3. Subgroups

Definition. Let G be a group. A non-empty set $H \subseteq G$ is a subgroup of G if for all $x, y \in H, x y^{-1} \in H$.
Notation. If H is a subgroup of G, then we write $H \leqslant G$. If $H \neq G$ is a subgroup of G, then we write $H<G$ and call H a proper subgroup of G.

Proposition 3.1. If $H \leqslant G$, then H is a group.
Proof. We have to show that H satisfies (A0), (A1), and (A2):
(A1) Let $x \in H$, then by definition, $x x^{-1}=e \in H$, so, the neutral element $e \in H$.
(A2) Let $x \in H$, then by definition $e x^{-1}=x^{-1} \in H$.
(A0) Let $x, y \in H$, then also $y^{-1} \in H$, and by definition $x\left(y^{-1}\right)^{-1}=x y \in H$.

Definition. The subgroups $\{e\}$ and G are called the trivial subgroups of G.
Proposition 3.2. The intersection of arbitrarily many subgroups of a group G is again a subgroup of G.

Proof. Let Λ be any set and assume that for every $\lambda \in \Lambda, H_{\lambda} \leqslant G$. Let

$$
H=\bigcap_{\lambda \in \Lambda} H_{\lambda},
$$

and take any $x, y \in H$. Then, for every $\lambda \in \Lambda, x, y \in H_{\lambda}$, and thus, for every $\lambda \in \Lambda$, $x y^{-1} \in H_{\lambda}$. Thus, $x y^{-1} \in H$, and since $x, y \in H$ were arbitrary, $H \leqslant G$.

Definition. Let G be a group with neutral element e and let $x \in G$. Then the least positive integer n such that $x^{n}=e$ is called the order of x, denoted by ord (x). If there is no such integer, then the order of x is " ∞ ".

The order of an element x of a finite group G is well-defined: Because the set $\left\{x^{1}, x^{2}, x^{3}, \ldots\right\} \subseteq G$ is finite, there are $0<n<m$ such that $x^{n}=x^{m}=x^{n} x^{m-n}$, which implies $e=x^{m-n}$, where $m-n$ is a positive integer.

Definition. For a group G and a set $X \subseteq G$, let

$$
\langle X\rangle:=\bigcap_{\substack{H \leqslant G \\ X \subseteq H}} H .
$$

By Proposition 3.2, $\langle X\rangle$ is a subgroup of G and it is called the subgroup generated by X. If $X=\{x\}$, then we write just $\langle x\rangle$ instead of $\langle\{x\}\rangle$.

Fact 3.3. If G is a group and $x \in G$ of order n, then $\langle x\rangle$ is a cyclic group (i.e., subgroup of G) of order n.

Proof. The group $\langle x\rangle$ consists of the elements $x^{1}, x^{2}, \ldots, x^{n}$, where $x^{n}=e$. On the other hand, $\left\{x^{1}, x^{2}, \ldots, x^{n}\right\}$ is a cyclic group of order n.

This leads to the following:
Corollary 3.4. Let G be a group. If $x \in G$ is of finite order, then $\operatorname{ord}(x)=|\langle x\rangle|$.
Theorem 3.5. Subgroups of cyclic groups are cyclic.

Proof. Let $C_{n}=\left\{a^{0}, a^{1}, \ldots, a^{n-1}\right\}$ be a cyclic group of order n (for some positive integer n) and let $H \leqslant C_{n}$. If $H=\left\{a^{0}\right\}$, then we are done. So, let us assume that $a^{m} \in H$, where $m \in\{1, \ldots, n-1\}$. Take the least such m. Evidently, we have $\left\langle a^{m}\right\rangle \leqslant H$. Now, let $h \in H$ be arbitrary. Since $h \in C_{n}$, there is a $k \in\{0,1, \ldots, n-1\}$ such that $h=a^{k}$. Write k in the form $k=\ell m+r$, where $\ell, r \in \mathbb{N}$ and $0 \leq r<m$. Now,

$$
\underbrace{\left(a^{m}\right)^{-1} \cdots\left(a^{m}\right)^{-1}}_{\ell \text {-times }}=\left(a^{m}\right)^{-\ell} \in H
$$

and therefore, $h\left(a^{m}\right)^{-\ell}=a^{k}\left(a^{m}\right)^{-\ell}=a^{r} \in H$. Thus, by the choice of m, we must have $r=0$, which implies that $h \in\left\langle a^{m}\right\rangle$. Since $h \in H$ was arbitrary, this implies $H \leqslant\left\langle a^{m}\right\rangle$ and completes the proof.
Definition. For $H \leqslant G$ and $x \in G$, let

$$
x H:=\{x h: h \in H\} \quad \text { and } \quad H x:=\{h x: h \in H\} .
$$

The sets $x H$ and $H x$ are called left cosets and right cosets of H in G (respectively).
In the sequel, left and right cosets will play an important role and we will use the following lemma quite often.

