4. The Groups $\left(\mathbb{Z}_{m},+\right)$ and $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$

For $m \in \mathbb{Z}$, let $m \mathbb{Z}=\{m x: x \in Z\}$, then, by Hw2.Q6.(d), $m \mathbb{Z} \leqslant(\mathbb{Z},+)$. In the sequel we investigate the sets $\mathbb{Z} / m \mathbb{Z}$ for positive integers m.

The set $\mathbb{Z} / m \mathbb{Z}$ contains m pairwise disjoint "copies" of $m \mathbb{Z}$ and every set in $\mathbb{Z} / m \mathbb{Z}$ is of the form $x+m \mathbb{Z}$, for some $x \in \mathbb{Z}$. If $x+m \mathbb{Z}=y+m \mathbb{Z}$, then, by Lemma 3.6 (d), $x-y \in m \mathbb{Z}$, so, $x-y=k m$ for some $k \in \mathbb{Z}$. Hence,

$$
x+m \mathbb{Z}=y+m \mathbb{Z} \Longleftrightarrow x=k m+y \Longleftrightarrow x \equiv y(\bmod m) .
$$

Instead of $x \equiv y(\bmod m)$ we write just $x \equiv_{m} y$.
It is easy to see that $\mathbb{Z} / m \mathbb{Z}=\{0+m \mathbb{Z}, 1+m \mathbb{Z}, \ldots,(m-1)+m \mathbb{Z}\}$, and hence,

$$
\mathbb{Z}_{m}:=\{0,1, \ldots, m-1\}
$$

is a transversal for $m \mathbb{Z}$ in \mathbb{Z}. In particular, for every $x+m \mathbb{Z} \in \mathbb{Z} / m \mathbb{Z}$ there is exactly one $a \in \mathbb{Z}_{m}$ such that $x+m \mathbb{Z}=a+m \mathbb{Z}$, namely the unique $a \in \mathbb{Z}_{m}$ such that $x \equiv_{m} a$. Let us define an operation " + " on $\mathbb{Z} / m \mathbb{Z}$ as follows:

$$
\begin{aligned}
+: & \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z} \\
(x+m \mathbb{Z}, y+m \mathbb{Z}) & \rightarrow \mathbb{Z} / m \mathbb{Z} \\
& \mapsto(x+y)+m \mathbb{Z}
\end{aligned}
$$

It remains to show that " + " is an operation on $\mathbb{Z} / m \mathbb{Z}$, or in other words, that " + " is well defined:

FACT 4.1. If $x+m \mathbb{Z}=x^{\prime}+m \mathbb{Z}$ and $y+m \mathbb{Z}=y^{\prime}+m \mathbb{Z}$, then $(x+m \mathbb{Z})+(y+m \mathbb{Z})=$ $\left(x^{\prime}+m \mathbb{Z}\right)+\left(y^{\prime}+m \mathbb{Z}\right)$.

Proof. If $x+m \mathbb{Z}=x^{\prime}+m \mathbb{Z}$ and $y+m \mathbb{Z}=y^{\prime}+m \mathbb{Z}$, then, by Lemma 3.6 (d), $x^{\prime}-x \in m \mathbb{Z}$ and $y^{\prime}-y \in m \mathbb{Z}$. Now, $(x+m \mathbb{Z})+(y+m \mathbb{Z})=(x+y)+m \mathbb{Z}$, and therefore, by Lemma $3.6(\mathrm{c}),(x+y)+m \mathbb{Z}=(x+y)+\left(\left(x^{\prime}-x\right)+\left(y^{\prime}-y\right)+m \mathbb{Z}\right)=\left(x^{\prime}+y^{\prime}\right)+m \mathbb{Z}=$ $\left(x^{\prime}+m \mathbb{Z}\right)+\left(y^{\prime}+m \mathbb{Z}\right)$. Thus, $(x+m \mathbb{Z})+(y+m \mathbb{Z})=\left(x^{\prime}+m \mathbb{Z}\right)+\left(y^{\prime}+m \mathbb{Z}\right)$, which shows that the operation " + " on $\mathbb{Z} / m \mathbb{Z}$ is well defined.
The following fact is straightforward:
FACT 4.2. $(\mathbb{Z} / m \mathbb{Z},+)$ is an abelian group.
Since every element of $\mathbb{Z} / m \mathbb{Z}$ is of the form $a+m \mathbb{Z}$ for some $a \in \mathbb{Z}_{m}$, let us identify the set $\mathbb{Z} / m \mathbb{Z}$ with the set \mathbb{Z}_{m}. This identification induces an operation "+" on \mathbb{Z}_{m} :

$$
\begin{array}{cl}
+: \mathbb{Z}_{m} \times \mathbb{Z}_{m} & \rightarrow \mathbb{Z}_{m} \\
(a, b) & \mapsto a+b=: c
\end{array}
$$

where $c \in \mathbb{Z}_{m}$ is such that $a+b \equiv_{m} c$. So, by Fact $4.2,\left(\mathbb{Z}_{m},+\right)$ is an abelian group.

