Now, by Proposition 6.1 we get

$$
a b^{-1}=\varphi(x) \varphi(y)^{-1}=\varphi(x) \varphi\left(y^{-1}\right)=\varphi\left(x y^{-1}\right) .
$$

Proposition 6.3. For any group G, the set $\operatorname{Aut}(G)$ is a group under compositions of maps.

Proof. Let $\varphi, \psi \in \operatorname{Aut}(G)$. First we have to show that $\varphi \circ \psi \in \operatorname{Aut}(G)$: Since φ and ψ are both bijections, $\varphi \circ \psi$ is a bijection too, and since φ and ψ are both homomorphisms, we have

$$
\begin{aligned}
(\varphi \circ \psi)(x y)=\varphi(\psi(x y))=\varphi(& \psi(x) \psi(y))= \\
& \varphi(\psi(x)) \varphi(\psi(y))=(\varphi \circ \psi)(x)(\varphi \circ \psi)(y)
\end{aligned}
$$

Hence, $\varphi \circ \psi \in \operatorname{Aut}(G)$. Now, let us show that $(\operatorname{Aut}(G), \circ)$ is a group:
(A0) Let $\varphi_{1}, \varphi_{2}, \varphi_{3} \in \operatorname{Aut}(G)$. Then for all $x \in G$ we have

$$
\begin{aligned}
& \left.\left(\varphi_{1} \circ\left(\varphi_{2} \circ \varphi_{3}\right)\right)(x)=\varphi_{1}\left(\varphi_{2} \circ \varphi_{3}\right)(x)\right)=\varphi_{1}\left(\varphi_{2}\left(\varphi_{3}(x)\right)\right)= \\
& \left(\varphi_{1} \circ \varphi_{2}\right)\left(\varphi_{3}(x)\right)=\left(\left(\varphi_{1} \circ \varphi_{2}\right) \circ \varphi_{3}\right)(x),
\end{aligned}
$$

which implies that $\varphi_{1} \circ\left(\varphi_{2} \circ \varphi_{3}\right)=\left(\varphi_{1} \circ \varphi_{2}\right) \circ \varphi_{3}$, thus, "०" is associative.
(A1) The identity mapping ι on G is of course a bijective homomorphism from G to itself, and in fact, ι is the neutral element of $(\operatorname{Aut}(G), \circ)$.
(A2) Let $\varphi \in \operatorname{Aut}(G)$, and let φ^{-1} be such that for every $x \in G, \varphi\left(\varphi^{-1}(x)\right)=x$. It is obvious that $\varphi^{\circ} \varphi^{-1}=\iota$ and it remains to show that φ^{-1} is a homomorphism: Since φ is a homomorphism, for all $x, y \in G$ we have

$$
\varphi^{-1}(x y)=\varphi^{-1}(\underbrace{\varphi\left(\varphi^{-1}(x)\right)}_{=x} \underbrace{\varphi\left(\varphi^{-1}(y)\right)}_{=y})=\varphi^{-1}\left(\varphi\left(\varphi^{-1}(x) \varphi^{-1}(y)\right)\right)=\varphi^{-1}(x) \varphi^{-1}(y),
$$

which shows that $\varphi^{-1} \in \operatorname{Aut}(G)$.
Definition. If $\varphi: G \rightarrow H$ is a homomorphism, then $\left\{x \in G: \varphi(x)=e_{H}\right\}$ is called the kernel of φ and is denoted by $\operatorname{ker}(\varphi)$.
Theorem 6.4. Let $\varphi: G \rightarrow H$ be a homomorphism, then $\operatorname{ker}(\varphi) \unlhd G$.
Proof. First we have to show that $\operatorname{ker}(\varphi) \leqslant G$: If $a, b \in \operatorname{ker}(\varphi)$, then

$$
\varphi\left(a b^{-1}\right)=\varphi(a) \varphi\left(b^{-1}\right)=\varphi(a) \varphi(b)^{-1}=e_{H} e_{H}^{-1}=e_{H}
$$

thus, $a b^{-1} \in \operatorname{ker}(\varphi)$, which implies $\operatorname{ker}(\varphi) \leqslant G$.
Now we show that $\operatorname{ker}(G) \unlhd G$: Let $x \in G$ and $a \in \operatorname{ker}(\varphi)$, then

