3. SUBGROUPS

DEFINITION. Let G be a group. A non-empty set H C G is a subgroup of G if for
alz,ye H, zy ' € H.

NOTATION. If H is a subgroup of GG, then we write H < G. If H # G is a subgroup
of G, then we write H < G and call H a proper subgroup of G.

ProprosiTiON 3.1. If H < G, then H is a group.

Proof. We have to show that H satisfies (A0), (Al), and (A2):

(A1) Let x € H, then by definition, z2™' = e € H, so, the neutral element e € H.
(A2) Let x € H, then by definition ez~ =271 € H.
(AO) Let x,y € H, then also y~! € H, and by definition z(y~!)™! = 2y € H.

DEFINITION. The subgroups {e} and G are called the trivial subgroups of G.

PROPOSITION 3.2. The intersection of arbitrarily many subgroups of a group G is
again a subgroup of G.

Proof. Let A be any set and assume that for every A € A, Hy < G. Let

H=()H,,

AEA
and take any x,y € H. Then, for every A € A, z,y € H,, and thus, for every A\ € A,
xy ' € Hy. Thus, zy~' € H, and since z,y € H were arbitrary, H < G. -

DEFINITION. Let G be a group with neutral element e and let x € G. Then the least
positive integer n such that 2™ = e is called the order of x, denoted by ord(z). If
there is no such integer, then the order of x is “o00”.

The order of an element x of a finite group G is well-defined: Because the set
{z',22,23,...} C G is finite, there are 0 < n < m such that 2" = 2™ = g" 2™ ",
which implies e = ™~ ", where m — n is a positive integer.

DEFINITION. For a group G and a set X C G, let
(X):==()H.
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By Proposition 3.2, <X > is a subgroup of G and it is called the subgroup generated
by X. If X = {z}, then we write just (z) instead of ({z}).

Fact 3.3. If G is a group and = € G of order n, then (z) is a cyclic group (i.e.,
subgroup of G) of order n.

Proof. The group (x) consists of the elements z', z%, ... 2", where ™ = e. On the
other hand, {z', 22, ... 2"} is a cyclic group of order n. -

This leads to the following:
COROLLARY 3.4. Let G be a group. If z € G is of finite order, then ord(x) = |(z)].

THEOREM 3.5. Subgroups of cyclic groups are cyclic.
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Proof. Let C, = {a°,a',... ;a" '} be a cyclic group of order n (for some positive
integer n) and let H < C,,. If H = {a°}, then we are done. So, let us assume that
a™ € H, where m € {1,... ,n — 1}. Take the least such m. Evidently, we have

(a™) < H. Now, let h € H be arbitrary. Since h € C,,, thereisa k € {0,1,... ,n—1}
such that h = a*. Write k in the form k& = ¢m + r, where £, € Nand 0 < r < m.
Now,
(@) (a™) = (a™) e

{-times

and therefore, h(a™)~* = a¥(a™)~* = a" € H. Thus, by the choice of m, we must
have r = 0, which implies that h € (a™). Since h € H was arbitrary, this implies
H < (a™) and completes the proof. -

DEFINITION. For H < G and = € G, let
ctH:={zh:he H} and Hzx:={hx:heH}.
The sets « H and Hx are called left cosets and right cosets of H in G (respectively).

In the sequel, left and right cosets will play an important role and we will use the
following lemma quite often.

LEMMA 3.6 (left-version). Let G be a group, H < G and let x,y € G be arbitrary.
(a) |xH| = |H|, in other words, there exists a bijection between H and zH.

(b) =€ xH.

(¢) zH = H if and only if z € H.

(d) xH = yH if and only if 7'y € H.

() zH={9eG:gH =aH}.

Proof. (a) Define the function ¢, : H — xH by stipulating ¢, (h) := xh. We have to
show that ¢, is a bijection. If ¢, (h1) = @, (hs) for some hy, hy € H, ie., xhy = xhy,
then xhihyt = xhyhy' = ze = , which implies h1h; ' = e, and consequently, by = h.
Thus, the mapping ¢, is injective (i.e., one-to-one). On the other hand, every element
in zH is of the form xzh (for some h € H), and since zh = ¢,(h), the mapping ¢, is
also surjective (i.e., onto), thus, ¢, is a bijection between H and xH.

(b) Since e € H, xe = x € zH.

(c) If tH = H, then, since e € H, ze = x € H. For the other direction assume that
x € H: Because H is a group we have xtH C H. Further, take any element h € H.
Since x7! € H we have x7'h € H and therefore *tH > x(x~'h) = h, which implies
xH O H. Thus, we have tH C H C xH which shows that +H = H.

