
Homework 6 Math 113 Summer 2014.
Due Monday August 4th

Make sure to write your solutions to the following problems in complete English sentences.
Solutions that are unreadable or incoherent will receive no credit. Provide complete justifications
for all claims that you make. Problems will be of varying difficulty, and do not appear in any
order of difficulty. All rings are assumed commutative and with unity.

1. For each of the following ideals, say whether they are prime, maximal (hence also prime),
or neither

(a) (x4 + 2x2 + 1) ⊂ C[x ]

(b) (x5 + 24x3 − 54x2 + 6x + 12) ⊂ Q[x ]

(c) (x − a) ⊂ R[x , y ], where a ∈ R.

(d) (4, 2x − 1) ⊂ Z[x ]

2. In this problem you will prove a “dictionary” which relates notions of divisibility to principal
ideals. Let R be a ring and a, b elements of R.

(a) Prove that a|b if and only if b ∈ (a)

(b) Prove that a is a unit if and only if (a) = R (we’ve used this in class many times)

(c) Prove that if R is an integral domain, then a = ub for some unit u ∈ R if and only
if (a) = (b).

(d) Prove that if R is an integral domain and (a) is a nonzero prime ideal, then a is an
irreducible element.

(e) Show, however, by finding an example in Z[
√
−5], then even if a is irreducible, the

ideal (a) may not be prime1.

3. Use the division algorithm in k[x ] to prove the following lemma, which you might have
wished you had for the last HW: If a ∈ k, and a nonconstant linear polynomial f is
in the kernel of the evaluation map Eva : k[x ] → k , then f generates the kernel, so
ker Eva = (f ).

4. Prove that any element r in a ring R which is not contained in any maximal ideal must
be a unit in R. You may use the following fact: every nonzero ring contains a maximal
ideal. [Hint: look for a maximal ideal in a suitable quotient, then look at its pre-image
under the quotient map. Is it maximal?]

5. Let R be a ring, and n the set of nilpotent elements in R.

(a) Prove that n is an ideal (remember that we allow 0 as a nilpotent).

(b) Prove that n is contained inside every prime ideal of R.

(c) Prove that the ring R/n has no nonzero nilpotent elements.

6. The ring Z[i ] of Gaussian integers is a Euclidean domain, with norm n : Z[i ] \ {0} → N
given by n(a+bi) = a2+b2 (you don’t need to prove that this makes Z[i ] into a Euclidean
domain).

(a) Show that this norm satisfies the stronger condition n(αβ) = n(α)n(β)

1This can only happen when the ring is not a UFD.



(b) Deduce that if α|β in Z[i ], then n(α)|n(β) in N.

(c) Show that α ∈ Z[i ] is a unit if and only if n(α) = 1. Use this to determine all the
units in Z[i ].

(d) Show that if n(α) is a prime in N, then α is irreducible in Z[i ].

(e) Why don’t the equalities (4 + i)(4− i) = 17 = (1 + 4i)(1− 4i) contradict the fact
that Z[i ] is a UFD (this follows from the fact that it’s a Euclidean domain)?

7. Let R = k[[x ]] be the ring of formal power series over a field k .

(a) Prove that the ideal (x) generated by x is maximal, by looking at the quotient
R/(x).

(b) In fact, this is the only maximal ideal of R. Use this and problem 4 to give a new
proof of the worksheet problem from last week which said that the units in R are
those power series with nonzero constant term, i.e., those

∑
aix

i for which a0 6= 0.

8. By definition, the content of a polynomial f ∈ Z[x ], written C (f ), is the gcd of its co-
efficients. Prove Gauss’ Lemma, which states that for f , g ∈ Z[x ], C (fg) = C (f )C (g).
[Hint: First factor out the content from each polynomial, and reduce to the case where
f and g both have content 1: in this case you have to prove that C (fg) = 1. Now argue
by contradiction, supposing some prime p divides all coefficients of fg , and looking at
their reduction mod p, as we did in the proof of Eisenstein’s criterion.]

9. Use Gauss’ Lemma to prove that if f ∈ Z[x ] and C (f ) = 1, then f is irreducible over Z
if and only if f is irreducible over Q.

10. In this problem you will investigate the behavior of prime ideals under a ring homomor-
phism f : R → S . First, a definition: if I ⊆ R is an ideal, the extension of I across f is
the ideal I e = (f (I )) generated by f (I ). In other words, it consists of all elements of the
form

∑
si f (ri ), for ri ∈ R, si ∈ S .

(a) Prove that if J ⊆ S is an ideal, then the pre-image f −1(J) is an ideal in R. Prove
further that if J is prime, so is f −1(J). This says that “primes pull back”.

(b) Show by giving an example that if I ⊆ R is an ideal, then f (I ) is not necessarily an
ideal (this is the reason why we define the extension of an ideal - it’s the smallest
ideal containing the image of I )

(c) Now let f : Z→ Z[i ] be the inclusion of the usual integers into the Gaussian integers.
Let p be a prime, and (p) the ideal it generates in Z. In this case the extension
(p)e is just the ideal generated by the (usual) integer p in the ring Z[i ] (note this
will be much larger than the ideal (p) in Z). Prove the following facts:

i. If p = 2, then (p)e is the same as the ideal generated by (1 + i)2, which is not
prime.

ii. If p ≡ 1 mod 4, then (p)e is not a prime ideal in Z[i ].

iii. If p ≡ 3 mod 4, then (p)e is a prime ideal in Z[i ]

These examples show that extensions of primes need not be prime, or “primes do
not push forward”. In proving ii and iii, you may use the following famous theorem
of Fermat: a prime p > 2 can be written as a2 + b2 for some a, b ∈ Z if and only
if p ≡ 1 mod 4
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