5. Normal Subgroups

Before we define the notion of a normal subgroup, let us prove the following:
Fact 5.1. Let G be a group. If $H \leqslant G$ and $x \in G$, then

$$
x H x^{-1}=\left\{x h x^{-1}: h \in H\right\}
$$

is a subgroup of G.
Proof. Let $x h_{1} x^{-1}$ and $x h_{2} x^{-1}$ be in $x H x^{-1}$. Then $\left(x h_{2} x^{-1}\right)^{-1}=x h_{2}^{-1} x^{-1}$ and $\left(x h_{1} x^{-1}\right)\left(x h_{2}^{-1} x^{-1}\right)=x\left(h_{1} h_{2}^{-1}\right) x^{-1} \in x H x^{-1}$. So, by definition, $x H x^{-1} \leqslant G$.
This leads to the following definition.
Definition. Suppose that G is a group and that $N \leqslant G$, then N is called a normal subgroup of G if for all $x \in G$ we have

$$
x N x^{-1}=N,
$$

or equivalently, if for all $x \in G, x N=N x$.
In particular, the trivial subgroups are normal and all subgroups of an abelian group are normal.

Notation. If $N \leqslant G(N<G)$ is a normal subgroup of G, then we write $N \unlhd G$ $(N \triangleleft G)$.

The following is just a consequence of Corollary 3.10:
Fact 5.2. If $H<G$ and $|G: H|=2$, then $H \triangleleft G$.
Proof. By Corollary 3.10 we know that if $|G: H|=2$, then for all $x \in G$ we have $x H=H x$, and therefore $H \triangleleft G$.

Proposition 5.3. If $N \leqslant G$, then $N \unlhd G$ if and only if for all $x \in G$ and all $n \in N$ we have

$$
x n x^{-1} \in N .
$$

Proof. If $N \unlhd G$, then $x N x^{-1}=N$ (for all $x \in G$), thus, $x n x^{-1} \in N$ for all $x \in G$ and $n \in N$.
On the other hand, if $x n x^{-1} \in N$ for all $x \in G$ and $n \in N$, then $x N x^{-1} \subseteq N$ (for all $x \in G$). Further, replacing x by x^{-1} we get

$$
N=x \underbrace{\left(x^{-1} N x\right)}_{\subseteq N} x^{-1} \subseteq x N x^{-1} .
$$

Hence, $x N x^{-1}=N($ for all $x \in G)$.
The following Fact is similar to Proposition 3.2:
FACT 5.4. If $K, H \unlhd G$, then $(K \cap H) \unlhd G$.
Proof. If $K, H \unlhd G$, then, by Proposition 5.3, for all $x \in G$ and $n \in K \cap H$ we have $x n x^{-1} \in K($ since $K \unlhd G)$ and $x n x^{-1} \in H$ (since $H \unlhd G$), and therefore, $x n x^{-1} \in K \cap H$ (for all $x \in G$ and $n \in K \cap H$).

Notice that if $H \triangleleft K \triangleleft G$, then H is not necessarly a normal subgroup of G. To see this, let T be the tetrahedron-group, let ρ_{1}, ρ_{2} and ρ_{3} be the three elements of T of order 2, and let ι be the neutral element of T. Further, let $H=\left\{\iota, \rho_{1}\right\}$ and $K=\left\{\iota, \rho_{1}, \rho_{2}, \rho_{3}\right\}$. Since the group K is isomorphic to $C_{2} \times C_{2}$, it is abelian and therefore we get $H \triangleleft K$. Further, for each $\tau \in T$ and $\rho \in K, \tau \rho \tau^{-1}$ has either order 1 or 2 . Thus, $\tau \rho \tau^{-1} \in K$, which implies by Proposition 5.3 that $K \triangleleft T$. Finally, it is not hard to see that H is not a normal subgroup of T.

Let us now give some examples of normal subgroups:
(1) $T \triangleleft C$ (since $|C: T|=2$).
(2) For $n \geq 3, C_{n} \triangleleft D_{n}$ (since $\left|D_{n}: C_{n}\right|=2$).
(3) For $n \geq 1, \mathrm{SO}(n) \triangleleft \mathrm{O}(n)$ (since $|\mathrm{O}(n): \mathrm{SO}(n)|=2)$.
(4) As we have seen above, T contains a normal subgroup which is isomorphic to $C_{2} \times C_{2}$.
(5) For $n \geq 1, \mathrm{SL}(n) \triangleleft \mathrm{GL}(n)$: For all $B \in \mathrm{GL}(n)$ and $A \in \mathrm{SL}(n)$ we have $\operatorname{det}\left(B A B^{-1}\right)=\operatorname{det}(A)=1$, thus, $B A B^{-1} \in \operatorname{SO}(n)$.
Definition. Suppose that G is a group. We define the centre $Z(G)$ of G by

$$
Z(G):=\{a \in G: \forall x \in G(a x=x a)\} .
$$

In other words, $Z(G)$ consists of those elements of G which commute with every element of G.