Lemma 3.6 (left-version). Let G be a group, $H \leqslant G$ and let $x, y \in G$ be arbitrary.
(a) $|x H|=|H|$, in other words, there exists a bijection between H and $x H$.
(b) $x \in x H$.
(c) $x H=H$ if and only if $x \in H$.
(d) $x H=y H$ if and only if $x^{-1} y \in H$.
(e) $x H=\{g \in G: g H=x H\}$.

Proof. (a) Define the function $\varphi_{x}: H \rightarrow x H$ by stipulating $\varphi_{x}(h):=x h$. We have to show that φ_{x} is a bijection. If $\varphi_{x}\left(h_{1}\right)=\varphi_{x}\left(h_{2}\right)$ for some $h_{1}, h_{2} \in H$, i.e., $x h_{1}=x h_{2}$, then $x h_{1} h_{2}^{-1}=x h_{2} h_{2}^{-1}=x e=x$, which implies $h_{1} h_{2}^{-1}=e$, and consequently, $h_{1}=h_{2}$. Thus, the mapping φ_{x} is injective (i.e., one-to-one). On the other hand, every element in $x H$ is of the form $x h$ (for some $h \in H$), and since $x h=\varphi_{x}(h)$, the mapping φ_{x} is also surjective (i.e., onto), thus, φ_{x} is a bijection between H and $x H$.
(b) Since $e \in H$, $x e=x \in x H$.
(c) If $x H=H$, then, since $e \in H, x e=x \in H$. For the other direction assume that $x \in H$: Because H is a group we have $x H \subseteq H$. Further, take any element $h \in H$. Since $x^{-1} \in H$ we have $x^{-1} h \in H$ and therefore $x H \ni x\left(x^{-1} h\right)=h$, which implies $x H \supseteq H$. Thus, we have $x H \subseteq H \subseteq x H$ which shows that $x H=H$.
(d) If $x H=y H$, then

$$
\underbrace{x^{-1} x H}_{=H}=x^{-1} y H \stackrel{\text { by }(c)}{\Longrightarrow} x^{-1} y \in H .
$$

If $x^{-1} y \in H$, then by (c) we have $x^{-1} y H=H$, and therefore, $\underbrace{x x^{-1} y H}_{y H}=x H$.
(e) If $g \in x H$, then $g=x h$ for some $h \in H$, and hence, $g H=x h H=x H$. Therefore, $x H \subseteq\{g \in G: g H=x H\}$. Conversely, if $x H=g H$ for some $g \in G$, then by (b), $g \in x H$, which implies $\{g \in G: g H=x H\} \subseteq x H$ and completes the proof.

Obviously, there exists also a right-version of Lemma 3.6, which is proved similarly. As a consequence of Lemma 3.6 (b), combining left-version and right-version, we get:
Corollary 3.7. Let $H \leqslant G$, then

$$
\bigcup_{x \in G} x H=G=\bigcup_{x \in G} H x .
$$

The following lemma is a consequence of Lemma 3.6 (d):
Lemma 3.8 (left-version). Let $H \leqslant G$, then for any $x, y \in G$ we have either $x H=y H$ or $x H \cap y H=\emptyset$.
Proof. Either $x H \cap y H=\emptyset$ (and we are done) or there exists a $z \in x H \cap y H$. If $z \in x H \cap y H$, then $z=x h_{1}=y h_{2}$ (for some $h_{1}, h_{2} \in H$), thus, $x^{-1} z \in H$ and $z^{-1} y \in H$. Since H is a group, we get $\left(x^{-1} z\right)\left(z^{-1} y\right)=x^{-1} y \in H$, which implies by Lemma 3.6 (d) that $x H=y H$.
Obviously, there exists also a right-version of Lemma 3.8, which is proved similarly.
Definition. For a subgroup $H \leqslant G$ let

$$
G / H:=\{x H: x \in G\} \quad \text { and } \quad H \backslash G:=\{H x: x \in G\} .
$$

Definition. A partition of a set S is a collection of pairwise disjoint non-empty subsets of S such that the union of these subsets is S.

As a consequence of Lemma 3.6 (a), Corollary 3.7 and Lemma 3.8 (left-versions and right-versions) we get:
Corollary 3.9. Let $H \leqslant G$, then G / H as well as $H \backslash G$ is a partition of G, where each part has the same order as H.

