2. Examples of Groups

2.1. Some infinite abelian groups. It is easy to see that the following are infinite abelian groups:

$$(\mathbb{Z},+), \ (\mathbb{Q},+), \ (\mathbb{R},+), \ (\mathbb{C},+),$$

where \mathbb{R} is the set of real numbers and \mathbb{C} is the set of complex numbers,

$$(\mathbb{Q}^*, \cdot), (\mathbb{R}^*, \cdot), (\mathbb{C}^*, \cdot),$$

where the star means "without 0",

$$(\mathbb{Q}^+, \cdot), \ (\mathbb{R}^+, \cdot),$$

where the plus-sign means "just positive numbers", and

$$(\mathbb{U}, \cdot),$$

where $\mathbb{U} = \{z \in C : |z| = 1\}.$

Let $2^{\mathbb{Z}} := \{2^x : x \in \mathbb{Z}\} = \{1, 2, \frac{1}{2}, 4, \frac{1}{4}, 8, \frac{1}{8}, \dots\}$, then $(2^{\mathbb{Z}}, \cdot)$ is a group:

(0) Multiplication is associative (and even commutative): For all $x,y,z\in\mathbb{Z}$ we have

$$2^{x} \cdot (2^{y} \cdot 2^{z}) = 2^{x+(y+z)} = 2^{(x+y)+z} = (2^{x} \cdot 2^{y}) \cdot 2^{z}.$$

(1) $2^0 = 1$ is the neutral element: For all $x \in \mathbb{Z}$ we have

$$2^0 \cdot 2^x = 2^x \cdot 2^0 = 2^{x+0} = 2^x$$

(2) Every element in $2^{\mathbb{Z}}$ has an inverse: For all $x \in \mathbb{Z}$ we have

$$2^{-x} \cdot 2^x = 2^x \cdot 2^{-x} = 2^{x+(-x)} = 2^0$$
.

The groups $(2^{\mathbb{Z}}, \cdot)$ and $(\mathbb{Z}, +)$ are essentially the same groups. To see this, let

$$\begin{array}{rcccc} \varphi : & \mathbb{Z} & \to & 2^{\mathbb{Z}} \\ & x & \mapsto & 2^x \end{array}$$

It is easy to see that φ is a bijection (*i.e.*, a one-to-one mapping which is onto) between \mathbb{Z} and $2^{\mathbb{Z}}$. Further, $\varphi(x+y) = 2^{x+y} = 2^x \cdot 2^y = \varphi(x) \cdot \varphi(y)$, and $\varphi(0) = 2^0 = 1$. So, the image under φ of x + y is the same as the product of the images of x and y, and the image of the neutral element of the group $(\mathbb{Z}, +)$ is the neutral element of the group $(2^{\mathbb{Z}}, \cdot)$. Thus, the only difference between $(2^{\mathbb{Z}}, \cdot)$ and $(\mathbb{Z}, +)$ is that the elements as well as the operations have different names. This leads to the following:

DEFINITION. Let (G_1, \circ) and (G_2, \bullet) be two groups. If there exists a bijection φ between G_1 and G_2 such that for all $x, y \in G_1$ we have

$$\varphi(x \circ y) = \varphi(x) \bullet \varphi(y) \,,$$

then the groups (G_1, \circ) and (G_2, \bullet) are called **isomorphic**, denoted by $G_1 \cong G_2$, and the mapping φ is called an **isomorphism**.

In other words, two groups are isomorphic if they are essentially the same groups (up to renaming the elements and the operation). In particular, all groups with 1 element are isomorphic. 2.2. Some infinite non-abelian groups. Let M(n) be the set of all n by n matrices with real numbers as entries. Notice that $(M(n), \cdot)$ is *not* a group, even though there exists a unique neutral element, namely the n by n identity matrix

$$I_n := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

.

Let $GL(n) := \{A \in M(n) : \det(A) \neq 0\}$, then $(GL(n), \cdot)$ is a group, the so-called **general linear group**. It is easy to see that GL(1) is isomorphic to (\mathbb{R}^*, \cdot) , but for n > 1, GL(n) is a non-abelian group, consider for example

$$\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 6 & 2 \end{pmatrix} ,$$
$$\begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 3 & 8 \end{pmatrix} .$$

The so-called **special linear group** is $SL(n) := \{A \in GL(n) : det(A) = 1\}$, where the operation is again matrix-multiplication. It is easy to see that SL(1) is isomorphic to $(\{1\}, \cdot)$, but for n > 1, SL(n) is non-abelian group.

