Worksheet 7/14. Math 113 Summer 2014.

These problems are intended as supplementary material to the homework exercises and will hopefully give you some more practice with actual examples. In particular, they may be easier/harder than homework. Problems with an asterisk (*) should be more challenging than the rest.

1. Describe (up to isomorphism) all abelian groups of order 16 .
2. Describe (up to isomorphism) all abelian groups of order 72 .
3. A certain abelian group G has order 360 , and contains an element of order 4 and an element of order 9 . What are the possible isomorphism classes of G ?
4. (a) Show that $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ contains subgroups $\{(0,0,0)\}=G_{0} \subset G_{1} \subset$ $G_{2} \subset G_{3}=G$ such that each quotient $G_{i} / G_{i-1}(i=1,2,3)$ is cyclic.
(b) Prove that an abelian group G of order p^{r} contains subgroups $\{e\}=G_{0} \subseteq G_{1} \subseteq$ $\cdots \subseteq G_{r}=G$ such that each successive quotient $G_{i} / G_{i-1}(i=1, \cdots, r)$ is cyclic.
(c) Let G be a finite abelian group of order n. Prove by induction on the number of distinct primes dividing n that G contains subgroups $\{e\}=G_{0} \subseteq G_{1} \subseteq \cdots \subseteq G_{m}=$ G such that each successive quotient $G_{i} / G_{i-1}(i=1, \cdots, r)$ is cyclic.
5. * Prove that if G is a finite abelian group (written multiplicatively) of order n such that, for each $m \mid n$, there are exactly m elements $g \in G$ such that $g^{m}=e$, then G is cyclic.