$$
\varphi\left(x a x^{-1}\right)=\varphi(x) \varphi(a) \varphi(x)^{-1}=\varphi(x) e_{H} \varphi(x)^{-1}=\varphi(x) \varphi(x)^{-1}=e_{H},
$$

thus, $x a x^{-1} \in \operatorname{ker}(\varphi)$, which implies $\operatorname{ker}(\varphi) \unlhd G$.
Let us give some examples of homomorphisms:
(1) The mapping

$$
\begin{aligned}
\varphi:(\mathbb{R},+) & \rightarrow\left(\mathbb{R}^{+}, \cdot\right) \\
x & \mapsto e^{x}
\end{aligned}
$$

is an isomorphism, and $\varphi^{-1}=\ln$.
(2) Let n be a positive integer. Then

$$
\begin{aligned}
\varphi:(\mathrm{O}(n), \cdot) & \rightarrow(\{1,-1\}, \cdot) \\
A & \mapsto \operatorname{det}(A)
\end{aligned}
$$

is a surjective homomorphism and $\operatorname{ker}(\varphi)=\mathrm{SO}(n)$. Further, for $n=1, \varphi$ is even an isomorphism.
(3) The mapping

$$
\begin{aligned}
\varphi: & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \mapsto(x, z)
\end{aligned}
$$

is a surjective homomorphism and $\operatorname{ker}(\varphi)=\{(0, y, 0): y \in \mathbb{R}\}$.
(4) Let $n \geq 3$ be an integer, let $C_{n}=\left\{a^{0}, \ldots, a^{n-1}\right\}$, and let $\rho \in D_{n}$ be the rotation through $2 \pi / n$. Then $\varphi: C_{n} \rightarrow D_{n}$, defined by $\varphi\left(a^{k}\right):=\rho^{k}$ is an injective homomorphism from C_{n} into D_{n}. Thus, C_{n} is isomorphic to a subgroup of D_{n}.
(5) Let $n \geq 3$ be an integer. For any $x \in D_{n}$, let

$$
\operatorname{sg}(x)= \begin{cases}1 & \text { if } x \text { is a rotation } \\ -1 & \text { if } x \text { is a reflection }\end{cases}
$$

then

$$
\begin{aligned}
\varphi: D_{n} & \rightarrow(\{1,-1\}, \cdot) \\
x & \mapsto \operatorname{sg}(x)
\end{aligned}
$$

is a surjective homomorphism.
(6) The mapping

$$
\begin{aligned}
\varphi:\left(\mathbb{Z}_{12},+\right) & \rightarrow\left(\mathbb{Z}_{12},+\right) \\
x & \mapsto 4 x
\end{aligned}
$$

is an endomorphism of $\left(\mathbb{Z}_{12},+\right)$, where $\operatorname{ker}(\varphi)=\{0,3,6,9\}$ and the image of φ is $\{0,4,8\}$.
(7) For every $r \in \mathbb{Q}^{*}$, the mapping

$$
\begin{aligned}
\varphi:(\mathbb{Q},+) & \rightarrow(\mathbb{Q},+) \\
q & \mapsto r q
\end{aligned}
$$

is an automorphism of $(\mathbb{Q},+)$.
(8) Let $C_{2} \times C_{2}=\{e, a, b, c\}$, then every permutation of $\{a, b, c\}$ is a bijective homomorphism from $C_{2} \times C_{2}$ to itself. Hence, $\operatorname{Aut}\left(C_{2} \times C_{2}\right)$ is isomorphic to S_{3} (or to D_{3}).

In order to define an operation on the set G / N, where $N \unlhd G$, we need the following:
FAct 6.5. If $N \unlhd G$, then for all $x, y \in G,(x N)(y N)=(x y) N$.
Proof. Since N is a normal subgroup of G, we have

$$
(x N)(y N)=(x(\underbrace{y N y^{-1}}_{=N}))(y N)=(x y)(N N)=(x y) N .
$$

This leads to the following:
Proposition 6.6. If $N \unlhd G$, then the set $G / N=\{x N: x \in G\}$ is a group under the operation $(x N)(y N):=(x y) N$.

