2. EXAMPLES OF GROUPS

2.1. Some infinite abelian groups. It is easy to see that the following are infinite
abelian groups:

(Z,+), (Q+), R,+), (C+),
where R is the set of real numbers and C is the set of complex numbers,
(Q*7 ')7 (R*7 ')7 ((C*, ')7

where the star means “without 07,

(Q+7 ')7 (R+7 ')a
where the plus-sign means “just positive numbers”, and
(U’ ')7

where U={z € C:|z| =1}

Let 27 :={2" 1w € Z} = {1,2,5,4,1,8,4,... }, then (2%, -) is a group:

(0) Multiplication is associative (and even commutative): For all z,y,z € Z we
have

27 (2¥.2) = grH(y+2) _ ola+y)+z _ (27 2v) - 2.
(1) 2° =1 is the neutral element: For all x € Z we have
90 .97 _ 9r 90 _ 9r+0 _ o
(2) Every element in 2% has an inverse: For all x € Z we have
9—e 9t _ or  9—t _ gut(-z) _ 90
The groups (2%, -) and (Z, +) are essentially the same groups. To see this, let

o: L — 2F
xr = 2%

It is easy to see that ¢ is a bijection (i.e., a one-to-one mapping which is onto) between
Z and 2%. Further, p(z+y) = 221V = 27.2Y = () - ¢(y), and p(0) = 2° = 1. So, the
image under ¢ of x + y is the same as the product of the images of x and y, and the
image of the neutral element of the group (Z, +) is the neutral element of the group
(2%, .). Thus, the only difference between (2%, -) and (Z, +) is that the elements as
well as the operations have different names. This leads to the following:

DEFINITION. Let (G4, ©) and (Go, ¢) be two groups. If there exists a bijection ¢
between (G; and G5 such that for all x,y € GG; we have

p(reoy) = p(x)ep(y),

then the groups (Gi, o) and (Gs, *) are called isomorphic, denoted by G; = G,
and the mapping ¢ is called an isomorphism.

In other words, two groups are isomorphic if they are essentially the same groups
(up to renaming the elements and the operation). In particular, all groups with 1

element are isomorphic.
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2.2. Some infinite non-abelian groups. Let M(n) be the set of all n by n matrices
with real numbers as entries. Notice that (M(n), . ) is not a group, even though there
exists a unique neutral element, namely the n by n identity matrix

10 --- 0
01 --- 0
0 0 1

Let GL(n) := {A € M(n) : det(A) # 0}, then (GL(n), - ) is a group, the so-called

general llnear group. It is easy to see that GL(1) is isomorphic to (R*, -), but for
n > 1, GL(n) is a non-abelian group, consider for example

(2)(5 1) = 2)
(1) 3>=(3 )

The so-called special linear group is SL(n) := {4 € GL(n) : det(A) = 1}, where
the operation is again matrix-multiplication. It is easy to see that SL(1) is isomorphic
to ({1}, -), but for n > 1, SL(n) is non-abelian group.

The so-called orthogonal group is O(n) := {A € M(n) : AA" = [,,}. It is easy
to see that O(1) is isomorphic to ({—1,1}, -), but for n > 1, O(n) is a non-abelian

group.
The so-called special orthogonal group is SO(n) := {A € O(n) : det(A) = 1}.

It is easy to see that SO(1) is isomorphic to ({1}, ) Further each A € SO(2) is of

the form
cos(a) —sin(«)
A=1".
sin(a)  cos(a)
for some o € R, and therefore, the matrices in SO(2) are just rotations and the group

SO(2) is abelian. In fact, SO(2) is isomorphic to (U, -). But for n > 2, SO(n) is a
non-abelian group, consider for example the matrices

0 -1 0 10 0
1 0 0 and 00 -1
0 0 1 01 0

2.3. Some finite abelian groups. For a positive integer n, consider the set C,, :=
{a® al,... ,a"1}. On O, define a binary operation as follows:

¢ m attm if £ +m < n,
ata™ =
alltm=nif ¢+ m > n.

For every positive integer n, C,, is an abelian group: First note that every z € Z
is of the form x = sn + r, where s € Z and r € {0,1,... ,n — 1}, and we write
z = r (mod n). In fact, a’a™ = a”, where £ + m = r (mod n). Thus, a*(a‘a™) =
(afa*)a™ = a", where r is such that k+ ¢+ m = r (mod n), and a™a’ = a’a™, which

implies that the operation is associative and commutative.



9

0agm = g™ = @™. Further, for all

The element a° is a neutral element, since a
s € Z we have a™ = a*" = a°, since sn = 0 (mod n). The inverse of a™ € C,, is a"™™,

since a™a" ™ = ™M = g = q°.
DEFINITION. The group C, is called the cyclic group of order n (since |C,| = n).

