Review problems.

Problem 1. Let M_3 be the vector space of 3×3 real matrices, equipped with the inner product

$$\langle A, B \rangle = \operatorname{trace}(AB)$$

(recall that the trace of a matrix is the sum of its diagonal entries.)

Let $\mathfrak{h} \subset M_3$ be the subset of diagonal matrices D with trace(D) = 0. Show that \mathfrak{h} forms a subspace of M_3 , find the dimension of \mathfrak{h} , and find an orthonormal basis for \mathfrak{h} .

Problem 2. Let M_2 be the vector space of 2×2 real matrices, and let \mathfrak{sl}_2 be the subset of matrices of trace zero:

$$\mathfrak{sl}_2 = \left\{ A \in M_2 \mid \operatorname{trace}(A) = 0 \right\}$$

If

$$E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

then the set $\mathcal{B} = \{E, F, H\}$ is a basis for \mathfrak{sl}_2 . Define a linear transformation $T : \mathfrak{sl}_2 \to \mathfrak{sl}_2$ by

$$T(A) = EA - AE$$

Write the matrix of T with respect to the basis \mathcal{B} . Determine the rank of T, and find bases for its kernel and image.

Problem 3. Let $P_{\leq 3}$ be the vector space of polynomials with real coefficients of degree at most 3, and define an inner product on P by

$$\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$$

Find an orthogonal basis for P_3 .

Problem 4. If

$$A = \left[\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

calculate $\exp(tA)$. Solve the initial value problem x'(t) = Ax, x(0) = c where

$$c = \left[\begin{array}{c} 1\\ 0\\ -1 \end{array} \right]$$

Problem 5. Find a solution to the differential equation x'(t) = Cx(t) + f(t), where

$$C = \left[\begin{array}{rrrr} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

and

$$f(t) = \begin{bmatrix} e^{2t} \\ \sin t \\ t \end{bmatrix}$$

Problem 6. Consider the mass-springs system with equations of motion

$$x_1'' = -4x_1 + 2x_2$$
$$x_2'' = 2x_1 - 5x_2$$

Solve the initial value problem with $x_1(0) = 0$, $x_2(0) = 2$, $x'_1(0) = 0 = x'_2(0)$.

Problem 7. Consider the function f(x) defined for 0 < x < 1 by

$$f(x) = \begin{cases} 1/2 & \text{if } 0 < x < \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} \le x < 1 \end{cases}$$

Compute the Fourier cosine series of the even 1-periodic extension of f(x).

Problem 8. Find a solution u(x,t) to the following initial-boundary value problem

$$\begin{aligned} \frac{\partial u}{\partial t} &= 9 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \quad t < 0\\ u(0,t) &= 0 = \frac{\partial u}{\partial x}(1,t)\\ u(x,0) &= f(x) \end{aligned}$$

where f(x) is the function defined in Problem 8.

Problem 9. Let T be the linear transformation in Problem 2, and let H be the matrix defined in Problem 2. Solve the initial value problem

$$x'(t) = T(x), \quad x(0) = H$$