2. Examples of Groups

2.1. Some infinite abelian groups. It is easy to see that the following are infinite abelian groups:

$$
(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+),
$$

where \mathbb{R} is the set of real numbers and \mathbb{C} is the set of complex numbers,

$$
\left(\mathbb{Q}^{*}, \cdot\right),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)
$$

where the star means "without 0 ",

$$
\left(\mathbb{Q}^{+}, \cdot\right),\left(\mathbb{R}^{+}, \cdot\right)
$$

where the plus-sign means "just positive numbers", and

$$
(\mathbb{U}, \cdot),
$$

where $\mathbb{U}=\{z \in C:|z|=1\}$.
Let $2^{\mathbb{Z}}:=\left\{2^{x}: x \in \mathbb{Z}\right\}=\left\{1,2, \frac{1}{2}, 4, \frac{1}{4}, 8, \frac{1}{8}, \ldots\right\}$, then $\left(2^{\mathbb{Z}}, \cdot\right)$ is a group:
(0) Multiplication is associative (and even commutative): For all $x, y, z \in \mathbb{Z}$ we have

$$
2^{x} \cdot\left(2^{y} \cdot 2^{z}\right)=2^{x+(y+z)}=2^{(x+y)+z}=\left(2^{x} \cdot 2^{y}\right) \cdot 2^{z} .
$$

(1) $2^{0}=1$ is the neutral element: For all $x \in \mathbb{Z}$ we have

$$
2^{0} \cdot 2^{x}=2^{x} \cdot 2^{0}=2^{x+0}=2^{x} .
$$

(2) Every element in $2^{\mathbb{Z}}$ has an inverse: For all $x \in \mathbb{Z}$ we have

$$
2^{-x} \cdot 2^{x}=2^{x} \cdot 2^{-x}=2^{x+(-x)}=2^{0} .
$$

The groups $\left(2^{\mathbb{Z}}, \cdot\right)$ and $(\mathbb{Z},+)$ are essentially the same groups. To see this, let

$$
\begin{aligned}
\varphi: \mathbb{Z} & \rightarrow 2^{\mathbb{Z}} \\
x & \mapsto 2^{x}
\end{aligned}
$$

It is easy to see that φ is a bijection (i.e., a one-to-one mapping which is onto) between \mathbb{Z} and $2^{\mathbb{Z}}$. Further, $\varphi(x+y)=2^{x+y}=2^{x} \cdot 2^{y}=\varphi(x) \cdot \varphi(y)$, and $\varphi(0)=2^{0}=1$. So, the image under φ of $x+y$ is the same as the product of the images of x and y, and the image of the neutral element of the group $(\mathbb{Z},+)$ is the neutral element of the group $\left(2^{\mathbb{Z}}, \cdot\right)$. Thus, the only difference between $\left(2^{\mathbb{Z}}, \cdot\right)$ and $(\mathbb{Z},+)$ is that the elements as well as the operations have different names. This leads to the following:

Definition. Let $\left(G_{1}, \circ\right)$ and $\left(G_{2}, \bullet\right)$ be two groups. If there exists a bijection φ between G_{1} and G_{2} such that for all $x, y \in G_{1}$ we have

$$
\varphi(x \circ y)=\varphi(x) \bullet \varphi(y),
$$

then the groups $\left(G_{1}, \circ\right)$ and $\left(G_{2}, \bullet\right)$ are called isomorphic, denoted by $G_{1} \cong G_{2}$, and the mapping φ is called an isomorphism.

In other words, two groups are isomorphic if they are essentially the same groups (up to renaming the elements and the operation). In particular, all groups with 1 element are isomorphic.
2.2. Some infinite non-abelian groups. Let $\mathrm{M}(n)$ be the set of all n by n matrices with real numbers as entries. Notice that $(\mathrm{M}(n), \cdot)$ is not a group, even though there exists a unique neutral element, namely the n by n identity matrix

$$
I_{n}:=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) .
$$

Let $\mathrm{GL}(n):=\{A \in \mathrm{M}(n): \operatorname{det}(A) \neq 0\}$, then $(\mathrm{GL}(n), \cdot)$ is a group, the so-called general linear group. It is easy to see that GL(1) is isomorphic to $\left(\mathbb{R}^{*}, \cdot\right)$, but for $n>1, \mathrm{GL}(n)$ is a non-abelian group, consider for example

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right)=\left(\begin{array}{ll}
6 & 3 \\
6 & 2
\end{array}\right), \\
& \left(\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
3 & 8
\end{array}\right) .
\end{aligned}
$$

