
1. The Axioms

A binary operation on a set is a correspondence that assigns to each ordered pair
of elements of the set a uniquely determined element of the set. For example addition
is a binary operation on N, Z, Q, and {0}, and multiplication is a binary operation
on Q, Q∗, N, Z, {−1, 1}, and {0, 1}; on the other hand, addition is neither a binary
operation on {−1, 1} nor on {0, 1}. Why ?

A set G together with some binary operation, say “ ◦ ” is a group, if the following
axioms are satisfied:

(A0) For any a, b, c ∈ G we have:

a ◦ (b ◦ c) = (a ◦ b) ◦ c .

This says that the operation “ ◦ ” is associative.

(A1) There is an element e ∈ G such that for all a ∈ G we have:

e ◦ a = a ◦ e = a .

The element e is called a neutral element of (G, ◦ ).

(A2) If e is a neutral element of (G, ◦ ), then for each a ∈ G there is an ā ∈ G such
that

a ◦ ā = ā ◦ a = e .

The element ā is called an inverse of a.

Any binary operation on some set which satisfies (A0) is called associative. It is
a consequence of (A0) that we can omit brackets. In particular, whenever “ ◦ ” is a
binary associative operation on some set S, then for any a, b, c, d ∈ S we have (see
Hw1.Q2):

(a ◦ b) ◦ (c ◦ d) =
(
a ◦ (b ◦ c)

)
◦ d .

On the other, a binary operation must not be associative (see Hw1.Q3).
A binary operation “ ◦ ” on some set S is called commutative if for all x, y ∈ S

we have

x ◦ y = y ◦ x .

Definition. A group (G, ◦ ) is called abelian, if the binary operation “ ◦ ” is com-
mutative.

For example (Z, +), (Q∗, · ),
(
{0}, +

)
and

(
{−1, 1}, ·

)
are abelian groups. On the

other hand, as we will see later, not every group is abelian.

Let us now show that the neutral element of a group is unique and that each element
has exactly one inverse.

Proposition 1.1. Let (G, ◦ ) be a group, then there is exactly one neutral element
and each element of G has exactly one inverse.
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Proof. Let e, ẽ ∈ G be neutral elements of (G, ◦ ). Thus, for every x ∈ G we have
x ◦ ẽ = e ◦ x = x, and therefore,

e =
↑

ẽ neutral

e ◦ ẽ =
↑

e neutral

ẽ ,

and hence, there is exactly one neutral element.
Let a ∈ G be arbitrary and let x, x̃ ∈ G be such that a ◦ x = x̃ ◦ a = e, where e ∈ G

is the unique neutral element of (G, ◦ ). Now,

x̃ =
↑

e neutral

x̃ ◦ e = x̃ ◦ (a ◦ x) =
↑

“ ◦ ” is associative

(x̃ ◦ a) ◦ x = e ◦x =
↑

e neutral

x ,

and hence, a has exactly one inverse, and since a ∈ G was arbitrary, this completes
the proof. a

Notation. For an “abstract” group we often write just G and instead of (G, ◦ ),
and for a, b ∈ G we often write just ab instead of a ◦ b. In other words, if the binary
operation is not specified, we handle it like multiplication, and consequently, we
usually denote the inverse of a ∈ G by a−1. Notice that in general, (ab)−1 = b−1 a−1.

We can weaken the axioms (A1) and (A2) a little bit:

Proposition 1.2. G is a group if the following axioms hold:

(A0) The binary operation is associative.

(A1∗) There is an element e ∈ G such that for all a ∈ G we have:

ea = a .

The element e is called a left-neutral element of G.

(A2∗) If e is a left-neutral element of G, then for each a ∈ G there is an ā ∈ G such
that

āa = e .

The element ā is called left-inverse of a.

Proof. We have to prove that e is also a right-neutral element of G and that ā is also
a right-inverse of a.

Let a ∈ G be arbitrary and let ¯̄a be a left-inverse of ā, where ā is a left-inverse of
a. Now we have:

aā =
↑

e left-neutral

e(aā) = (¯̄aā)(aā) =
↑

by associativity

¯̄a

e︷︸︸︷
(āa)ā = ¯̄a

ā︷︸︸︷
(eā) = ¯̄aā = e .

Thus, aā = āa = e, which shows that each left-inverse of some a ∈ G is also a
right-inverse, hence an inverse of a.

Further, we have:

ae = a(āa) =
↑

by associativity

e︷︸︸︷
(aā)a = ea =

↑
e left-neutral

a .
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Thus, since a ∈ G was arbitrary, e is also a right-neutral element, hence, a neutral
element of G. a

In (A1∗) and (A2∗) we can replace “left-neutral” and “left-inverse” by “right-
neutral” and “right-inverse” respectively (see Hw2.Q9), but we cannot mix left and
right:

Proposition 1.3. If a set S with an associative operation has a left-neutral element
and each element of S has a right-inverse, then S must not be a group.