The so-called **orthogonal group** is $O(n) := \{A \in M(n) : AA^t = I_n\}$. It is easy to see that O(1) is isomorphic to $(\{-1,1\}, \cdot)$, but for n > 1, O(n) is a non-abelian group.

The so-called **special orthogonal group** is $SO(n) := \{A \in O(n) : det(A) = 1\}$. It is easy to see that SO(1) is isomorphic to $(\{1\}, \cdot)$. Further, each $A \in SO(2)$ is of the form

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

for some $\alpha \in \mathbb{R}$, and therefore, the matrices in SO(2) are just rotations and the group SO(2) is abelian. In fact, SO(2) is isomorphic to (\mathbb{U}, \cdot) . But for n > 2, SO(n) is a non-abelian group, consider for example the matrices

$\left(0 \right)$	-1	$0 \rangle$		(1)	0	0 \	
1	0	0	and	0	0	-1	
$\int 0$	-1 0 0	1/		$\left(0 \right)$	1	$\begin{pmatrix} 0\\ -1\\ 0 \end{pmatrix}$	

2.3. Some finite abelian groups. For a positive integer n, consider the set $C_n := \{a^0, a^1, \ldots, a^{n-1}\}$. On C_n define a binary operation as follows:

$$a^{\ell}a^{m} = \begin{cases} a^{\ell+m} & \text{if } \ell+m < n, \\ a^{(\ell+m)-n} & \text{if } \ell+m \ge n. \end{cases}$$

For every positive integer n, C_n is an abelian group: First note that every $x \in \mathbb{Z}$ is of the form x = sn + r, where $s \in \mathbb{Z}$ and $r \in \{0, 1, \ldots, n-1\}$, and we write $x \equiv r \pmod{n}$. In fact, $a^{\ell}a^m = a^r$, where $\ell + m \equiv r \pmod{n}$. Thus, $a^k(a^{\ell}a^m) = (a^ka^\ell)a^m = a^r$, where r is such that $k + \ell + m \equiv r \pmod{n}$, and $a^ma^\ell = a^\ell a^m$, which implies that the operation is associative and commutative.

The element a^0 is a neutral element, since $a^0 a^m = a^{0+m} = a^m$. Further, for all $s \in \mathbb{Z}$ we have $a^n = a^{sn} = a^0$, since $sn \equiv 0 \pmod{n}$. The inverse of $a^m \in C_n$ is a^{n-m} , since $a^m a^{n-m} = a^{m+(n-m)} = a^n = a^0$.

DEFINITION. The group C_n is called the **cyclic group** of order n (since $|C_n| = n$).

2.4. Some finite non-abelian groups. Let X, Y and Z be three sets and let $f : X \to Y$ and $g : Y \to Z$ be two functions. The composition of f and g is a function from X to Z defined as follows:

$$(g \circ f)(x) := g(f(x)).$$

Let $X = \{1, 2, ..., n\}$ be a finite set and let S_n be the set of all bijections $\sigma : X \to X$. The composition " \circ " of two bijections $\sigma, \tau : X \to X$ is again a bijection, and therefore, " \circ " is a binary operation on S_n .

The operation " \circ " is associative: For every $x \in X$ and any $\sigma, \tau, \pi \in S_n$ we have

$$((\sigma \circ \tau) \circ \pi)(x) = (\sigma \circ \tau)(\pi(x)) = \sigma(\tau(\pi(x))) (\sigma \circ (\tau \circ \pi))(x) = \sigma((\tau \circ \pi)(x)) = \sigma(\tau(\pi(x)))$$

The identity mapping is a bijection and a neutral element of S_n , and the inverse mapping of a bijection is also a bijection. So, S_n has a neutral element and each $\sigma \in S_n$ has an inverse, denoted by σ^{-1} , and therefore, S_n is a group.

DEFINITION. The group S_n is called the symmetric group of degree n, or the permutation group of degree n.

Notice that $|S_n| = n!$, so, except for n = 1 and n = 2, the order of S_n is strictly greater than n. Let us consider S_n for small values of n.

 S_1 : $|S_1| = 1$, namely the identity mapping $\iota : 1 \mapsto 1$. Since every group with just one element is isomorphic to C_1 , we have $S_1 \cong C_1$.