The so-called special linear group is $\mathrm{SL}(n):=\{A \in \mathrm{GL}(n): \operatorname{det}(A)=1\}$, where the operation is again matrix-multiplication. It is easy to see that $\mathrm{SL}(1)$ is isomorphic to $(\{1\}, \cdot)$, but for $n>1, \mathrm{SL}(n)$ is non-abelian group.
The so-called orthogonal group is $\mathrm{O}(n):=\left\{A \in \mathrm{M}(n): A A^{t}=I_{n}\right\}$. It is easy to see that $\mathrm{O}(1)$ is isomorphic to $(\{-1,1\}, \cdot)$, but for $n>1, \mathrm{O}(n)$ is a non-abelian group.
The so-called special orthogonal group is $\mathrm{SO}(n):=\{A \in \mathrm{O}(n): \operatorname{det}(A)=1\}$. It is easy to see that $\mathrm{SO}(1)$ is isomorphic to $(\{1\}, \cdot)$. Further, each $A \in \mathrm{SO}(2)$ is of the form

$$
A=\left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right)
$$

for some $\alpha \in \mathbb{R}$, and therefore, the matrices in $\mathrm{SO}(2)$ are just rotations and the group $\mathrm{SO}(2)$ is abelian. In fact, $\mathrm{SO}(2)$ is isomorphic to (\mathbb{U}, \cdot). But for $n>2, \mathrm{SO}(n)$ is a non-abelian group, consider for example the matrices

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

2.3. Some finite abelian groups. For a positive integer n, consider the set $C_{n}:=$ $\left\{a^{0}, a^{1}, \ldots, a^{n-1}\right\}$. On C_{n} define a binary operation as follows:

$$
a^{\ell} a^{m}= \begin{cases}a^{\ell+m} & \text { if } \ell+m<n \\ a^{(\ell+m)-n} & \text { if } \ell+m \geq n .\end{cases}
$$

For every positive integer n, C_{n} is an abelian group: First note that every $x \in \mathbb{Z}$ is of the form $x=s n+r$, where $s \in \mathbb{Z}$ and $r \in\{0,1, \ldots, n-1\}$, and we write $x \equiv r(\bmod n)$. In fact, $a^{\ell} a^{m}=a^{r}$, where $\ell+m \equiv r(\bmod n)$. Thus, $a^{k}\left(a^{\ell} a^{m}\right)=$ $\left(a^{k} a^{\ell}\right) a^{m}=a^{r}$, where r is such that $k+\ell+m \equiv r(\bmod n)$, and $a^{m} a^{\ell}=a^{\ell} a^{m}$, which implies that the operation is associative and commutative.

The element a^{0} is a neutral element, since $a^{0} a^{m}=a^{0+m}=a^{m}$. Further, for all $s \in \mathbb{Z}$ we have $a^{n}=a^{s n}=a^{0}$, since $s n \equiv 0(\bmod n)$. The inverse of $a^{m} \in C_{n}$ is a^{n-m}, since $a^{m} a^{n-m}=a^{m+(n-m)}=a^{n}=a^{0}$.
Definition. The group C_{n} is called the cyclic group of order n (since $\left|C_{n}\right|=n$).
2.4. Some finite non-abelian groups. Let X, Y and Z be three sets and let f : $X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. The composition of f and g is a function from X to Z defined as follows:

$$
(g \circ f)(x):=g(f(x)) .
$$

Let $X=\{1,2, \ldots, n\}$ be a finite set and let S_{n} be the set of all bijections $\sigma: X \rightarrow$ X. The composition " \circ " of two bijections $\sigma, \tau: X \rightarrow X$ is again a bijection, and therefore, " \circ " is a binary operation on S_{n}.
The operation " \circ " is associative:
For every $x \in X$ and any $\sigma, \tau, \pi \in S_{n}$ we have

$$
\begin{aligned}
& ((\sigma \circ \tau) \circ \pi)(x)=(\sigma \circ \tau)(\pi(x))=\sigma(\tau(\pi(x))) \\
& (\sigma \circ(\tau \circ \pi))(x)=\sigma((\tau \circ \pi)(x))=\sigma(\tau(\pi(x)))
\end{aligned}
$$

The identity mapping is a bijection and a neutral element of S_{n}, and the inverse mapping of a bijection is also a bijection. So, S_{n} has a neutral element and each $\sigma \in S_{n}$ has an inverse, denoted by σ^{-1}, and therefore, S_{n} is a group.
Definition. The group S_{n} is called the symmetric group of degree n, or the permutation group of degree n.
Notice that $\left|S_{n}\right|=n$!, so, except for $n=1$ and $n=2$, the order of S_{n} is strictly greater than n. Let us consider S_{n} for small values of n.
$S_{1}:\left|S_{1}\right|=1$, namely the identity mapping $\iota: 1 \mapsto 1$. Since every group with just one element is isomorphic to C_{1}, we have $S_{1} \cong C_{1}$.
$S_{2}:\left|S_{2}\right|=2$, namely the identity mapping ι and the permutation $\sigma:\left\{\begin{array}{lll}1 & \mapsto & 2 \\ 2 & \mapsto & 1\end{array}\right.$.
Since every group with just two elements is isomorphic to C_{2}, we have $S_{2} \cong C_{2}$.
$S_{3}:\left|S_{3}\right|=6$. Consider the permutations $\sigma:\left\{\begin{array}{lll}1 & \mapsto & 2 \\ 2 & \mapsto & 1 \\ 3 & \mapsto & 3\end{array}\right.$ and $\tau:\left\{\begin{array}{lll}1 & \mapsto & 1 \\ 2 & \mapsto & 3 \\ 3 & \mapsto & 2\end{array}\right.$.
Now,

