Some quotient rings. Math 113 Summer 2014.

Claim: $\mathbb{Q}[x]/(x^3-1) \cong \mathbb{R} \times \mathbb{C}$ Let $\omega = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$. Define

$$f: \mathbb{Q}[x] \to \mathbb{R} \times \mathbb{C}$$
; $p \mapsto (ev_1(p), ev_{\omega}(p))$,

where $ev_c : \mathbb{Q}[x] \to R$; $p \mapsto p(c) \in R$. Then, f is a homomorphism of rings.

First note that ker $ev_1 = (x - 1)$: indeed, if p(1) = 0, then 1 is a root of p and x - 1 divides p; hence, ker $ev_1 = (x - 1)$. We now claim that ker $ev_{\omega} = (1 + x + x^2)$: since $\omega^2 + \omega + 1 = 0$, we have $(x^2 + x + 1) \subset \text{ker } ev_{\omega}$. Now, suppose that $p = \sum a_i x^i \in \text{ker } ev_{\omega}$ so that

$$0=p(\omega)=\sum a_i\omega^i.$$

As $\omega^3 = 1$ (check!), we find that

$$\omega^{k} = \begin{cases} 1, \ k \equiv 0 \mod 3, \\ \omega, \ k \equiv 1 \mod 3, \\ \omega^{2}, \ k \equiv 2 \mod 3 \end{cases}$$

Using that $\omega^2 = \overline{\omega}$, we find (for suitable *a*, *b*, *c* $\in \mathbb{Q}$)

$$0 = p(\omega) = a + b\omega + c\omega^2.$$

Also,

$$p(\omega^2) = p(\overline{\omega}) = \overline{a + b\omega + c\omega^2} = 0$$

Thus, $(x - \omega)(x - \omega^2) = x^2 + x + 1$ divides *p*. Hence, ker $ev_\omega = (x^2 + x + 1)$. Now, ker $f = \ker ev_1 \cap \ker ev_\omega = (x - 1) \cap (x^2 + x + 1) = ((x - 1)(x^2 + x + 1)) = (x^3 - 1)$.