
3. Subgroups

Definition. Let G be a group. A non-empty set H ⊆ G is a subgroup of G if for
all x, y ∈ H, x y−1 ∈ H.

Notation. If H is a subgroup of G, then we write H 6 G. If H 6= G is a subgroup
of G, then we write H < G and call H a proper subgroup of G.

Proposition 3.1. If H 6 G, then H is a group.

Proof. We have to show that H satisfies (A0), (A1), and (A2):

(A1) Let x ∈ H, then by definition, x x−1 = e ∈ H, so, the neutral element e ∈ H.
(A2) Let x ∈ H, then by definition e x−1 = x−1 ∈ H.
(A0) Let x, y ∈ H, then also y−1 ∈ H, and by definition x(y−1)−1 = xy ∈ H.

a

Definition. The subgroups {e} and G are called the trivial subgroups of G.

Proposition 3.2. The intersection of arbitrarily many subgroups of a group G is
again a subgroup of G.

Proof. Let Λ be any set and assume that for every λ ∈ Λ, Hλ 6 G. Let

H =
⋂
λ∈Λ

Hλ ,

and take any x, y ∈ H. Then, for every λ ∈ Λ, x, y ∈ Hλ, and thus, for every λ ∈ Λ,
x y−1 ∈ Hλ. Thus, x y−1 ∈ H, and since x, y ∈ H were arbitrary, H 6 G. a

Definition. Let G be a group with neutral element e and let x ∈ G. Then the least
positive integer n such that xn = e is called the order of x, denoted by ord(x). If
there is no such integer, then the order of x is “∞”.

The order of an element x of a finite group G is well-defined: Because the set
{x1, x2, x3, . . . } ⊆ G is finite, there are 0 < n < m such that xn = xm = xn xm−n,
which implies e = xm−n, where m− n is a positive integer.

Definition. For a group G and a set X ⊆ G, let〈
X

〉
:=

⋂
H6G
X⊆H

H .

By Proposition 3.2,
〈
X

〉
is a subgroup of G and it is called the subgroup generated

by X. If X = {x}, then we write just 〈x〉 instead of
〈
{x}

〉
.

Fact 3.3. If G is a group and x ∈ G of order n, then 〈x〉 is a cyclic group (i.e.,
subgroup of G) of order n.

Proof. The group 〈x〉 consists of the elements x1, x2, . . . , xn, where xn = e. On the
other hand, {x1, x2, . . . , xn} is a cyclic group of order n. a
This leads to the following:

Corollary 3.4. Let G be a group. If x ∈ G is of finite order, then ord(x) = |〈x〉|.

Theorem 3.5. Subgroups of cyclic groups are cyclic.
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Proof. Let Cn = {a0, a1, . . . , an−1} be a cyclic group of order n (for some positive
integer n) and let H 6 Cn. If H = {a0}, then we are done. So, let us assume that
am ∈ H, where m ∈ {1, . . . , n − 1}. Take the least such m. Evidently, we have
〈am〉 6 H. Now, let h ∈ H be arbitrary. Since h ∈ Cn, there is a k ∈ {0, 1, . . . , n−1}
such that h = ak. Write k in the form k = `m + r, where `, r ∈ N and 0 ≤ r < m.
Now,

(am)−1 · · · (am)−1︸ ︷︷ ︸
`-times

= (am)−` ∈ H ,

and therefore, h(am)−` = ak(am)−` = ar ∈ H. Thus, by the choice of m, we must
have r = 0, which implies that h ∈ 〈am〉. Since h ∈ H was arbitrary, this implies
H 6 〈am〉 and completes the proof. a

Definition. For H 6 G and x ∈ G, let

xH := {xh : h ∈ H} and Hx := {hx : h ∈ H} .

The sets xH and Hx are called left cosets and right cosets of H in G (respectively).

In the sequel, left and right cosets will play an important role and we will use the
following lemma quite often.

Lemma 3.6 (left-version). Let G be a group, H 6 G and let x, y ∈ G be arbitrary.
(a) |xH| = |H|, in other words, there exists a bijection between H and xH.
(b) x ∈ xH.
(c) xH = H if and only if x ∈ H.
(d) xH = yH if and only if x−1y ∈ H.
(e) xH = {g ∈ G : gH = xH}.

Proof. (a) Define the function ϕx : H → xH by stipulating ϕx(h) := xh. We have to
show that ϕx is a bijection. If ϕx(h1) = ϕx(h2) for some h1, h2 ∈ H, i.e., xh1 = xh2,
then xh1h

−1
2 = xh2h

−1
2 = xe = x, which implies h1h

−1
2 = e, and consequently, h1 = h2.

Thus, the mapping ϕx is injective (i.e., one-to-one). On the other hand, every element
in xH is of the form xh (for some h ∈ H), and since xh = ϕx(h), the mapping ϕx is
also surjective (i.e., onto), thus, ϕx is a bijection between H and xH.

(b) Since e ∈ H, xe = x ∈ xH.

(c) If xH = H, then, since e ∈ H, xe = x ∈ H. For the other direction assume that
x ∈ H: Because H is a group we have xH ⊆ H. Further, take any element h ∈ H.
Since x−1 ∈ H we have x−1h ∈ H and therefore xH 3 x(x−1h) = h, which implies
xH ⊇ H. Thus, we have xH ⊆ H ⊆ xH which shows that xH = H.

(d) If xH = yH, then

x−1xH︸ ︷︷ ︸
= H

= x−1yH
by (c)
=⇒ x−1y ∈ H .