Proof. First we have to show that the operation $(x N)(y N)$ is well-defined: If $(x N)=$ $(\tilde{x} N)$ and $(y N)=(\tilde{y} N)$, then, by Lemma $3.6(\mathrm{~d}), x^{-1} \tilde{x}, y^{-1} \tilde{y} \in N$. Now, since N is a normal subgroup of G,

$$
(x y)^{-1}(\tilde{x} \tilde{y})=y^{-1}(\underbrace{x^{-1} \tilde{x}}_{\in N}) \tilde{y} \in y^{-1} N \tilde{y}=\underbrace{y^{-1} N(y}_{=N} y^{-1}) \tilde{y}=N\left(y^{-1} \tilde{y}\right)=N,
$$

which implies $(x N)(y N)=(x y) N=(\tilde{x} \tilde{y}) N=(\tilde{x} N)(\tilde{y} N)$.
Now, let us show that G / N is a group:
(A0) $(x N)((y N)(z N))=(x(y z)) N=((x y) z) N=((x N)(y N))(z N)$.
(A1) For all $x \in G$ we have

$$
(e N)(x N)=(e x) N=x N
$$

therefore, $e N=N$ is the neutral element of G / N.
(A2) For all $x \in G$ we have

$$
(x N)\left(x^{-1} N\right)=\left(x x^{-1}\right) N=e N=N=\left(x^{-1} x\right) N=\left(x^{-1} N\right)(x N),
$$

therefore, $(x N)^{-1}=\left(x^{-1} N\right)$.
For example, let C be the cube-group and let N be the normal subgroup of C which is isomorphic to $C_{2} \times C_{2}$. Then, by Proposition $6.6, C / N$ is a group, and in fact, C / N is isomorphic to S_{3} (see Hw9.Q41).
Lemma 6.7. If $N \unlhd G$, then

$$
\begin{aligned}
\pi: \quad & \rightarrow G / N \\
x & \mapsto x N
\end{aligned}
$$

is a surjective homomorphism, called the natural homomorphism from G onto G / N, and $\operatorname{ker}(\pi)=N$.
Proof. For all $x, y \in G$ we have $\pi(x y)=(x y) N=(x N)(y N)=\pi(x) \pi(y)$, thus, π is a homomorphism. Further, let $x N \in G / N$, then $\pi(x)=x N$, which shows that π is surjective. Finally, by Lemma 3.6 (c), $\operatorname{ker}(\pi)=\{x \in G: x N=N\}=N$.
By Theorem 6.4 we know that if $\varphi: G \rightarrow H$ is a homomorphism, then $\operatorname{ker}(\varphi) \unlhd G$. On the other hand, by Lemma 6.7, we get the following:
Corollary 6.8. If $N \unlhd G$, then there exists a group H and a homomorphism $\varphi: G \rightarrow H$ such that $N=\operatorname{ker}(\varphi)$.
Proof. Let $H=G / N$ and let φ be the natural homomorphism from G onto H.
Theorem 6.9 (First Isomorphism Theorem). Let $\psi: G \rightarrow H$ be a surjective homomorphism, let $N=\operatorname{ker}(\psi) \unlhd G$ and let $\pi: G \rightarrow G / N$ be the natural homomorphism from G onto G / N. Then there is a unique isomorphism $\varphi: G / N \rightarrow H$ such that $\psi=\varphi \circ \pi$. In other words, the following diagram "commutes":

Proof. Define $\varphi: G / N \rightarrow H$ by stipulating $\varphi(x N):=\psi(x)$ (for every $x \in G$). Then $\psi=\varphi \circ \pi$ and it remains to be shown that φ is well-defined, a bijective homomorphism and unique.
φ is well-defined: If $x N=y N$, then $x^{-1} y \in N$ (by Lemma 3.6(d)). Thus, since $N=\operatorname{ker}(\psi), \psi\left(x^{-1} y\right)=e_{H}$ and since ψ is a homomorphism we have $e_{H}=\psi\left(x^{-1} y\right)=$ $\psi(x)^{-1} \psi(y)$, which implies $\psi(x)=\psi(y)$. Therefore, $\varphi(x N)=\psi(x)=\psi(y)=\varphi(y N)$. φ is a homomorphism: Let $x N, y N \in G / N$, then

$$
\varphi((x N)(y N))=\varphi((x y) N)=\psi(x y)=\psi(x) \psi(y)=\varphi(x N) \varphi(y N)
$$

φ is injective:

$$
\begin{aligned}
& \varphi(x N)=\varphi(y N) \Longleftrightarrow \psi(x)=\psi(y) \\
& \Longleftrightarrow e_{H}=\psi(x)^{-1} \psi(y)=\psi\left(x^{-1}\right) \psi(y)=\psi\left(x^{-1} y\right) \Longleftrightarrow \\
& \Longleftrightarrow x^{-1} y \in N \quad \Longleftrightarrow x N=y N
\end{aligned}
$$