 S_2 : $|S_2| = 2$, namely the identity mapping ι and the permutation σ : $\begin{cases} 1 & \mapsto & 2 \\ 2 & \mapsto & 1 \end{cases}$. Since every group with just two elements is isomorphic to C_2 , we have $S_2 \cong C_2$.

$$S_3: |S_3| = 6. \text{ Consider the permutations } \sigma: \begin{cases} 1 & \mapsto & 2\\ 2 & \mapsto & 1\\ 3 & \mapsto & 3 \end{cases} \tau: \begin{cases} 1 & \mapsto & 1\\ 2 & \mapsto & 3\\ 3 & \mapsto & 2 \end{cases}$$

Now,

$$(\sigma \circ \tau)(1) = \sigma(\tau(1)) = \sigma(1) = 2,$$

$$(\tau \circ \sigma)(1) = \tau(\sigma(1)) = \tau(2) = 3,$$

thus, S_3 is a non-abelian group. In fact, for every $n \ge 3$, S_n is a non-abelian group.

Let us now consider a special class of groups, namely the group of rigid motions of a two or three-dimensional solid.

DEFINITION. A **rigid motion** of a solid S is a bijection $\varphi : S \to S$ which has the following property: The solid S can be moved through 3-dimensional Euclidean space in such a way that it does not change its shape and when the movement stops, each point $p \in S$ is in position $\varphi(p)$.

Since rigid motions are special kinds of bijections, for every solid S, the set of all rigid motions of S together with composition (as operation) is a group. In this course we will investigate in depth the groups of rigid motions of the five Platonic solids, which are tetrahedron, cube, octahedron, dodecahedron, and icosahedron. But first, let us consider a simpler solid, namely a regular n-sided polygon.

DEFINITION. The group of rigid motions of a regular *n*-sided polygon (for $n \ge 3$) is called the **dihedral group** of degree *n* and is denoted by D_n .

Let us consider first D_3 : D_3 has 6 elements, namely the identity ι , two non-trivial rotations say ρ_1 and ρ_2 , and three reflections say σ_1 , σ_2 , and σ_3 . If we label the vertices of the regular triangle with 1, 2, and 3, then every permutation of $\{1, 2, 3\}$ corresponds to an element of D_3 , and since $|D_3| = 6 = |S_3|$, $D_3 \cong S_3$. In particular, D_3 is a non-abelian group. In fact, for every $n \ge 3$, D_n is a non-abelian group.

2.5. Representing finite groups by multiplication tables. Let $S = \{a, b, c, ...\}$ be a finite set with some binary operation " \circ ". Then the following table is the so-called multiplication table of S:

	a			•••
a	$a \circ a$	$a \circ b$	$a \circ c$	•••
b	$b \circ a$	$b \circ b$	$b \circ c$	• • •
c	$c \circ a$	$c \circ b$	$a \circ c$ $b \circ c$ \dots	•••
:	÷	÷	÷	÷

For example, the multiplication table of $C_4 = \{e, a, a^2, a^3\}$, where $e = a^0$, is as follows:

0	e	a	a^2	a^3
e	e	a	a^2	a^3
a	a	a^2	a^3	e
$a a^2 a^3$	a^2	a^3	e	a
a^3	$a a^2 a^3$	e	a	a^2

A multiplication table of a group is often called its **Cayley table**. Note that not every multiplication table is a Cayley table (see Hw3.Q11).

2.6. Products of groups. Let $(G, *_G)$ and $(H, *_H)$ be any groups (not necessarily finite groups), then

$$G \times H := \{ \langle x, y \rangle : x \in G \text{ and } y \in H \}.$$

On the set $G \times H$ we define an operation " \circ " as follows:

$$\langle x_1, y_1 \rangle \circ \langle x_2, y_2 \rangle := \langle x_1 *_G x_2, y_1 *_H y_2 \rangle$$

It is easy to verify that $(G \times H, \circ)$ is a group and that it is abelian if and only if G and H are both abelian (see Hw3.Q12).

Let us consider the abelian group $C_2 \times C_2$: By definition we have $|C_2 \times C_2| = |C_2| \cdot |C_2| = 4$. Let $C_2 = \{a^0, a^1\}$ and let $e = \langle a^0, a^0 \rangle$, $x = \langle a^0, a^1 \rangle$, $y = \langle a^1, a^0 \rangle$, and $z = \langle a^1, a^1 \rangle$. In this notation, $C_2 \times C_2$ has the following Cayley table:

_

It is easy to see that $C_2 \times C_2$ is not isomorphic to C_4 and we will see later that these two groups are essentially the only groups of order 4. If p and q are positive integers such that gcd(p,q) = 1, then $C_p \times C_q \cong C_{pq}$ (see Hw3.Q14.a), but in general, $C_p \times C_q$ is not isomorphic to C_{pq} , e.g., let p = q = 2 (see also Hw3.Q14.b).