
5. Normal Subgroups

Before we define the notion of a normal subgroup, let us prove the following:

Fact 5.1. Let G be a group. If H 6 G and x ∈ G, then

xHx−1 = {xhx−1 : h ∈ H}

is a subgroup of G.

Proof. Let xh1x
−1 and xh2x

−1 be in xHx−1. Then
(
xh2x

−1
)−1

= xh−1

2
x−1 and

(
xh1x

−1
)(
xh−1

2
x−1

)
= x

(
h1h

−1

2

)
x−1 ∈ xHx−1. So, by definition, xHx−1 6 G. ⊣

This leads to the following definition.

Definition. Suppose that G is a group and that N 6 G, then N is called a normal

subgroup of G if for all x ∈ G we have

xNx−1 = N ,

or equivalently, if for all x ∈ G, xN = Nx.

In particular, the trivial subgroups are normal and all subgroups of an abelian group
are normal.

Notation. If N 6 G (N < G) is a normal subgroup of G, then we write N E G
(N ⊳ G).

The following is just a consequence of Corollary 3.10:

Fact 5.2. If H < G and |G : H| = 2, then H ⊳ G.

Proof. By Corollary 3.10 we know that if |G : H| = 2, then for all x ∈ G we have
xH = Hx, and therefore H ⊳ G. ⊣

Proposition 5.3. If N 6 G, then N E G if and only if for all x ∈ G and all n ∈ N
we have

xnx−1 ∈ N .

Proof. If N E G, then xNx−1 = N (for all x ∈ G), thus, xnx−1 ∈ N for all x ∈ G
and n ∈ N .
On the other hand, if xnx−1 ∈ N for all x ∈ G and n ∈ N , then xNx−1 ⊆ N (for all
x ∈ G). Further, replacing x by x−1 we get

N = x (x−1Nx)
︸ ︷︷ ︸

⊆N

x−1 ⊆ xNx−1 .

Hence, xNx−1 = N (for all x ∈ G). ⊣

The following Fact is similar to Proposition 3.2:

Fact 5.4. If K,H E G, then (K ∩H) E G.

Proof. If K,H E G, then, by Proposition 5.3, for all x ∈ G and n ∈ K ∩ H we
have xnx−1 ∈ K (since K E G) and xnx−1 ∈ H (since H E G), and therefore,
xnx−1 ∈ K ∩H (for all x ∈ G and n ∈ K ∩H). ⊣
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Notice that if H ⊳ K ⊳ G, then H is not necessarly a normal subgroup of G. To
see this, let T be the tetrahedron-group, let ρ1, ρ2 and ρ3 be the three elements of
T of order 2, and let ι be the neutral element of T . Further, let H = {ι, ρ1} and
K = {ι, ρ1, ρ2, ρ3}. Since the group K is isomorphic to C2 × C2, it is abelian and
therefore we get H ⊳ K. Further, for each τ ∈ T and ρ ∈ K, τρτ−1 has either order
1 or 2. Thus, τρτ−1 ∈ K, which implies by Proposition 5.3 that K ⊳ T . Finally, it is
not hard to see that H is not a normal subgroup of T .

Let us now give some examples of normal subgroups:

(1) T ⊳ C (since |C : T | = 2).
(2) For n ≥ 3, Cn ⊳ Dn (since |Dn : Cn| = 2).
(3) For n ≥ 1, SO(n) ⊳ O(n) (since |O(n) : SO(n)| = 2).
(4) As we have seen above, T contains a normal subgroup which is isomorphic to

C2 × C2.
(5) For n ≥ 1, SL(n) ⊳ GL(n): For all B ∈ GL(n) and A ∈ SL(n) we have

det
(
BAB−1

)
= det(A) = 1, thus, BAB−1 ∈ SO(n).

Definition. Suppose that G is a group. We define the centre Z(G) of G by

Z(G) :=
{
a ∈ G : ∀x ∈ G(ax = xa)

}
.

In other words, Z(G) consists of those elements of G which commute with every
element of G.

Fact 5.5. Z(G) = G if and only if G is abelian.

Proof. If G is abelian, then for all a ∈ G and for all x ∈ G we have ax = xa, thus,
Z(G) = G. On the other hand, Z(G) = G implies that for all a ∈ G and for all
x ∈ G, ax = xa, thus, G is abelian. ⊣

Fact 5.6.

(a) Z(G) 6 G (see Hw7.Q31.a).
(b) Z(G) E G (see Hw7.Q31.b).
(c) Z(G) is abelian (see Hw7.Q31.c).
(d) If H 6 Z(G), then H E G (see Hw7.Q31.d).

It is possible that the centre of a group is just the neutral element, e.g., Z(T ) = {ι}.

Definition. Let G be a group and let H and K be subgroups of G. If G = HK,
then we say that G is the inner product of H and K.

Proposition 5.7. Let G be a finite group and let H,K 6 G. Then

|HK| =
|H| · |K|

|H ∩K|
.

Proof. First notice that HK =
⋃

h∈H

hK and that (H ∩K) 6 H .

Now, for h1, h2 ∈ H we have

h1K = h2K ⇐⇒ h1h
−1

2
∈ K ,

and further we have

h1(H ∩K) = h2(H ∩K) ⇐⇒ h1h
−1

2
∈ (H ∩K) ⇐⇒ h1h

−1

2
∈ K .
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Therefore,

|HK| =
∣
∣
∣

⋃

h∈H

hK
∣
∣
∣ =

∣
∣H : (H ∩K)

∣
∣ · |K| =

|H|

|H ∩K|
· |K| =

|H| · |K|

|H ∩K|
.

