
Math 110, Summer 2012: Practice Exam 2

Choose 3/4 of the following problems. Make sure to justify all steps in your solutions.

1. Let A ∈ Matn(C).

i) Define the representation of C[t] determined by A, ρA. Define the minimal polynomial µA of A.

ii) What is the statement of the division algorithm for C[t]?

iii) Let f ∈ ker ρA be nonzero. Prove that µA divides f .

For iv) - vi) let

A =


−2 0 1 −1
0 −2 −1 1
1 1 1 3
−1 −1 3 1

 .

iv) Show that
µA = (t + 2)3(t − 4).

v) Let U1 = ker T(A+2I4)3 , U2 = ker TA−4I4 . Determine a basis B ⊂ U1 and the matrix N = [f ]B, where

f : U1 → U1 ; u 7→ Au + 2u.

vi) f is nilpotent (you DO NOT have to show this). Determine a basis C ⊂ U1 such that [f ]C is block
diagonal, each block being a 0-Jordan block.

vii) Determine a matrix P ∈ GL4(C) such that P−1AP is in Jordan canonical form.

Solution:

i) We define the representation of C[t] determined by A to be

ρA : C[t]→ Matn(C) ; f = a0 + a1t + ... + aktk 7→ a0In + a1A + ... + akAk .

The minimal polynomial µA ∈ C[t] is the unique nonzero polynomial in ker ρA of minimal degree
and leading coefficient 1.

ii) Let f , g ∈ C[t], deg f ≤ deg g . Then, there exists h ∈ C[t] and r ∈ C[t], with deg r < deg f such
that

g = hf + r .

iii) Let f ∈ ker ρA be nonzero. Then, since degµA is of minimal degree we must have degµA ≤ deg f .
Using the division algorithm we can find h ∈ C[t], r ∈ C[t] where deg r < degµA, such that

f = µAh + r .

Then, recalling that µA ∈ ker ρA, we obtain

0n = ρA(f ) = ρA(µAh + r) = ρA(µA)ρA(h) + ρA(r) = 0n + ρA(r).

Hence, we have r ∈ ker ρA. If r is nonzero then we would contradict the minimal degree property
of µA ∈ ker ρA, so that r = 0 ∈ C[t] and f = µAh.
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iv) You can check that
χA(t) = (t + 2)3(t − 4),

and
(A + 2I4)2(A− 4I4) 6= 04,

so that we must have
µA = χA.

v) We have

(A + 2I4)3 ∼


0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

so that
ker T(A+2I4)3 = spanC{e1, e2, e3 − e4}.

Hence, B = (e1, e2, e3 − e4) ⊂ U1 is a basis of U1. Then,

N = [f ]B =

0 0 2
0 0 −2
1 1 0

 .

vi) You can check that N3 = 0, so that the exponent of N is η(N) = 3. Hence, the partition
associated to N is π(N) : 3 (since the exponent of N is the largest integer appearing in the
partition π(N)). Then, we note that

N2 =

 2 2 0
−2 −2 0
0 0 0

 ,

and proceed with the algorithm from section 2.3 of the notes: we have

H3 = C3, H2 = spanC{e1 − e2, e3},

and we can take
H3 = H2 ⊕ G3 = H2 ⊕ spanC{e1}.

Hence, we obtain the table
e1

Ne1 = e3
N2e1 = 2e1 − 2e2

,

so that we take the basis
C = (2e1 − 2e2, e3 − e4, e1) ⊂ U1.

Then,

[f ]C =

0 1 0
0 0 1
0 0 0

 .
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vii) If we consider the basis
A = C ∪ C′,

where C′ = (e3 + e4) ⊂ U2, then we take the matrix

P =


2 0 1 0
−2 0 0 0
0 1 0 1
0 −1 0 1

 (= PS(4)←A

and see that

P−1AP =


−2 1 0 0
0 −2 1 0
0 0 −2 0
0 0 0 4

 .

2. i) Let V be a finite dimensional K-vector space, K a number field. Define what it means for a
function

B : V × V → K,

to be a K-bilinear form on V .

ii) Define what it means for a K-bilinear form B to be nondegenerate.

iii) Let B = (b1, ... , bn) ⊂ V be an ordered basis of V , B a K-bilinear form on V . Define the matrix of
B with respect to B. What is the fundamental relation between B(u, v) and [B]B, for any u, v ∈ V ?

iv) Let B be a K-bilinear form on V , B ⊂ V an ordered basis of V . Prove that if [B]B is invertible then
B is nondegenerate.

v) Consider the bilinear form

B : R2 × R2 → R ; (u, v) 7→ det ([u v ]) , where [u v ] is the matrix with columns u, v .

Is B nondegenerate? Justify your answer.

Solution:

i) B is a bilinear form if

- for every u, v , w ∈ V , λ ∈ K, we have B(u + λv , w) = B(u, w) + λB(v , w),

- for every u, v , w ∈ V ,λ ∈ K, we have B(u, v + λw) = B(u, v) + λB(u, w).

ii) B is nondegenerate if,

B(u, v) = 0, for every u ∈ V =⇒ v = 0V .

iii) We define
[B]B = [aij ], where aij = B(bi , bj).