Proof. Let S = {0, 1} and for x, y ∈ S define x ∗ y := y. Now, the binary operation
“ ∗ ” is associative and 0 is a left-neutral element of (S, ∗ ), 0 is the right-inverse of 0
as well as of 1, so, each element of S has a right-inverse. On the other hand, there is
no x ∈ S such that x ∗ 1 = 0, or in other words, 1 has no left-inverse. Hence, (S, ∗ )
is not a group. a

Of course, in Proposition 1.3, we can swap “left” and “right” (see Hw2.Q10). How-
ever, the situation is different, if the left-neutral element is unique:

Proposition 1.4. If a set G with an associative operation has a unique left-neutral
element and each element of G has a right-inverse, then G is a group.

Proof. Let e be the unique left-neutral element of G. Let

E(G) = {a ∈ G : aa = a} .

First we show that E(G) = {e}. Take any a ∈ E(G) and b ∈ G, then

ab = a(eb) = a(aa−1)b = (aa)(a−1b) = a(a−1b) = (aa−1)b = eb = b .

Therefore, since b was arbitrary, a is a left-neutral element, and since the left-neutral
element is unique, we have a = e.

Consider Ge = {ge : g ∈ G}, and let us show that Ge is a group. By definition
of Ge, any x ∈ Ge is of the form x = ge (for some g ∈ G). Now, xe = (ge)e =
g(ee) = ge = x, and therefore, e (or more precisely ee) is a right-neutral element of
Ge. Further, let g−1 be a right-inverse element of g, then g−1e ∈ Ge is a right-inverse
of x = ge. Indeed,

x(g−1e) = (ge)(g−1e) = g(eg−1)e = (gg−1)e = ee = e .

So, Ge has a right-neutral element and each element of Ge has a right inverse, which
implies (by the “right-version” of Proposition 1.2) that Ge is a group.

In order to show that G is a group, by Proposition 1.2 it is enough to show that
each element in G has a left-inverse.

Let g be any element of G, and let x ∈ Ge be such that x(ge) = (ge)x = e (such
an x exists since Ge is a group). We claim that xg ∈ E(G):

(xg)(xg) = (xg)e(xg) (since x ∈ Ge, ex = x)
= xeg
= xg (since x ∈ Ge, xe = x).

Thus, xg ∈ E(G) = {e}, or in other words, xg = e. Since g ∈ G was arbitrary,
each element of G has a left-inverse, which implies (by Proposition 1.2) that G is a
group. a
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Definition. The order of a group (G, ◦ ), denoted by |G|, is the cardinality (or size)
of the underlying set G.

If G has finitely many elements, then |G| = n for some positive integer n (why
there is no group with 0 elements?) and if G is infinite, then we set |G| = ∞.

To state the next result we have first to give some definitions.

Definition. A set S with a binary operation is left cancellative if whenever
x, y, z ∈ S and xy = xz, one has y = z. The notion right cancellative is de-
fined similarly. Further, S is cancellative if S is both, left cancellative as well as
right cancellative.

If the binary operation on S is commutative and S is left cancellative, then S is
also right cancellative. But on the other hand, if S is cancellative, then this does not
imply that the binary operation on S must be commutative, as we will see later.

However, it is easy to see that every group is cancellative. Moreover, for finite sets,
axioms (A1) and (A2) can be replaced by just one axiom:

Proposition 1.5. Let G be a finite set with an associative operation. If G is can-
cellative, then G is a group.

Proof. Let a ∈ G be arbitrary. Consider the set aG = {ax : x ∈ G}. It is easy to
see that |aG| ≤ |G|. On the other hand, if |aG| < |G|, then would find two distinct
x, y ∈ G such that ax = ay, and since G is left cancellative, this would imply that
x = y, a contradiction. So, |aG| = |G|, which implies that aG = G.

Now, there must be an element e ∈ G such that ae = a. Further, we have ae =
(ae)e = a(ee), which implies, since G is left cancellative, that e = ee. Let now b ∈ G
be arbitrary. We get be = b(ee) = (be)e, and since G is right cancellative, be = b, and
hence, e is a right-neutral element of G.

Let b ∈ G be arbitrary. Again, we have bG = G, which implies that there is a b̄ ∈ G
such that bb̄ = e, thus, the element b ∈ G has a right-inverse, and since b ∈ G was
arbitrary, every element of G has a right-inverse. By Proposition 1.2 (replacing “left”
by “right”), this proves that G is a group. a

Notice that in the proof of Proposition 1.5 we used that G is both, left and right
cancellative and that G is finite. In fact, we cannot do better:

Proposition 1.6.
(a) A finite set S with an associative operation which is right cancellative must

not be a group.
(b) An infinite set S with an associative operation which is cancellative must not

be a group.

Proof. (a) Let S = {0, 1} and for x, y ∈ S define x ∗ y := x. Then the operation “ ∗ ”
is associative and S is right cancellative (since y ∗ x = z ∗ x implies y = z). But S is
obviously not a group (see also the proof of Proposition 1.3).

(b) Consider (N, +), where N = {0, 1, 2, 3, . . . } denotes the set of natural numbers.
The operation “+” is associative and N is cancellative (since x + y = x + z ⇔ y =
z ⇔ y + x = z + x). But (N, +) is not a group, since for example 1 does not have an
inverse. a