φ is surjective: Since ψ is surjective, for all $z \in H$ there is an $x \in G$ such that $\psi(x)=z$, thus, $\varphi(x N)=z$.
φ is unique: Assume towards a contradiction that there exists an isomorphism $\tilde{\varphi}$: $G / N \rightarrow H$ different from φ such that $\tilde{\varphi} \circ \pi=\psi$. Then there is a coset $x N \in G / N$ such that $\tilde{\varphi}(x N) \neq \varphi(x N)$, which implies

$$
\psi(x)=(\tilde{\varphi} \circ \pi)(x)=\tilde{\varphi}(\pi(x))=\tilde{\varphi}(x N) \neq \varphi(x N)=\varphi(\pi(x))=(\varphi \circ \pi)(x)=\psi(x),
$$

a contradiction.
For example, let m be a positive integer and let $C_{m}=\left\{a^{0}, \ldots, a^{m-1}\right\}$ be the cyclic group of order m. Further, let $\psi: \mathbb{Z} \rightarrow C_{m}$, where $\psi(k):=a^{k}$. Then ψ is a surjective homomorphism from \mathbb{Z} to C_{m} and $\operatorname{ker}(\psi)=m \mathbb{Z}$. Thus, by Theorem 6.9, $\mathbb{Z} / m \mathbb{Z}$ and C_{m} are isomorphic and the isomorphism $\varphi: \mathbb{Z} / m \mathbb{Z} \rightarrow C_{m}$ is defined by $\varphi(k+m \mathbb{Z}):=a^{k}$.
Let us consider some other applications of Theorem 6.9:
(1) Let n be a positive integer. Then

$$
\begin{aligned}
\psi:(\mathrm{O}(n), \cdot) & \rightarrow(\{1,-1\}, \cdot) \\
A & \mapsto \operatorname{det}(A)
\end{aligned}
$$

is a surjective homomorphism with $\operatorname{ker}(\psi)=\mathrm{SO}(n)$, and thus, $\mathrm{O}(n) / \mathrm{SO}(n)$ and $\{1,-1\}$ are isomorphic (where $\{1,-1\} \cong C_{2}$).
(2) Let n be a positive integer and let $\mathrm{GL}(n)^{+}=\{A \in \mathrm{GL}(n): \operatorname{det}(A)>0\}$. Then

$$
\begin{aligned}
\psi:\left(\operatorname{GL}(n)^{+}, \cdot\right) & \rightarrow\left(\mathbb{R}^{+}, \cdot\right) \\
A & \mapsto \operatorname{det}(A)
\end{aligned}
$$

is a surjective homomorphism with $\operatorname{ker}(\psi)=\mathrm{SL}(n)$, and thus, $\mathrm{GL}(n)^{+} / \mathrm{SL}(n)$ and \mathbb{R}^{+}are isomorphic.
(3) The mapping

$$
\begin{aligned}
\psi:\left(\mathbb{C}^{*}, \cdot\right) & \rightarrow\left(\mathbb{R}^{+}, \cdot\right) \\
z & \mapsto|z|
\end{aligned}
$$

is a surjective homomorphism with $\operatorname{ker}(\psi)=\mathbb{U}=\{z \in \mathbb{C}:|z|\}$, and thus, $\mathbb{C}^{*} / \mathbb{U}$ and \mathbb{R}^{+}are isomorphic.
(4) The mapping

$$
\begin{aligned}
\psi: & \mathbb{R}^{3} \\
(x, y, z) & \mapsto(x, z)
\end{aligned}
$$

is a surjective homomorphism with $\operatorname{ker}(\psi)=\{(0, y, 0): y \in \mathbb{R}\} \cong \mathbb{R}$, and thus, $\mathbb{R}^{3} / \mathbb{R}$ and \mathbb{R}^{2} are isomorphic.
(5) The mapping

$$
\begin{aligned}
\psi:\left(\mathbb{Z}_{12},+\right) & \rightarrow\left(\mathbb{Z}_{3},+\right) \\
x & \mapsto x(\bmod 3)
\end{aligned}
$$

is a surjective homomorphism with $\operatorname{ker}(\psi)=\{0,3,6,9\}=3 \mathbb{Z}_{12}$, and thus, $\mathbb{Z}_{12} / 3 \mathbb{Z}_{12}$ and \mathbb{Z}_{3} are isomorphic.