2.4. Some finite non-abelian groups. Let X,Y and Z be three sets and let f :
X — Y and g:Y — Z be two functions. The composition of f and g is a function
from X to Z defined as follows:

(gof)(@) = g(f()).
Let X = {1,2,... ,n} be a finite set and let S,, be the set of all bijections ¢ : X —
X. The composition “o” of two bijections 0,7 : X — X is again a bijection, and
therefore, “o” is a binary operation on .5,.

14077

The operation is associative:
For every x € X and any o, 7,7 € S,, we have

((007') ow)(x) = (007') (W(ZE)) = U(T(W(aj)))
(O’O (Tom))(z) = a((TOW)(:U)) = U(T(ﬂ'(x)))
The identity mapping is a bijection and a neutral element of S,, and the inverse

mapping of a bijection is also a bijection. So, S,, has a neutral element and each
o € S, has an inverse, denoted by ¢~!, and therefore, S,, is a group.

DEFINITION. The group 5, is called the symmetric group of degree n, or the
permutation group of degree n.

Notice that |S,| = n!, so, except for n = 1 and n = 2, the order of S, is strictly
greater than n. Let us consider S, for small values of n.

S1: |S1| = 1, namely the identity mapping ¢ : 1 — 1. Since every group with just one
element is isomorphic to C;, we have S; = (.

. . . . 1 2
Sa: |Se| = 2, namely the identity mapping ¢ and the permutation o : '_> 1

2

Since every group with just two elements is isomorphic to Cs, we have Sy = (.

S3: |S3] = 6. Consider the permutations o : and T :

111
111

Now,
(oor)(1) =0o(r(1)) =0(1) =2,
(too)(1) = 7'(0(1)) =7(2) =3,
thus, S5 is a non-abelian group. In fact, for every n > 3, 5, is a non-abelian group.

Let us now consider a special class of groups, namely the group of rigid motions of
a two or three-dimensional solid.

DEFINITION. A rigid motion of a solid S is a bijection ¢ : S — S which has the
following property: The solid .S can be moved through 3-dimensional Euclidean space
in such a way that it does not change its shape and when the movement stops, each
point p € S is in position ¢(p).
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Since rigid motions are special kinds of bijections, for every solid S, the set of all
rigid motions of S together with composition (as operation) is a group. In this course
we will investigate in depth the groups of rigid motions of the five Platonic solids,
which are tetrahedron, cube, octahedron, dodecahedron, and icosahedron. But first,
let us consider a simpler solid, namely a regular n-sided polygon.

DEFINITION. The group of rigid motions of a regular n-sided polygon (for n > 3) is
called the dihedral group of degree n and is denoted by D,,.

Let us consider first D3: D3 has 6 elements, namely the identity ¢, two non-trivial
rotations say p; and ps, and three reflections say o1, o9, and o3. If we label the
vertices of the regular triangle with 1, 2, and 3, then every permutation of {1,2,3}
corresponds to an element of Dj, and since |D3| = 6 = |S3], D3 = S3. In particular,
Dj3 is a non-abelian group. In fact, for every n > 3, D,, is a non-abelian group.

2.5. Representing finite groups by multiplication tables. Let S = {a,b,¢,...}
be a finite set with some binary operation “o”. Then the following table is the so-
called multiplication table of S:

ol a b c

alaca aob acc
b|bea bob boc
c|coa cob

0

For example, the multiplication table of C; = {e, a, a?, a®}, where e = a°, is as follows:

2

w

°le a d a
el e a a @
ala a* a® e
a?la® a&® e a
a*la® e a a®

A multiplication table of a group is often called its Cayley table. Note that not
every multiplication table is a Cayley table (see Hw3.Q11).

2.6. Products of groups. Let (G, *g) and (H,*y) be any groups (not necessarily
finite groups), then

GxH:={(z,y):xcGandyc H}.
On the set G x H we define an operation “o” as follows:
(T1,91) ° (T2, Y2) = (T1 %G T2, Y1 *7 Y2) -

It is easy to verify that (G x H,°) is a group and that it is abelian if and only if G
and H are both abelian (see Hw3.Q12).



11

Let us consider the abelian group Cy x Cy: By definition we have |Cy x Cy| = |Cy] -
|Cy] = 4. Let Cy = {a° a'} and let e = (a°,a°), z = (a° a'), y = (a',a’), and
z = (a',a'). In this notation, Cy x Cy has the following Cayley table:

e K8 0o
< 5 olo
N o 88

SIS
8 w|w

z (&

<
&

It is easy to see that Cy x (5 is not isomorphic to C; and we will see later that
these two groups are essentially the only groups of order 4. If p and ¢ are positive
integers such that ged(p, ¢) = 1, then C, x C; = C,, (see Hw3.Q14.a), but in general,
C, x Cy is not isomorphic to Cpy, €.g., let p = g = 2 (see also Hw3.Q14.b).



