
4. The Groups (Zm, + ) and (Z∗
p, · )

For m ∈ Z, let mZ = {mx : x ∈ Z}, then, by Hw2.Q6.(d), mZ 6 (Z, +). In the
sequel we investigate the sets Z/mZ for positive integers m.

The set Z/mZ contains m pairwise disjoint “copies” of mZ and every set in Z/mZ
is of the form x+mZ, for some x ∈ Z. If x+mZ = y +mZ, then, by Lemma 3.6 (d),
x− y ∈ mZ, so, x− y = km for some k ∈ Z. Hence,

x + mZ = y + mZ ⇐⇒ x = km + y ⇐⇒ x ≡ y (mod m) .

Instead of x ≡ y (mod m) we write just x ≡m y.
It is easy to see that Z/mZ = {0 + mZ, 1 + mZ, . . . , (m− 1) + mZ}, and hence,

Zm := {0, 1, . . . ,m− 1}
is a transversal for mZ in Z. In particular, for every x+mZ ∈ Z/mZ there is exactly
one a ∈ Zm such that x+mZ = a+mZ, namely the unique a ∈ Zm such that x ≡m a.
Let us define an operation “ + ” on Z/mZ as follows:

+ : Z/mZ × Z/mZ → Z/mZ
(x + mZ , y + mZ) 7→ (x + y) + mZ

It remains to show that “ + ” is an operation on Z/mZ, or in other words, that “ + ”
is well defined:

Fact 4.1. If x + mZ = x′ + mZ and y + mZ = y′ + mZ, then (x + mZ) + (y + mZ) =
(x′ + mZ) + (y′ + mZ).

Proof. If x+mZ = x′+mZ and y+mZ = y′+mZ, then, by Lemma 3.6 (d), x′−x ∈ mZ
and y′ − y ∈ mZ. Now, (x + mZ) + (y + mZ) = (x + y) + mZ, and therefore, by
Lemma 3.6 (c), (x+y)+mZ = (x+y)+

(
(x′−x)+(y′−y)+mZ

)
= (x′ +y′)+mZ =

(x′ + mZ) + (y′ + mZ). Thus, (x + mZ) + (y + mZ) = (x′ + mZ) + (y′ + mZ), which
shows that the operation “ + ” on Z/mZ is well defined. a

The following fact is straightforward:

Fact 4.2.
(
Z/mZ, +

)
is an abelian group.

Since every element of Z/mZ is of the form a+mZ for some a ∈ Zm, let us identify
the set Z/mZ with the set Zm. This identification induces an operation “ + ” on Zm:

+ : Zm × Zm → Zm

(a , b) 7→ a + b =: c

where c ∈ Zm is such that a + b ≡m c. So, by Fact 4.2, (Zm, +) is an abelian group.

Since every integer x ∈ Z belongs to exactly one coset of Z/mZ, each x ∈ Z
corresponds to exactly one element of Zm, say to (x)m ∈ Zm. Now, by Fact 4.1, if
(x)m = (x′)m and (y)m = (y′)m, which is the same as x ≡m x′ and y ≡m y′, then
(x + y)m = (x′ + y′)m. Moreover, we get

(x)m = (x′)m and (y)m = (y′)m =⇒ (x · y)m = (x′ · y′)m ,

or in other words,

x ≡m x′ and y ≡m y′ =⇒ x · y ≡m x′ · y′ .
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Proposition 4.3. The group (Zm, +) is a cyclic group of order m.

Proof. By definition, |Zm| = m. Now, since the order of 1 is m, we have 〈1〉 = Zm

which implies that Zm is cyclic. a
Multiplication is also an operation on Zm and for all a, b, c ∈ Zm we have a·(b+c) =

(a · b) + (a · c), which is called the distributive law.

In the following, let m ≥ 2 and let Z∗
m := Zm \ {0} = {1, . . . , m− 1}. Is (Z∗

m, · ) a
group?

Lemma 4.4. (Z∗
m, · ) is a group if and only if multiplication is an operation on Z∗

m.

Proof. (⇐) If multiplication is an operation on Z∗
m, then it is obviously associative

and even commutative. Let us assume that multiplication is an operation on Z∗
m.

Suppose a · b ≡m a · c (for some a, b, c ∈ Z∗
m), then (a · b) − (a · c) ≡m 0, and thus,

by the distributive law, a · (b − c) ≡m 0. Now, 0 /∈ Z∗
m, and since we assumed that

multiplication is an operation on Z∗
m, we must have (b − c) ≡m 0, which implies

b ≡m c, and since b, c ∈ Zm, we get b = c. Because multiplication is commutative,
this shows that (Z∗

m, · ) is cancellative. So, by Proposition 1.5 (since Z∗
m is finite),

(Z∗
m, · ) is a group.

(⇒) This is obvious. a
Theorem 4.5. (Z∗

p, · ) is a group if and only if p is a prime number.

Proof. (⇒) If p is not a prime number, then there are n, m ∈ Z∗
p such that p = n ·m.

Thus, n ·m = p ≡p 0 /∈ Z∗
p, which implies that multiplication is not an operation on

Z∗
p. Hence, by Lemma 4.4, (Z∗

p, · ) is not a group.
(⇐) Suppose p is prime and let n, m ∈ Z∗

p. So, 1 ≤ n, m < p, which implies that p
neither divides n nor m. Now, since p is prime, p - n ·m, which is the same as saying
n ·m 6≡m 0. Hence, multiplication is an operation on Z∗

p and by Lemma 4.4, (Z∗
p, · )

is a group. a
In fact, for every prime number p, (Z∗

p, · ) is even a cyclic group, or in other words,
there is always an element in (Z∗

p, · ) of order p− 1 (we omit the proof).

Lemma 4.6. If p is prime, then for each k ∈ Z∗
p we have kp−1 ≡p 1 .

Proof. We work in (Z∗
p, · ). Let k ∈ Z∗

p, then 〈k〉 is a cyclic subgroup of (Z∗
p, · ), and

since |(Z∗
p, · )| = p− 1, by Theorem 3.11 we get that ord(k) = |〈k〉| divides p− 1. So,

there is some positive integer ` such that ` · ord(k) = p− 1. Now, in Z∗
p we have

kp−1 = k`·ord(k) =
(
kord(k)

)`
= 1` = 1 ,

which implies kp−1 ≡p 1 . a
Let us conclude this section with Fermat’s little theorem:

Theorem 4.7. If p is prime and n is a positive integer such that p - n, then

p
∣∣ np−1 − 1 .

Proof. We work in (Z∗
p, · ). |(Z∗

p, · )| = p − 1 and by Lemma 4.6, for every k ∈ Z∗
p

we have kp−1 ≡p 1 . Now, if k ≡p n, then kp−1 ≡p np−1. In particular, if n 6≡p 0
(or equivalently, if p - n), then np−1 ≡p 1. Hence, np−1 − 1 ≡p 0, or in other words,
p

∣∣ np−1 − 1 . a


