Review problems.

Problem 1. Let M_{3} be the vector space of 3×3 real matrices, equipped with the inner product

$$
\langle A, B\rangle=\operatorname{trace}(A B)
$$

(recall that the trace of a matrix is the sum of its diagonal entries.)
Let $\mathfrak{h} \subset M_{3}$ be the subset of diagonal matrices D with trace $(D)=0$. Show that \mathfrak{h} forms a subspace of M_{3}, find the dimension of \mathfrak{h}, and find an orthonormal basis for \mathfrak{h}.

Problem 2. Let M_{2} be the vector space of 2×2 real matrices, and let $\mathfrak{s l}_{2}$ be the subset of matrices of trace zero:

$$
\mathfrak{s l}_{2}=\left\{A \in M_{2} \mid \operatorname{trace}(A)=0\right\}
$$

If

$$
E=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad F=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

then the set $\mathcal{B}=\{E, F, H\}$ is a basis for $\mathfrak{s l}_{2}$. Define a linear transformation $T: \mathfrak{s l}_{2} \rightarrow \mathfrak{s l}_{2}$ by

$$
T(A)=E A-A E
$$

Write the matrix of T with respect to the basis \mathcal{B}. Determine the rank of T, and find bases for its kernel and image.

Problem 3. Let $P_{\leq 3}$ be the vector space of polynomials with real coefficients of degree at most 3, and define an inner product on P by

$$
\langle p(x), q(x)\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Find an orthogonal basis for P_{3}.

Problem 4. If

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

calculate $\exp (t A)$. Solve the initial value problem $x^{\prime}(t)=A x, \quad x(0)=c$ where

$$
c=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

Problem 5. Find a solution to the differential equation $x^{\prime}(t)=C x(t)+f(t)$, where

$$
C=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
f(t)=\left[\begin{array}{c}
e^{2 t} \\
\sin t \\
t
\end{array}\right]
$$

Problem 6. Consider the mass-springs system with equations of motion

$$
\begin{aligned}
& x_{1}^{\prime \prime}=-4 x_{1}+2 x_{2} \\
& x_{2}^{\prime \prime}=2 x_{1}-5 x_{2}
\end{aligned}
$$

Solve the initial value problem with $x_{1}(0)=0, x_{2}(0)=2, x_{1}^{\prime}(0)=0=x_{2}^{\prime}(0)$.

Problem 7. Consider the function $f(x)$ defined for $0<x<1$ by

$$
f(x)= \begin{cases}1 / 2 & \text { if } 0<x<\frac{1}{2} \\ 1 & \text { if } \frac{1}{2} \leq x<1\end{cases}
$$

Compute the Fourier cosine series of the even 1-periodic extension of $f(x)$.

Problem 8. Find a solution $u(x, t)$ to the following initial-boundary value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}=9 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 & <x<1, \quad t<0 \\
u(0, t)=0 & =\frac{\partial u}{\partial x}(1, t) \\
u(x, 0) & =f(x)
\end{aligned}
$$

where $f(x)$ is the function defined in Problem 8.

Problem 9. Let T be the linear transformation in Problem 2, and let H be the matrix defined in Problem 2. Solve the initial value problem

$$
x^{\prime}(t)=T(x), \quad x(0)=H
$$

