Some quotient rings. Math 113 Summer 2014.

Claim: $\mathbb{Q}[x] /\left(x^{3}-1\right) \cong \mathbb{R} \times \mathbb{C}$
Let $\omega=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$. Define

$$
f: \mathbb{Q}[x] \rightarrow \mathbb{R} \times \mathbb{C} ; p \mapsto\left(e v_{1}(p), e v_{\omega}(p)\right)
$$

where $\mathrm{ev}_{c}: \mathbb{Q}[x] \rightarrow R ; p \mapsto p(c) \in R$. Then, f is a homomorphism of rings.
First note that ker ev $v_{1}=(x-1)$: indeed, if $p(1)=0$, then 1 is a root of p and $x-1$ divides p; hence, $\operatorname{ker}^{\operatorname{ev}} v_{1}=(x-1)$. We now claim that $\operatorname{ker} \operatorname{ev} \omega=\left(1+x+x^{2}\right)$: since $\omega^{2}+\omega+1=0$, we have $\left(x^{2}+x+1\right) \subset \operatorname{ker} e v_{\omega}$. Now, suppose that $p=\sum a_{i} x^{i} \in \operatorname{ker} e v_{\omega}$ so that

$$
0=p(\omega)=\sum a_{i} \omega^{i}
$$

As $\omega^{3}=1$ (check!), we find that

$$
\omega^{k}=\left\{\begin{array}{l}
1, k \equiv 0 \quad \bmod 3 \\
\omega, k \equiv 1 \quad \bmod 3 \\
\omega^{2}, k \equiv 2 \quad \bmod 3
\end{array}\right.
$$

Using that $\omega^{2}=\bar{\omega}$, we find (for suitable $a, b, c \in \mathbb{Q}$)

$$
0=p(\omega)=a+b \omega+c \omega^{2}
$$

Also,

$$
p\left(\omega^{2}\right)=p(\bar{\omega})=\overline{a+b \omega+c \omega^{2}}=0
$$

Thus, $(x-\omega)\left(x-\omega^{2}\right)=x^{2}+x+1$ divides p. Hence, ker ev $\omega=\left(x^{2}+x+1\right)$.
Now, ker $f=\operatorname{ker} e v_{1} \cap \operatorname{ker~ev} \omega=(x-1) \cap\left(x^{2}+x+1\right)=\left((x-1)\left(x^{2}+x+1\right)\right)=\left(x^{3}-1\right)$.