Theorem 6.10 (Second Isomorphism Theorem). Let $N \unlhd G$ and $K \leqslant G$. Then
(1) $K N=N K \leqslant G$.
(2) $N \unlhd K N$.
(3) $(N \cap K) \unlhd K$.
(4) The mapping

$$
\begin{aligned}
\varphi: K /(N \cap K) & \rightarrow K N / N \\
x(N \cap K) & \mapsto x N
\end{aligned}
$$

is an isomorphism.
Proof. (1) This is Theorem 5.8.
(2) Since $K N \leqslant G$ and $N \subseteq K N, N \leqslant K N$. Hence, since $N \unlhd G, N \unlhd K N$.
(3) Let $x \in K$ and $a \in N \cap K$. Then $x a x^{-1}$ belongs to K, since $x, a \in K$, but also to N, since $N \unlhd G$, thus, $x a x^{-1} \in N \cap K$.
(4) Let $\psi: K \rightarrow K N / N$ be defined by stipulating $\psi(k):=k N$. Then ψ is a surjective homomorphism and $\operatorname{ker}(\psi)=\{k \in K: k \in N\}=N \cap K$.
Consider the following diagram:

Since ψ is a surjective homomorphism, by Theorem 6.9, φ is an isomorphism.

For example, let m and n be two positive integers. Then $m \mathbb{Z}$ and $n \mathbb{Z}$ are normal subgroups of \mathbb{Z}, and by Theorem 6.10, $m \mathbb{Z} /(m \mathbb{Z} \cap n \mathbb{Z})$ and $(m \mathbb{Z}+n \mathbb{Z}) / n \mathbb{Z}$ are isomorphic. In particular, for $m=6$ and $n=9$ we have $m \mathbb{Z} \cap n \mathbb{Z}=18 \mathbb{Z}$ and $m \mathbb{Z}+n \mathbb{Z}=3 \mathbb{Z}$. Thus, $6 \mathbb{Z} / 18 \mathbb{Z}$ and $3 \mathbb{Z} / 9 \mathbb{Z}$ are isomorphic, in fact, both groups are isomorphic to C_{3}.
THEOREM 6.11 (Third Isomorphism Theorem). Let $K \unlhd G, N \unlhd G$, and $N \unlhd K$. Then $K / N \unlhd G / N$ and

$$
\begin{aligned}
\varphi: G / K & \rightarrow G / N / K / N \\
x K & \mapsto(x N)(K / N)
\end{aligned}
$$

is an isomorphism.
Proof. First we show that $K / N \unlhd G / N$. So, for any $x \in G$ and $k \in K$, we must have $(x N)(k N)(x N)^{-1} \in K / N:$

$$
\begin{aligned}
& (x N)(k N)(x N)^{-1}=x N k N x^{-1} N=x N k x^{-1} \underbrace{x N x^{-1}}_{=N} N= \\
& =x N k x^{-1} N=\underbrace{x N x^{-1}}_{=N} \underbrace{x k x^{-1}}_{=: k^{\prime} \in K} N=N k^{\prime} N=k^{\prime} N N=k^{\prime} N \in K / N .
\end{aligned}
$$

Let

$$
\begin{aligned}
\psi: G & \rightarrow G / N / K / N \\
x & \mapsto(x N)(K / N)
\end{aligned}
$$

Then ψ is a surjective homomorphism and $\operatorname{ker}(\psi)=\{x \in G: x N \in K / N\}=K$.
Consider the following diagram:

Since ψ is a surjective homomorphism, by Theorem 6.9, φ is an isomorphism.
For example, let m and n be two positive integers such that $m \mid n$. Then $m \mathbb{Z}$ and $n \mathbb{Z}$ are normal subgroups of $\mathbb{Z}, n \mathbb{Z} \unlhd m \mathbb{Z}$, and by Theorem 6.11,

$$
\mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z} / m \mathbb{Z} / n \mathbb{Z}
$$

In particular, for $m=6$ and $n=18$,

$$
\mathbb{Z}_{6} \cong \mathbb{Z}_{18} / 6 \mathbb{Z} / 18 \mathbb{Z}
$$

and in fact, both groups are isomorphic to C_{6}.