If x−1y ∈ H, then by (c) we have x−1yH = H, and therefore, xx−1yH︸ ︷︷ ︸
yH

= xH.

(e) If g ∈ xH, then g = xh for some h ∈ H, and hence, gH = xhH = xH. Therefore,
xH ⊆ {g ∈ G : gH = xH}. Conversely, if xH = gH for some g ∈ G, then by (b),
g ∈ xH, which implies {g ∈ G : gH = xH} ⊆ xH and completes the proof. a
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Obviously, there exists also a right-version of Lemma 3.6, which is proved similarly.
As a consequence of Lemma 3.6 (b), combining left-version and right-version, we get:

Corollary 3.7. Let H 6 G, then⋃
x∈G

xH = G =
⋃
x∈G

Hx .

The following lemma is a consequence of Lemma 3.6 (d):

Lemma 3.8 (left-version). Let H 6 G, then for any x, y ∈ G we have either xH = yH
or xH ∩ yH = ∅.

Proof. Either xH ∩ yH = ∅ (and we are done) or there exists a z ∈ xH ∩ yH. If
z ∈ xH ∩ yH, then z = xh1 = yh2 (for some h1, h2 ∈ H), thus, x−1z ∈ H and
z−1y ∈ H. Since H is a group, we get (x−1z)(z−1y) = x−1y ∈ H, which implies by
Lemma 3.6 (d) that xH = yH. a
Obviously, there exists also a right-version of Lemma 3.8, which is proved similarly.

Definition. For a subgroup H 6 G let

G/H := {xH : x ∈ G} and H\G := {Hx : x ∈ G} .

Definition. A partition of a set S is a collection of pairwise disjoint non-empty
subsets of S such that the union of these subsets is S.

As a consequence of Lemma 3.6 (a), Corollary 3.7 and Lemma 3.8 (left-versions and
right-versions) we get:

Corollary 3.9. Let H 6 G, then G/H as well as H\G is a partition of G, where
each part has the same order as H.

Definition. Let H 6 G, then |G/H| = |H\G| is called the index of H in G and is
written |G : H|.

As a consequence of Corollary 3.9 we get:

Corollary 3.10. Let G be a group and let H 6 G. If |G : H| = 2, then for all
x ∈ G we have xH = Hx.

Proof. If x ∈ H, then xH = Hx = H (since H is a group). Now, let x ∈ G
be not in H. By Corollary 3.9 we have G = H ∪ xH and G = H ∪ Hx, where
H ∩ xH = ∅ = H ∩Hx, which implies xH = Hx. a

If H 6 G, then in general we do not have xH = Hx (for all x ∈ G). For example,
let C be the cube-group and let D4 be the dihedral group of degree 4. It is easy to
see that D4 6 C and that the index of D4 in C is 3. Now, holding a cube in your
hand, it should not take too long to find a rotation ρ ∈ C such that ρD4 6= D4ρ.

Theorem 3.11. Let G be a (finite) group and let H 6 G, then |G| = |G : H| · |H|.
In particular, for finite groups we get |H| divides |G|.

Proof. Consider the partition G/H of G. This partition has |G : H| parts and each
part has size |H| (by Lemma 3.6 (a)), and thus, |G| = |G : H| · |H|. In particular, if
|G| is finite, |H| divides |G|. a
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Corollary 3.12. If G is a finite group of order p, for some prime number p, then G
is a cyclic group. In particular, G is abelian.

Proof. For every x ∈ G, 〈x〉 is a subgroup of G, hence, by Theorem 3.11, |〈x〉| divides
p = |G|, which implies |〈x〉| = 1 or |〈x〉| = p. Now, |〈x〉| = 1 iff x = e. So, if x 6= e,
then |〈x〉| = p, which implies 〈x〉 = G. Hence, G is cyclic, and since cyclic groups are
abelian, G is abelian. a

Definition. A transversal for a partition is a set which contains exactly one element
from each part of the partition. For H 6 G, a transversal for the partition G/H
(H\G) is called a left (right) transversal for H in G.

For example, let G = (C∗, · ) and H = (U, · ), where U = {z ∈ C : |z| = 1}. First
notice that the set C∗/U consists of concentric circles. So, an obvious (left or right)
transversal for U in C∗ is R+, which is even a subgroup of C∗. Another (left or right)
transversal for U in C∗ is R− = {x ∈ R : x < 0}, which is not a subgroup of C∗, but
there are many other choices of transversals available.

If H is a subgroup of G and x ∈ G, then, as we have seen above, in general
xH 6= Hx. This implies that a left transversal for H in G is not necessarily also a
right transversal. However, by Lemma 3.6, it is straightforward to transform a left
transversal into a right transversal:

Proposition 3.13. Let H 6 G and let {a0, a1, . . . } be a left transversal for H in G,
then {a−1

0 , a−1
1 , . . . } is a right transversal for H in G.

Proof. Let x and y be two distinct elements of {a0, a1, . . . }. Since {a0, a1, . . . } is a
left transversal for H in G, we have xH 6= yH, and by Lemma 3.6 (left and right
version) we get:

x−1y /∈ H ⇐⇒ (x−1y)−1 /∈ H ⇐⇒ y−1x /∈ H ⇐⇒
⇐⇒ H 6= Hy−1x ⇐⇒ Hx−1 6= Hy−1 .

Hence, xH 6= yH if and only if Hx−1 6= Hy−1, and since x and y were arbitrary, this
shows that {a−1

0 , a−1
1 , . . . } is a right transversal for H in G. a