Since every integer $x \in \mathbb{Z}$ belongs to exactly one coset of $\mathbb{Z} / m \mathbb{Z}$, each $x \in \mathbb{Z}$ corresponds to exactly one element of \mathbb{Z}_{m}, say to $(x)_{m} \in \mathbb{Z}_{m}$. Now, by Fact 4.1, if $(x)_{m}=\left(x^{\prime}\right)_{m}$ and $(y)_{m}=\left(y^{\prime}\right)_{m}$, which is the same as $x \equiv_{m} x^{\prime}$ and $y \equiv_{m} y^{\prime}$, then $(x+y)_{m}=\left(x^{\prime}+y^{\prime}\right)_{m}$. Moreover, we get

$$
(x)_{m}=\left(x^{\prime}\right)_{m} \text { and }(y)_{m}=\left(y^{\prime}\right)_{m} \Longrightarrow(x \cdot y)_{m}=\left(x^{\prime} \cdot y^{\prime}\right)_{m},
$$

or in other words,

$$
x \equiv_{m} x^{\prime} \text { and } y \equiv_{m} y^{\prime} \Longrightarrow x \cdot y \equiv_{m} x^{\prime} \cdot y^{\prime}
$$

Proposition 4.3. The group $\left(\mathbb{Z}_{m},+\right)$ is a cyclic group of order m.
Proof. By definition, $\left|\mathbb{Z}_{m}\right|=m$. Now, since the order of 1 is m, we have $\langle 1\rangle=\mathbb{Z}_{m}$ which implies that \mathbb{Z}_{m} is cyclic.
Multiplication is also an operation on \mathbb{Z}_{m} and for all $a, b, c \in \mathbb{Z}_{m}$ we have $a \cdot(b+c)=$ $(a \cdot b)+(a \cdot c)$, which is called the distributive law.
In the following, let $m \geq 2$ and let $\mathbb{Z}_{m}^{*}:=\mathbb{Z}_{m} \backslash\{0\}=\{1, \ldots, m-1\}$. Is $\left(\mathbb{Z}_{m}^{*}, \cdot\right)$ a group?
Lemma 4.4. $\left(\mathbb{Z}_{m}^{*}, \cdot\right)$ is a group if and only if multiplication is an operation on \mathbb{Z}_{m}^{*}.
Proof. (\Leftarrow) If multiplication is an operation on \mathbb{Z}_{m}^{*}, then it is obviously associative and even commutative. Let us assume that multiplication is an operation on \mathbb{Z}_{m}^{*}. Suppose $a \cdot b \equiv_{m} a \cdot c$ (for some $a, b, c \in \mathbb{Z}_{m}^{*}$), then $(a \cdot b)-(a \cdot c) \equiv_{m} 0$, and thus, by the distributive law, $a \cdot(b-c) \equiv_{m} 0$. Now, $0 \notin \mathbb{Z}_{m}^{*}$, and since we assumed that multiplication is an operation on \mathbb{Z}_{m}^{*}, we must have $(b-c) \equiv_{m} 0$, which implies $b \equiv_{m} c$, and since $b, c \in \mathbb{Z}_{m}$, we get $b=c$. Because multiplication is commutative, this shows that $\left(\mathbb{Z}_{m}^{*}, \cdot\right)$ is cancellative. So, by Proposition 1.5 (since \mathbb{Z}_{m}^{*} is finite), $\left(\mathbb{Z}_{m}^{*}, \cdot\right)$ is a group.
(\Rightarrow) This is obvious.
Theorem 4.5. $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ is a group if and only if p is a prime number.
Proof. (\Rightarrow) If p is not a prime number, then there are $n, m \in \mathbb{Z}_{p}^{*}$ such that $p=n \cdot m$. Thus, $n \cdot m=p \equiv_{p} 0 \notin \mathbb{Z}_{p}^{*}$, which implies that multiplication is not an operation on \mathbb{Z}_{p}^{*}. Hence, by Lemma 4.4, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ is not a group.
(\Leftarrow) Suppose p is prime and let $n, m \in \mathbb{Z}_{p}^{*}$. So, $1 \leq n, m<p$, which implies that p neither divides n nor m. Now, since p is prime, $p \nmid n \cdot m$, which is the same as saying $n \cdot m \not \equiv_{m} 0$. Hence, multiplication is an operation on \mathbb{Z}_{p}^{*} and by Lemma 4.4, $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ is a group.
In fact, for every prime number $p,\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ is even a cyclic group, or in other words, there is always an element in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ of order $p-1$ (we omit the proof).
Lemma 4.6. If p is prime, then for each $k \in \mathbb{Z}_{p}^{*}$ we have $k^{p-1} \equiv_{p} 1$.
Proof. We work in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$. Let $k \in \mathbb{Z}_{p}^{*}$, then $\langle k\rangle$ is a cyclic subgroup of $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, and since $\left|\left(\mathbb{Z}_{p}^{*}, \cdot\right)\right|=p-1$, by Theorem 3.11 we get that $\operatorname{ord}(k)=|\langle k\rangle|$ divides $p-1$. So, there is some positive integer ℓ such that $\ell \cdot \operatorname{ord}(k)=p-1$. Now, in \mathbb{Z}_{p}^{*} we have

$$
k^{p-1}=k^{\ell \cdot \operatorname{ord}(k)}=\left(k^{\operatorname{ord}(k)}\right)^{\ell}=1^{\ell}=1
$$

which implies $k^{p-1} \equiv{ }_{p} 1$.
Let us conclude this section with Fermat's little theorem:
Theorem 4.7. If p is prime and n is a positive integer such that $p \nmid n$, then

$$
p \mid n^{p-1}-1
$$

Proof. We work in $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$. $\left|\left(\mathbb{Z}_{p}^{*}, \cdot\right)\right|=p-1$ and by Lemma 4.6, for every $k \in \mathbb{Z}_{p}^{*}$ we have $k^{p-1} \equiv_{p} 1$. Now, if $k \equiv_{p} n$, then $k^{p-1} \equiv_{p} n^{p-1}$. In particular, if $n \not \equiv_{p} 0$ (or equivalently, if $p \nmid n$), then $n^{p-1} \equiv_{p} 1$. Hence, $n^{p-1}-1 \equiv_{p} 0$, or in other words, $p \mid n^{p-1}-1$.