$$
\begin{aligned}
& (\sigma \circ \tau)(1)=\sigma(\tau(1))=\sigma(1)=2, \\
& (\tau \circ \sigma)(1)=\tau(\sigma(1))=\tau(2)=3,
\end{aligned}
$$

thus, S_{3} is a non-abelian group. In fact, for every $n \geq 3, S_{n}$ is a non-abelian group.
Let us now consider a special class of groups, namely the group of rigid motions of a two or three-dimensional solid.
Definition. A rigid motion of a solid S is a bijection $\varphi: S \rightarrow S$ which has the following property: The solid S can be moved through 3-dimensional Euclidean space in such a way that it does not change its shape and when the movement stops, each point $p \in S$ is in position $\varphi(p)$.

Since rigid motions are special kinds of bijections, for every solid S, the set of all rigid motions of S together with composition (as operation) is a group. In this course we will investigate in depth the groups of rigid motions of the five Platonic solids, which are tetrahedron, cube, octahedron, dodecahedron, and icosahedron. But first, let us consider a simpler solid, namely a regular n-sided polygon.

Definition. The group of rigid motions of a regular n-sided polygon (for $n \geq 3$) is called the dihedral group of degree n and is denoted by D_{n}.

Let us consider first D_{3} : D_{3} has 6 elements, namely the identity ι, two non-trivial rotations say ρ_{1} and ρ_{2}, and three reflections say σ_{1}, σ_{2}, and σ_{3}. If we label the vertices of the regular triangle with 1,2 , and 3 , then every permutation of $\{1,2,3\}$ corresponds to an element of D_{3}, and since $\left|D_{3}\right|=6=\left|S_{3}\right|, D_{3} \cong S_{3}$. In particular, D_{3} is a non-abelian group. In fact, for every $n \geq 3, D_{n}$ is a non-abelian group.
2.5. Representing finite groups by multiplication tables. Let $S=\{a, b, c, \ldots\}$ be a finite set with some binary operation " \circ ". Then the following table is the socalled multiplication table of S :

\circ	a	b	c	\cdots
a	$a \circ a$	$a \circ b$	$a \circ c$	\cdots
b	$b \circ a$	$b \circ b$	$b \circ c$	\cdots
c	$c \circ a$	$c \circ b$	\cdots	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots

For example, the multiplication table of $C_{4}=\left\{e, a, a^{2}, a^{3}\right\}$, where $e=a^{0}$, is as follows:

\circ	e	a	a^{2}	a^{3}
e	e	a	a^{2}	a^{3}
a	a	a^{2}	a^{3}	e
a^{2}	a^{2}	a^{3}	e	a
a^{3}	a^{3}	e	a	a^{2}

A multiplication table of a group is often called its Cayley table. Note that not every multiplication table is a Cayley table (see Hw3.Q11).
2.6. Products of groups. Let $\left(G, *_{G}\right)$ and $\left(H, *_{H}\right)$ be any groups (not necessarily finite groups), then

$$
G \times H:=\{\langle x, y\rangle: x \in G \text { and } y \in H\}
$$

On the set $G \times H$ we define an operation "०" as follows:

$$
\left\langle x_{1}, y_{1}\right\rangle \circ\left\langle x_{2}, y_{2}\right\rangle:=\left\langle x_{1} *_{G} x_{2}, y_{1} *_{H} y_{2}\right\rangle .
$$

It is easy to verify that $(G \times H, \circ)$ is a group and that it is abelian if and only if G and H are both abelian (see Hw3.Q12).

Let us consider the abelian group $C_{2} \times C_{2}$: By definition we have $\left|C_{2} \times C_{2}\right|=\left|C_{2}\right|$. $\left|C_{2}\right|=4$. Let $C_{2}=\left\{a^{0}, a^{1}\right\}$ and let $e=\left\langle a^{0}, a^{0}\right\rangle, x=\left\langle a^{0}, a^{1}\right\rangle, y=\left\langle a^{1}, a^{0}\right\rangle$, and $z=\left\langle a^{1}, a^{1}\right\rangle$. In this notation, $C_{2} \times C_{2}$ has the following Cayley table:

\circ	e	x	y	z
e	e	x	y	z
x	x	e	z	y
y	y	z	e	x
z	z	y	x	e

It is easy to see that $C_{2} \times C_{2}$ is not isomorphic to C_{4} and we will see later that these two groups are essentially the only groups of order 4. If p and q are positive integers such that $\operatorname{gcd}(p, q)=1$, then $C_{p} \times C_{q} \cong C_{p q}$ (see Hw3.Q14.a), but in general, $C_{p} \times C_{q}$ is not isomorphic to $C_{p q}$, e.g., let $p=q=2$ (see also Hw3.Q14.b).