FACT 5.5. $Z(G)=G$ if and only if G is abelian.
Proof. If G is abelian, then for all $a \in G$ and for all $x \in G$ we have $a x=x a$, thus, $Z(G)=G$. On the other hand, $Z(G)=G$ implies that for all $a \in G$ and for all $x \in G$, $a x=x a$, thus, G is abelian.
FACT 5.6.
(a) $Z(G) \leqslant G$ (see Hw7.Q31.a).
(b) $Z(G) \unlhd G$ (see Hw7.Q31.b).
(c) $Z(G)$ is abelian (see Hw7.Q31.c).
(d) If $H \leqslant Z(G)$, then $H \unlhd G$ (see Hw7.Q31.d).

It is possible that the centre of a group is just the neutral element, e.g., $Z(T)=\{\iota\}$.
Definition. Let G be a group and let H and K be subgroups of G. If $G=H K$, then we say that G is the inner product of H and K.

Proposition 5.7. Let G be a finite group and let $H, K \leqslant G$. Then

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|} .
$$

Proof. First notice that $H K=\bigcup_{h \in H} h K$ and that $(H \cap K) \leqslant H$.
Now, for $h_{1}, h_{2} \in H$ we have

$$
h_{1} K=h_{2} K \quad \Longleftrightarrow \quad h_{1} h_{2}^{-1} \in K
$$

and further we have

$$
h_{1}(H \cap K)=h_{2}(H \cap K) \Longleftrightarrow h_{1} h_{2}^{-1} \in(H \cap K) \Longleftrightarrow h_{1} h_{2}^{-1} \in K
$$

Therefore,

$$
|H K|=\left|\bigcup_{h \in H} h K\right|=|H:(H \cap K)| \cdot|K|=\frac{|H|}{|H \cap K|} \cdot|K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

Notice that if H and K are subgroups of a group G, then $H K$ is not necessarly a subgroup of G (see Hw7.Q34). On the other hand, if at least one of these two subgroups is a normal subgroup, then $H K$ is a subgroup of G :

Theorem 5.8. If $K \leqslant G$ and $N \unlhd G$, then $K N=N K \leqslant G$.
Proof. Let us first show that $K N=N K$: Let $k \in K$ and $n \in N$, and let $n_{1}=k n k^{-1}$ and $n_{2}=k^{-1} n k$. Then, since $N \unlhd G, n_{1}, n_{2} \in N$, and further we have

$$
k n=n_{1} k \text { and } n k=k n_{2},
$$

which shows that $K N=N K$. To see that $K N \leqslant G$, pick two elements $\left(k_{1} n_{1}\right)$ and $\left(k_{2} n_{2}\right)$ of $K N$. We have to show that $\left(k_{1} n_{1}\right)\left(k_{2} n_{2}\right)^{-1} \in K N$:

$$
\left(k_{1} n_{1}\right)\left(k_{2} n_{2}\right)^{-1}=k_{1} \underbrace{n_{1} n_{2}^{-1}}_{=n_{3} \in N} k_{2}^{-1}=\underbrace{k_{1} k_{2}^{-1}}_{=k \in K} \underbrace{k_{2} n_{3} k_{2}^{-1}}_{=n \in N}=k n \in K N .
$$