⊣

Notice that if H and K are subgroups of a group G, then HK is not necessarly
a subgroup of G (see Hw7.Q34). On the other hand, if at least one of these two
subgroups is a normal subgroup, then HK is a subgroup of G:

Theorem 5.8. If K 6 G and N E G, then KN = NK 6 G.

Proof. Let us first show that KN = NK: Let k ∈ K and n ∈ N , and let n1 = knk−1

and n2 = k−1nk. Then, since N E G, n1, n2 ∈ N , and further we have

kn = n1k and nk = kn2 ,

which shows that KN = NK. To see that KN 6 G, pick two elements (k1n1) and
(k2n2) of KN . We have to show that (k1n1)(k2n2)

−1 ∈ KN :

(k1n1)(k2n2)
−1 = k1 n1n

−1

2
︸ ︷︷ ︸

=n3∈N

k−1

2
= k1k

−1

2
︸ ︷︷ ︸

=k∈K

k2n3k
−1

2
︸ ︷︷ ︸

=n∈N

= kn ∈ KN .

⊣

Let us give an example for Theorem 5.8: Consider the cube-group C. Let a, b,
and c be the three axes joining centres of opposite faces and let ρa, ρb, ρc ∈ C be the
rotations about the axes a, b, and c respectively through π and let δ ∈ C be the
rotation about the axis a through π/2. Now, let N = 〈{ρa, ρb, ρc}〉 and let K = 〈δ〉.
It is easy to see that K and N are both subgroups of C of order 4. Notice that
K ∼= C4 and that N ∼= C2 × C2, so, K and N are not isomorphic, but they are both
abelian. Let us now show that N is a normal subgroup of C: For this, we consider the
set of axes {a, b, c}. Now, every x ∈ C corresponds to a permutation τx on {a, b, c},
and n ∈ N if and only if τn(a) = a, τn(b) = b, and τn(c) = c, or in other words,
n ∈ N iff n corresponds to the identity permutation on {a, b, c}. For any x ∈ C and
n ∈ N , the permutation τxnx−1 = τxτnτx−1 is the identity permutation on {a, b, c},
and hence, xnx−1 ∈ N , which shows that N ⊳ C. Thus, by Theorem 5.8, KN 6 C.

Since |K ∩N | = 2, by Proposition 5.7 we have |KN | = |K|·|N |
|K∩N |

= 8 and it is not hard

to see that KN ∼= D4.

Proposition 5.9. If K and H are subgroups of the finite group G, |H ∩K| = 1 and
|H| · |K| = |G|, then HK = G = KH .

Proof. Let us just prove that HK = G (to show that KH = G is similar). Since
HK = {hk : h ∈ H and k ∈ K} ⊆ G, HK = G if and only if |HK| = |G|, which
implies that h1k1 = h2k2 if and only if h1 = h2 and k1 = k2. So, let us assume that
h1k1 = h2k2, then h−1

1
(h1k1)k

−1

2
= h−1

1
(h2k2)k

−1

2
, and hence, k1k

−1

2
= h−1

1
h2 ∈ H ∩K,

but since H ∩K = {e}, this implies that h1 = h2 and k1 = k2. ⊣

The following proposition shows that if K and H are normal subgroups of G such
that |H ∩K| = 1, then the elements of H commute with the elements of K and vice
versa. Notice that this is stronger than just saying KH = HK.
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Proposition 5.10. If K and H are normal subgroups of G and |H ∩ K| = 1, then
for all h ∈ H and all k ∈ K, hk = kh.

Proof. Let h ∈ H and k ∈ K. Consider the element hkh−1k−1 : On the one hand we
have

h

∈H
︷ ︸︸ ︷

kh−1k−1

︸ ︷︷ ︸

∈H

∈ H ,

and on the other hand we have
∈K

︷ ︸︸ ︷

hkh−1k−1

︸ ︷︷ ︸

∈K

∈ K .

Thus, hkh−1k−1 ∈ H ∩ K, and since |H ∩ K| = 1, hkh−1k−1 = e, which implies
kh = hkh−1k−1(kh) = hk. ⊣

Proposition 5.11. If K and H are normal subgroups of G, then KH E G.

Proof. For any x ∈ G, xkhx−1 = (xkx−1)
︸ ︷︷ ︸

∈K

(xhx−1)
︸ ︷︷ ︸

∈H

∈ KH , thus, xKHx−1 = KH .

⊣

Definition. A group G is called simple if it does not contain any non-trivial normal
subgroup.

In particular, any abelian group which has a non-trivial subgroup cannot be sim-
ple, but there are also simple abelian groups, e.g., the cyclic groups Cp, where p is
prime (see Hw7.Q35). An example of a simple group which is not abelian is the
dodecahedron-group D (as we will see later). On the other hand, there are many
non-abelian groups which are not simple groups:

(1) The cube-group C, because T ⊳ C.
(2) Dn for n ≥ 3, because Cn ⊳ Dn.
(3) O(n) for n ≥ 2, because SO(n) ⊳ O(n).
(4) The tetrahedron-group T , because T contains a normal subgroup which is

isomorphic to C2 × C2.
(5) GL(n) for n ≥ 2, because SL(n) ⊳ GL(n).