For any u, v ∈ V we have
B(u, v) = [u]tB[B]B[v ]B.

iv) Suppose that [B]B is invertible. Assume that v ∈ V is such that

B(u, v) = 0, for every u ∈ V .

Then, we must have, for every u ∈ V ,

0 = [u]tB[B]B[v ]B =⇒ 0 = et
i [B]B[v ]B, for each i = 1, ... , n.
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Hence, if we denote

[B]B[v ]B =

x1
...

xn

 ,

then the previous relation implies that

xi = 0, for every i .

Hence, [B]B[v ]B = 0 so that [v ]B = 0, as [B]B is invertible, and v = 0V (since the B-coordinate
morphism is injective).

v) Let S(2) = (e1, e2) be the standard ordered basis of R2. Then, we have

B(e1, e1) = det

[
1 1
0 0

]
= 0, B(e1, e2) = det

[
1 0
0 1

]
= 1, B(e2, e1) = det

[
0 1
1 0

]
= −1, B(e2, e2) = det

[
0 0
1 1

]
= 0,

so that

[B]S(2) =

[
0 1
−1 0

]
.

Since this matrix is invertible then we must have that B is nondegenerate.

3. i) Let V be a finite dimensional R-vector space, B a symmetric R-bilinear form on V . Define what
it means for B to be an inner product.

ii) Consider the bilinear form

B : Mat2(R)×Mat2(R)→ R ; (A, B) 7→ tr(AtXB), where X =

[
1 1
1 0

]
.

Without using the matrix of B with respect to some basis, show that B is symmetric. (Hint: You
may find the following facts useful: tr(A) = tr(At), for A ∈ Mat2(R), tr(UV ) = tr(VU), for U, V ∈
Mat2(R).)

iii) Determine the matrix of B, [B]S , with respect to the standard basis S = (e11, e12, e21, e22),

iv) Determine the canonical form of B: ie, determine P ∈ GL4(R) such that

P t [B]SP =


d1

d2

d3

d4

 , di ∈ {1,−1}.

v) Find C ∈ Mat2(R) such that B(C , C ) < 0. Explain why B is not an inner product.

Solution:

i) B is an inner product if

B(v , v) ≥ 0, for every v ∈ V , and B(v , v) = 0⇔ v = 0V .

ii) Let A, B ∈ Mat2(R) then

B(A, B) = tr(AtXB) = tr((AtXB)t) = tr(B tXA) = B(B, A),

where we have used that X t = X . Hence, B is symmetric.
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iii) We have

[B]S =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .

iv) We have

x t [B]Sx = x2
1 + 2x1x3 + x2

2 + 2x2x4 = (x1 + x3)2 + (x2 + x4)2 − x2
3 − x2

4 .

Set
y1 = x1 + x3, y2 = x2 + x4, y3 = x3, y4 = x4,

so that we have

y =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 x . (= Qx)

Let

P = Q−1 =


1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

 .

Then, we have

P t [B]SP =


1

1
−1

−1

 .

v) Set

C =

[
1 0
−1 0

]
.

Then, we have
B(C , C ) = trC tXC = −1.

Hence, B is not an inner product as the condition defined in i) is not satisfied.

4. i) Let (V , 〈, 〉) be a Euclidean space. Define the notion of the length of vector v ∈ V .

ii) Define what it means for a linear morphism f : V → V to be

a) a Euclidean morphism,

b) an orthogonal transformation.

Prove that if f : V → V is a Euclidean morphism then f is an orthogonal transformation.

iii) Prove that if f ∈ O(En) is an orthogonal transformation, B ⊂ Rn is an ordered basis of Rn, then
A = [f ]B satisfies AtA = In.

iv) Let S ⊂ E4 be a nonempty subset. Define what it means for S to orthogonal.

v) Determine an orthogonal basis of ker f , where

f : R4 → R4 ; x 7→


1 −1 0 1
−1 2 1 0
0 1 1 1
1 −1 0 1

 x .
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Here we are assuming that orthogonality is with respect to the ‘dot prduct’ on R4.

Explain why f is not a Euclidean morphism.

vi) Determine the orthogonal complement W of ker f .

Solution:

i) We define ||v || =
√
〈v , v〉.

ii) a) for every u, v ∈ V we have 〈u, v〉 = 〈f (u), f (v)〉,
b) f is an isomorphism and a Euclidean morphism.

iii) ???? This question is not well-posed, sorry!

iv) S is orthogonal if, for every s, t ∈ S , s 6= t, we have

s · t = 0.

v) We have

ker f = spanR



−1
1
1
0

 ,


−2
−1
0
1


 .

Using Gram-Schmidt we obtain an orthogonal basis

c1 =


−1
−1
1
0

 ,

c2 =


−2
−1
0
1

− 3
3


−1
−1
1
0

 =


−1
0
−1
1


f is not a Euclidean morphism since f is not injective: all Euclidean morphisms are injective.

vi) x ∈W⊥ if and only if

x ·


−1
−1
1
0

 = 0 = x ·


−1
0
−1
1

 .

Hence, we must have
−x1 − x2 + x3 = 0, −x1 − x3 + x4 = 0.

As we have [
−1 −1 1 0
−1 0 −1 1

]
∼
[

1 0 1 −1
0 1 −2 1

]
,

then we have

W⊥ = spanR



−1
2
1
0

 ,


1
−1
0
1


 .
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