Let us give an example for Theorem 5.8: Consider the cube-group C. Let a, b, and c be the three axes joining centres of opposite faces and let $\rho_{a}, \rho_{b}, \rho_{c} \in C$ be the rotations about the axes a, b, and c respectively through π and let $\delta \in C$ be the rotation about the axis a through $\pi / 2$. Now, let $N=\left\langle\left\{\rho_{a}, \rho_{b}, \rho_{c}\right\}\right\rangle$ and let $K=\langle\delta\rangle$. It is easy to see that K and N are both subgroups of C of order 4. Notice that $K \cong C_{4}$ and that $N \cong C_{2} \times C_{2}$, so, K and N are not isomorphic, but they are both abelian. Let us now show that N is a normal subgroup of C : For this, we consider the set of axes $\{a, b, c\}$. Now, every $x \in C$ corresponds to a permutation τ_{x} on $\{a, b, c\}$, and $n \in N$ if and only if $\tau_{n}(a)=a, \tau_{n}(b)=b$, and $\tau_{n}(c)=c$, or in other words, $n \in N$ iff n corresponds to the identity permutation on $\{a, b, c\}$. For any $x \in C$ and $n \in N$, the permutation $\tau_{x n x^{-1}}=\tau_{x} \tau_{n} \tau_{x^{-1}}$ is the identity permutation on $\{a, b, c\}$, and hence, $x n x^{-1} \in N$, which shows that $N \triangleleft C$. Thus, by Theorem 5.8, $K N \leqslant C$. Since $|K \cap N|=2$, by Proposition 5.7 we have $|K N|=\frac{|K| \cdot|N|}{|K \cap N|}=8$ and it is not hard to see that $K N \cong D_{4}$.

Proposition 5.9. If K and H are subgroups of the finite group $G,|H \cap K|=1$ and $|H| \cdot|K|=|G|$, then $H K=G=K H$.

Proof. Let us just prove that $H K=G$ (to show that $K H=G$ is similar). Since $H K=\{h k: h \in H$ and $k \in K\} \subseteq G, H K=G$ if and only if $|H K|=|G|$, which implies that $h_{1} k_{1}=h_{2} k_{2}$ if and only if $h_{1}=h_{2}$ and $k_{1}=k_{2}$. So, let us assume that $h_{1} k_{1}=h_{2} k_{2}$, then $h_{1}^{-1}\left(h_{1} k_{1}\right) k_{2}^{-1}=h_{1}^{-1}\left(h_{2} k_{2}\right) k_{2}^{-1}$, and hence, $k_{1} k_{2}^{-1}=h_{1}^{-1} h_{2} \in H \cap K$, but since $H \cap K=\{e\}$, this implies that $h_{1}=h_{2}$ and $k_{1}=k_{2}$.

The following proposition shows that if K and H are normal subgroups of G such that $|H \cap K|=1$, then the elements of H commute with the elements of K and vice versa. Notice that this is stronger than just saying $K H=H K$.

Proposition 5.10. If K and H are normal subgroups of G and $|H \cap K|=1$, then for all $h \in H$ and all $k \in K, h k=k h$.
Proof. Let $h \in H$ and $k \in K$. Consider the element $h k h^{-1} k^{-1}$: On the one hand we have

$$
\underbrace{h \overbrace{k h^{-1} k^{-1}}^{\in H}}_{\in H} \in H,
$$

and on the other hand we have

$$
\overbrace{\underbrace{\in k h^{-1}}_{\in K} k^{-1}}^{\in K} \in K .
$$

Thus, $h k h^{-1} k^{-1} \in H \cap K$, and since $|H \cap K|=1, h k h^{-1} k^{-1}=e$, which implies $k h=h k h^{-1} k^{-1}(k h)=h k$.
Proposition 5.11. If K and H are normal subgroups of G, then $K H \unlhd G$.
Proof. For any $x \in G, x k h x^{-1}=\underbrace{\left(x k x^{-1}\right)}_{\in K} \underbrace{\left(x h x^{-1}\right)}_{\in H} \in K H$, thus, $x K H x^{-1}=K H$.
Definition. A group G is called simple if it does not contain any non-trivial normal subgroup.
In particular, any abelian group which has a non-trivial subgroup cannot be simple, but there are also simple abelian groups, e.g., the cyclic groups C_{p}, where p is prime (see Hw7.Q35). An example of a simple group which is not abelian is the dodecahedron-group D (as we will see later). On the other hand, there are many non-abelian groups which are not simple groups:
(1) The cube-group C, because $T \triangleleft C$.
(2) D_{n} for $n \geq 3$, because $C_{n} \triangleleft D_{n}$.
(3) $\mathrm{O}(n)$ for $n \geq 2$, because $\mathrm{SO}(n) \triangleleft \mathrm{O}(n)$.
(4) The tetrahedron-group T, because T contains a normal subgroup which is isomorphic to $C_{2} \times C_{2}$.
(5) $\mathrm{GL}(n)$ for $n \geq 2$, because $\mathrm{SL}(n) \triangleleft \mathrm{GL}(n)$.