Definition. Let $H \leqslant G$, then $|G / H|=|H \backslash G|$ is called the index of H in G and is written $|G: H|$.
As a consequence of Corollary 3.9 we get:
Corollary 3.10. Let G be a group and let $H \leqslant G$. If $|G: H|=2$, then for all $x \in G$ we have $x H=H x$.

Proof. If $x \in H$, then $x H=H x=H$ (since H is a group). Now, let $x \in G$ be not in H. By Corollary 3.9 we have $G=H \cup x H$ and $G=H \cup H x$, where $H \cap x H=\emptyset=H \cap H x$, which implies $x H=H x$.
If $H \leqslant G$, then in general we do not have $x H=H x$ (for all $x \in G$). For example, let C be the cube-group and let D_{4} be the dihedral group of degree 4. It is easy to see that $D_{4} \leqslant C$ and that the index of D_{4} in C is 3 . Now, holding a cube in your hand, it should not take too long to find a rotation $\rho \in C$ such that $\rho D_{4} \neq D_{4} \rho$.
Theorem 3.11. Let G be a (finite) group and let $H \leqslant G$, then $|G|=|G: H| \cdot|H|$. In particular, for finite groups we get $|H|$ divides $|G|$.
Proof. Consider the partition G / H of G. This partition has $|G: H|$ parts and each part has size $|H|$ (by Lemma 3.6 (a)), and thus, $|G|=|G: H| \cdot|H|$. In particular, if $|G|$ is finite, $|H|$ divides $|G|$.

Corollary 3.12. If G is a finite group of order p, for some prime number p, then G is a cyclic group. In particular, G is abelian.
Proof. For every $x \in G,\langle x\rangle$ is a subgroup of G, hence, by Theorem 3.11, $|\langle x\rangle|$ divides $p=|G|$, which implies $|\langle x\rangle|=1$ or $|\langle x\rangle|=p$. Now, $|\langle x\rangle|=1$ iff $x=e$. So, if $x \neq e$, then $|\langle x\rangle|=p$, which implies $\langle x\rangle=G$. Hence, G is cyclic, and since cyclic groups are abelian, G is abelian.

Definition. A transversal for a partition is a set which contains exactly one element from each part of the partition. For $H \leqslant G$, a transversal for the partition G / H $(H \backslash G)$ is called a left (right) transversal for H in G.
For example, let $G=\left(\mathbb{C}^{*}, \cdot\right)$ and $H=(\mathbb{U}, \cdot)$, where $\mathbb{U}=\{z \in \mathbb{C}:|z|=1\}$. First notice that the set $\mathbb{C}^{*} / \mathbb{U}$ consists of concentric circles. So, an obvious (left or right) transversal for \mathbb{U} in \mathbb{C}^{*} is \mathbb{R}^{+}, which is even a subgroup of \mathbb{C}^{*}. Another (left or right) transversal for \mathbb{U} in \mathbb{C}^{*} is $\mathbb{R}^{-}=\{x \in \mathbb{R}: x<0\}$, which is not a subgroup of \mathbb{C}^{*}, but there are many other choices of transversals available.
If H is a subgroup of G and $x \in G$, then, as we have seen above, in general $x H \neq H x$. This implies that a left transversal for H in G is not necessarily also a right transversal. However, by Lemma 3.6, it is straightforward to transform a left transversal into a right transversal:
Proposition 3.13. Let $H \leqslant G$ and let $\left\{a_{0}, a_{1}, \ldots\right\}$ be a left transversal for H in G, then $\left\{a_{0}^{-1}, a_{1}^{-1}, \ldots\right\}$ is a right transversal for H in G.
Proof. Let x and y be two distinct elements of $\left\{a_{0}, a_{1}, \ldots\right\}$. Since $\left\{a_{0}, a_{1}, \ldots\right\}$ is a left transversal for H in G, we have $x H \neq y H$, and by Lemma 3.6 (left and right version) we get:

$$
\begin{aligned}
x^{-1} y \notin H \Longleftrightarrow\left(x^{-1} y\right)^{-1} \notin H & \Longleftrightarrow y^{-1} x \notin H \Longleftrightarrow \\
& \Longleftrightarrow H \neq H y^{-1} x \Longleftrightarrow H x^{-1} \neq H y^{-1} .
\end{aligned}
$$

Hence, $x H \neq y H$ if and only if $H x^{-1} \neq H y^{-1}$, and since x and y were arbitrary, this shows that $\left\{a_{0}^{-1}, a_{1}^{-1}, \ldots\right\}$ is a right transversal for H in G.