(d) If H = yH, then

o 'eH =1 'yH by:(? v lye H.
=H
If ='y € H, then by (c) we have z~'yH = H, and therefore, zo 'yH = zH.
—_——
yH
(e) If g € xH, then g = xh for some h € H, and hence, gH = xhH = xH. Therefore,

xH C{g € G:gH =xH}. Conversely, if tH = gH for some g € G, then by (b),
g € xH, which implies {g € G : gH = xH} C xH and completes the proof. —
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Obviously, there exists also a right-version of Lemma 3.6, which is proved similarly.
As a consequence of Lemma 3.6 (b), combining left-version and right-version, we get:

COROLLARY 3.7. Let H < G, then

UxH:G:UHx.

zeG zeG

The following lemma is a consequence of Lemma 3.6 (d):

LEMMA 3.8 (left-version). Let H < G, then for any x,y € G we have either tH = yH
or tHNyH = 0.

Proof. Either xtH NyH = () (and we are done) or there exists a z € H NyH. If
z € xH NyH, then z = xh; = yhy (for some hi,hy € H), thus, x7'2 € H and
2y € H. Since H is a group, we get (z712)(z7'y) = 2~ 'y € H, which implies by
Lemma 3.6 (d) that *H = yH. -
Obviously, there exists also a right-version of Lemma 3.8, which is proved similarly.

DEFINITION. For a subgroup H < G let
G/H ={zH:x€ G} and H\G:={Hzx:ze€G}.

DEFINITION. A partition of a set S is a collection of pairwise disjoint non-empty
subsets of S such that the union of these subsets is S.

As a consequence of Lemma 3.6 (a), Corollary 3.7 and Lemma 3.8 (left-versions and
right-versions) we get:

COROLLARY 3.9. Let H < G, then G/H as well as H\G is a partition of G, where
each part has the same order as H.

DEFINITION. Let H < G, then |G/H| = |H\G]| is called the index of H in G and is
written |G : H|.

As a consequence of Corollary 3.9 we get:

COROLLARY 3.10. Let G be a group and let H < G. If |G : H| = 2, then for all
x € G we have tH = Hzx.

Proof. If ©* € H, then tH = Hx = H (since H is a group). Now, let z € G
be not in H. By Corollary 3.9 we have G = H U xH and G = H U Hzx, where
HNxzH = (= HN Hx, which implies zH = Hux. =

If H < G, then in general we do not have xtH = Hz (for all x € (). For example,
let C' be the cube-group and let D4 be the dihedral group of degree 4. It is easy to
see that Dy < C and that the index of D4 in C is 3. Now, holding a cube in your
hand, it should not take too long to find a rotation p € C' such that pDy # Dyp.

THEOREM 3.11. Let G be a (finite) group and let H < G, then |G| = |G : H| - |H].
In particular, for finite groups we get |H| divides |G|.

Proof. Consider the partition G/H of G. This partition has |G : H| parts and each
part has size |H| (by Lemma 3.6 (a)), and thus, |G| = |G : H| - |H|. In particular, if
|G| is finite, |H| divides |G]|. -
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COROLLARY 3.12. If (G is a finite group of order p, for some prime number p, then G
is a cyclic group. In particular, G is abelian.

Proof. For every x € G, (x) is a subgroup of G, hence, by Theorem 3.11, |(z)| divides
p = |G|, which implies |(z)| = 1 or |(z)| = p. Now, [(z)| =1 iff x = e. So, if v # ¢,
then |(z)| = p, which implies (x) = G. Hence, G is cyclic, and since cyclic groups are
abelian, GG is abelian. —

DEFINITION. A transversal for a partition is a set which contains exactly one element
from each part of the partition. For H < G, a transversal for the partition G/H
(H\QG) is called a left (right) transversal for H in G.

For example, let G = (C*, -) and H = (U, - ), where U= {z € C: |z| = 1}. First
notice that the set C*/U consists of concentric circles. So, an obvious (left or right)
transversal for U in C* is R™, which is even a subgroup of C*. Another (left or right)
transversal for U in C* is R~ = {x € R : < 0}, which is not a subgroup of C*, but
there are many other choices of transversals available.

If H is a subgroup of G and x € G, then, as we have seen above, in general
xH # Hx. This implies that a left transversal for H in G is not necessarily also a
right transversal. However, by Lemma 3.6, it is straightforward to transform a left
transversal into a right transversal:

PROPOSITION 3.13. Let H < G and let {ag, ay, ...} be a left transversal for H in G,
then {ag',a;*,...} is a right transversal for H in G.

Proof. Let x and y be two distinct elements of {ag,a1,...}. Since {ag,a1,...} is a
left transversal for H in G, we have *H # yH, and by Lemma 3.6 (left and right
version) we get:
vy ¢ H <= (a7'y)'¢H <—= y'2¢ H —
— H+#Hy 'z — Ha'#Hy".

Hence, xH # yH if and only if Hx~! # Hy™!, and since x and y were arbitrary, this
shows that {ag',a;',...} is a right transversal for H in G. —



