4. THE GROUPS (Zp, +) AND (Z3, -)

For m € Z, let mZ = {mx : © € Z}, then, by Hw2.Q6.(d), mZ < (Z,+). In the
sequel we investigate the sets Z/mZ for positive integers m.

The set Z/mZ contains m pairwise disjoint “copies” of mZ and every set in Z/mZ
is of the form = +mZ, for some x € Z. If © +mZ = y+ mZ, then, by Lemma 3.6 (d),
xr —y € mé, so, vt —y = km for some k € Z. Hence,

r+mL=y+mZ < r=km+y < =y (modm).

Instead of x =y (mod m) we write just x =, y.
It is easy to see that Z/mZ = {0+ mZ,1 + mZ,... ,(m — 1) + mZ}, and hence,

Zp :={0,1,... m—1}

is a transversal for mZ in Z. In particular, for every x +mZ € Z/mZ there is exactly
one a € Z,, such that x+mZ = a+mZ, namely the unique a € Z,, such that x =,, a.
Let us define an operation “+” on Z/mZ as follows:

+: Z/mZ X Z/mZ — Z/mZ
(x+mZ,y+mZ) — (z+vy)+mZ
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It remains to show that “+” is an operation on Z/mZ, or in other words, that “+”

is well defined:
Fact 4.1. f 2 + mZ = 2’ + mZ and y + mZ = y' + mZ, then (x + mZ) + (y + mZ) =
(' +mZ) + (v + mZ).

Proof. It x4+mZ = 2'+mZ and y+mZ = y'+mZ, then, by Lemma 3.6 (d), 2’—x € mZ
and ¥ —y € mZ. Now, (x +mZ) + (y + mZ) = (x + y) + mZ, and therefore, by
Lemma 3.6 (¢), (z+y)+mZ = (z+y)+ (' —2)+ (Y —y) +mZ) = (&' +y )+ mZL =
(' +mZ) + (v + mZ). Thus, (x +mZ) + (y + mZ) = (' + mZ) + (v + mZ), which
shows that the operation “+7” on Z/mZ is well defined. —
The following fact is straightforward:

FacT 4.2. (Z/mZ, +) is an abelian group.

Since every element of Z/mZ is of the form a+ mZ for some a € Z,,, let us identify
the set Z/mZ with the set Z,,. This identification induces an operation “+” on Z,,:
+: Zpyy X Loy — DL,
(a,b) +— a+b=:c

where ¢ € Z,, is such that a + b =,, ¢. So, by Fact 4.2, (Z,,,+) is an abelian group.

Since every integer x € Z belongs to exactly one coset of Z/mZ, each © € Z
corresponds to exactly one element of Z,,, say to (x),, € Z,,. Now, by Fact 4.1, if
() = ('), and (yY)m = (¥ )m, which is the same as x =, 2’ and y =, ¢/, then
(x4 y)m = (@ + ¥')m. Moreover, we get

(@)m = (@ )m and (Y)m = Y )m = (@ Ym = @ Y )m,
or in other words,

1=, 2 andy=,y = z-y=,2 vy
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PROPOSITION 4.3. The group (Z,,,+) is a cyclic group of order m.

Proof. By definition, |Z,,| = m. Now, since the order of 1 is m, we have (1) = Z,,
which implies that Z,, is cyclic. —

Multiplication is also an operation on Z,, and for all a, b, ¢ € Z,, we have a-(b+c) =
(a-b)+ (a-c), which is called the distributive law.

In the following, let m > 2 and let Z}, :== Z,, \ {0} ={1,... ,m —1}. Is (Z},, -) a
group?
LEMMA 4.4. (Z?,, -) is a group if and only if multiplication is an operation on Z,.

Proof. (<) If multiplication is an operation on Z,, then it is obviously associative
and even commutative. Let us assume that multiplication is an operation on Z,.
Suppose a - b =, a - ¢ (for some a,b,c € Z})), then (a-b) — (a-c¢) =, 0, and thus,
by the distributive law, a - (b — ¢) =, 0. Now, 0 ¢ Z?,, and since we assumed that
multiplication is an operation on Z,, we must have (b — ¢) =,, 0, which implies
b =,, ¢, and since b,c € Z,,, we get b = c. Because multiplication is commutative,
this shows that (Z7,, -) is cancellative. So, by Proposition 1.5 (since Z;, is finite),
(Z7,, -) is a group.

(=) This is obvious. -
THEOREM 4.5. (Z;, -) is a group if and only if p is a prime number.

Proof. (=) If p is not a prime number, then there are n,m € Z., such that p =n-m.
Thus, n-m=p=,0¢ Z,,, which implies that multiplication is not an operation on
Zy. Hence, by Lemma 4.4, (Z5, - ) is not a group.

(<) Suppose p is prime and let n,m € Z,. So, 1 < n,m < p, which implies that p
neither divides n nor m. Now, since p is prime, p { n - m, which is the same as saying
n-m %y, 0. Hence, multiplication is an operation on Z: and by Lemma 4.4, (Z;, -)
is a group. —
In fact, for every prime number p, (Z;, -) is even a cyclic group, or in other words,
there is always an element in (Z;, - ) of order p — 1 (we omit the proof).

LEMMA 4.6. If p is prime, then for each k € Z} we have k?~' =, 1.
Proof. We work in (Zy, -). Let k € Z;, then (k) is a cyclic subgroup of (Zj, - ), and
since |(Zy, - )| = p— 1, by Theorem 3.11 we get that ord(k) = [(k)| divides p — 1. So,
there is some positive integer ¢ such that £ - ord(k) = p — 1. Now, in Z; we have

g1 — plord(k) _ (kord(k))f —1¢ = 1,
which implies k#~' =, 1. =
Let us conclude this section with Fermat’s little theorem:
THEOREM 4.7. If p is prime and n is a positive integer such that p { n, then

P ‘ nP~t—1.

Proof. We work in (Z3, ). |(Zy, -)] = p — 1 and by Lemma 4.6, for every k € Z;
we have k»~1 =, 1. Now, if k =, n, then k»~' =, n?~!. In particular, if n %, 0

(or equivalently, if p f n), then n?~! =, 1. Hence, n?~! — 1 =, 0, or in other words,
P ‘ nP~l — 1. 4



