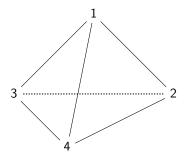
Symmetries of the tetrahedron. Math 113 Summer 2014.

Let Δ denote the tetrahedron sitting in \mathbb{R}^3 , centred at the origin, with vertices labelled 1, 2, 3, 4.



Let T denote the set of symmetries of Δ . There are two distinct types of symmetries in T - **reflections** and **rotations**. We will denote a symmetry s in T as a list (i_1, i_2, i_3, i_4) , with $i_j \in \{1, 2, 3, 4\}$, and where i_j is the vertex position that vertex j is sent to via s. For example, if r_1 is the symmetry that fixes vertex 1 and rotates the plane containing the remaining three vertices by $2\pi/3$ <u>counterclockwise</u> (viewed from vertex 1), then we write (1, 3, 4, 2).

This is the list of all 24 elements in T, with the above notation:

(1, 2, 3, 4)	identity
(1, 3, 4, 2)	rotation (fix vertex 1)
(1, 4, 2, 3)	rotation (fix vertex 1)
(4, 2, 1, 3)	rotation (fix vertex 2)
(3, 2, 4, 1)	rotation (fix vertex 2)
(2, 4, 3, 1)	rotation (fix vertex 3)
(4, 1, 3, 2)	rotation (fix vertex 3)
(3, 1, 2, 4)	rotation (fix vertex 4)
(2, 3, 1, 4)	rotation (fix vertex 4)
(2, 1, 4, 3)	rotation
(3, 4, 1, 2)	rotation
(4, 3, 2, 1)	rotation
(1, 2, 4, 3)	reflection
(1, 3, 2, 4)	reflection
(2, 1, 3, 4)	reflection
(1, 4, 3, 2)	reflection
(4, 1, 2, 3)	reflection
(2, 4, 1, 3)	reflection
(3, 1, 4, 2)	reflection
(3, 2, 1, 4)	reflection
(2, 3, 4, 1)	reflection
(4, 3, 1, 2)	reflection
(4, 2, 3, 1)	reflection
(3, 4, 2, 1)	reflection

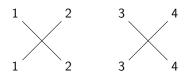
It is a fact - that you shall prove later in this course - that each of these symmetries is a product of the reflections (2, 1, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3). For example, the rotation (1, 3, 4, 2) = (1, 3, 2, 4) * (1, 2, 4, 3).

Let W_4 be the set of wiring diagrams on four vertices. Define

$$f: T \to W_4$$
; $(i_1, i_2, i_3, i_4) \mapsto X_{i_1 i_2 i_3 i_4}$

where $X_{i_1i_2i_3i_4}$ is the wiring diagram that has a line between j and i_j : for example, X_{2143} is the wiring

diagram



f is surjective: let $X \in W_4$ be a wiring diagram. Let (i_1, i_2, i_3, i_4) be the list of endpoints of lines in X - so that i_1 is the endpoint of line starting at 1 etc. Then, $f(i_1, i_2, i_3, i_4) = X$, so that f is surjective. Hence, because f is surjective and $|T| = |W_4|$, f is bijective.

You can check that

$$(2, 1, 3, 4) * (1, 3, 2, 4) = (2, 3, 1, 4), (2, 3, 1, 4) * (2, 1, 3, 4) = (3, 2, 1, 4),$$
$$(2, 3, 1, 4) * (2, 3, 1, 4) = (3, 1, 2, 4), (2, 1, 3, 4) * (1, 2, 4, 3) = (2, 1, 4, 3)$$
$$(1, 3, 2, 4) * (1, 2, 4, 3) = (1, 3, 4, 2).$$

It is straightforward to verify that f(s * t) = f(s)f(t), for s * t one of the five products appearing above. For example, $f(2, 1, 3, 4) = X_{2134}$, $f(1, 3, 2, 4) = X_{1324}$, and $X_{2134}X_{1324} = X_{2314}$

