Sample Exam 2. Math 113 Summer 2014.

These problems are practice for the second exam, on rings and fields.

1. True or False
(a) The canonical homomorphism $\pi: R \rightarrow R / I$ is surjective.
(b) Every homomorphism of rings is injective.
(c) The element \bar{x} is a unit in $\mathbb{Q}[x] /\left(x^{4}+1\right)$.
(d) There exists a homomorphism $\mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$.
(e) If R is a unique factorization domain and I a proper ideal of R, then R / I is a unique factorization domain.
(f) If $\sigma \in \operatorname{Gal}(L: K)$, and $\alpha \in L$ is a root of $f \in K[x]$, then $\sigma(\alpha)$ is a root of f.
(g) If R and S are domains, then $R \times S$ is a domain.
(h) Every algebraic field extension is finite.
(i) $\mathbb{Q}(i-\sqrt{7})=\mathbb{Q}(i, \sqrt{-7}+1)$.
(j) The minimal polynomial of the extension $\mathbb{Q} \subset \mathbb{Q}\left(e^{2 \pi i / 3}\right)$ is $x^{3}-1$.
(k) If F is any field, there exists a homomorphism $F \rightarrow \mathbb{C}$.
(I) If $K \subset L$ is a normal field extension of degree 4 , then there exists exactly one intermediate subfield $F \neq K$, L.
(m) The polynomial $3 x^{4}-30 x^{2}+10 x+15$ is irreducible over \mathbb{Z}.
(n) If $f: R \rightarrow S$ is a surjective ring homomorphism, and \mathfrak{m} a maximal ideal in S, then $f^{-1}(\mathfrak{m})$ is a maximal ideal in R.
(o) There exists a homomorphism $\mathbb{Q}[x] /\left(x^{2}+2 x+1\right) \rightarrow \mathbb{C}$.
2. (a) If R is a ring, say what it means for an element $r \in R$ to be irreducible.
(b) Give an example of an irreducible polynomial of degree larger than 2 in the ring $\mathbb{Q}[x]$.
(c) Let R be a domain and $I=(f)$ a nonzero ideal. Prove that if I is prime, then f is irreducible.
3. (a) Let $\alpha=\sqrt[3]{\sqrt{2}+\sqrt{3}}$, and consider the field extensions

$$
\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2}+\sqrt{3}) \subset \mathbb{Q}(\alpha) \subset \mathbb{Q}(i, \alpha)=K
$$

Given that $[K: \mathbb{Q}]=24$, determine $[\mathbb{Q}(\alpha): \mathbb{Q}(\sqrt{2}+\sqrt{3})]$. Justify your answer.
(b) Let $\omega=\frac{-1+i \sqrt{3}}{2}$, a cube root of 1 . Consider the extensions $\mathbb{Q} \subset \mathbb{Q}(\omega) \subset$ $\mathbb{Q}(\sqrt[3]{7}, \omega)$. Let f and g be the automorphisms of $\mathbb{Q}(\sqrt[3]{7}, \omega)$ defined by

$$
f:\left\{\begin{array}{l}
\sqrt[3]{7} \mapsto \omega \sqrt[3]{7} \\
\omega \mapsto \omega
\end{array} \quad g:\left\{\begin{array}{l}
\sqrt[3]{7} \mapsto \sqrt[3]{7} \\
\omega \mapsto \omega^{2}
\end{array}\right.\right.
$$

Show that $f \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{7}, \omega): \mathbb{Q}(\omega))$.
(c) Find an element $x \in \mathbb{Q}(\sqrt[3]{7}, \omega)$ such that $f(g(x)) \neq g(f(x))$.
(d) Using (d), and given that $[\mathbb{Q}(\sqrt[3]{7}, \omega): \mathbb{Q}]=6$, prove that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{7}, \omega): \mathbb{Q}) \cong S_{3}$.
(e) Prove that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{7}, \omega): \mathbb{Q}(\omega)) \cong \mathbb{Z} / 3 \mathbb{Z}$.
4. (a) For each of the following rings say, whether they are a field; domain; principal ideal domain; euclidean domain; unique factorization domain
i. $\mathbb{Z}[x]$
ii. $\mathbb{Q}[x] /\left(x^{2}+x+1\right)$
iii. $\mathbb{C}[x, y]$
(b) Define a principal ideal domain.
(c) Prove that if R is a principal ideal domain and I a prime ideal of R, then R / I is a principal ideal domain.
(d) Let $f: Z[x] \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ be $f=g \circ h$, where $h: Z[x] \rightarrow \mathbb{Z}$ is the evaluation map at -1 and $g: \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ is the quotient map. Prove that $\operatorname{ker} f=\left(x+1, x^{2}+1\right)$.
5. (a) State the (first) isomorphism theorem for rings.
(b) Consider the map $\phi: \mathbb{C}[x, y] \rightarrow \mathbb{C}[y]$ given by $\phi(p(x, y))=p\left(y^{2}, y^{3}\right)$. Compute $\phi\left(x^{2}+x y+y^{2}\right)$.
(c) Prove that im $\phi=\mathbb{C}\left[y^{2}, y^{3}\right] \subset \mathbb{C}[y]$.
(d) Prove that $\operatorname{ker} \phi$ is a prime ideal in $\mathbb{C}[x, y]$.
(e) Is im ϕ a unique factorization domain?

