Math 110, Summer 2012: Practice Exam 2

Choose 3/4 of the following problems. Make sure to justify all steps in your solutions.

1. Let $A \in Mat_n(\mathbb{C})$.

i) Define the representation of
$$\mathbb{C}[t]$$
 determined by A, ρ_A . Define the minimal polynomial μ_A of A.

ii) What is the statement of the division algorithm for $\mathbb{C}[t]$?

iii) Let $f \in \ker \rho_A$ be nonzero. Prove that μ_A divides f.

For iv) - vi) let

$$A = \begin{bmatrix} -2 & 0 & 1 & -1 \\ 0 & -2 & -1 & 1 \\ 1 & 1 & 1 & 3 \\ -1 & -1 & 3 & 1 \end{bmatrix}$$

iv) Show that

$$\mu_{A} = (t+2)^{3}(t-4).$$

v) Let $U_1 = \ker T_{(A+2I_4)^3}$, $U_2 = \ker T_{A-4I_4}$. Determine a basis $\mathcal{B} \subset U_1$ and the matrix $N = [f]_{\mathcal{B}}$, where

$$f: U_1 \rightarrow U_1$$
; $u \mapsto Au + 2u$.

vi) f is nilpotent (you DO NOT have to show this). Determine a basis $C \subset U_1$ such that $[f]_C$ is block diagonal, each block being a 0-Jordan block.

vii) Determine a matrix $P \in GL_4(\mathbb{C})$ such that $P^{-1}AP$ is in Jordan canonical form.

2. i) Let V be a finite dimensional \mathbb{K} -vector space, \mathbb{K} a number field. Define what it means for a function

$$B: V \times V \to \mathbb{K},$$

to be a \mathbb{K} -bilinear form on V.

ii) Define what it means for a \mathbb{K} -bilinear form B to be nondegenerate.

iii) Let $\mathcal{B} = (b_1, ..., b_n) \subset V$ be an ordered basis of V, B a \mathbb{K} -bilinear form on V. Define the matrix of B with respect to \mathcal{B} . What is the fundamental relation between B(u, v) and $[B]_{\mathcal{B}}$, for any $u, v \in V$?

iv) Let B be a K-bilinear form on V, $B \subset V$ an ordered basis of V. Prove that if $[B]_B$ is invertible then B is nondegenerate.

v) Consider the bilinear form

 $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$; $(\underline{u}, \underline{v}) \mapsto \det([\underline{u} \ \underline{v}])$, where $[\underline{u} \ \underline{v}]$ is the matrix with columns $\underline{u}, \underline{v}$.

Is B nondegenerate? Justify your answer.

3. i) Let V be a finite dimensional \mathbb{R} -vector space, B a symmetric \mathbb{R} -bilinear form on V. Define what it means for B to be an inner product.

ii) Consider the bilinear form

$$B: \mathit{Mat}_2(\mathbb{R}) imes \mathit{Mat}_2(\mathbb{R}) o \mathbb{R}$$
; $(A, B) \mapsto \mathsf{tr}(A^t X B)$, where $X = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}$

Without using the matrix of *B* with respect to some basis, show that *B* is symmetric. (*Hint: You may find the following facts useful:* $tr(A) = tr(A^t)$, for $A \in Mat_2(\mathbb{R})$, tr(UV) = tr(VU), for $U, V \in Mat_2(\mathbb{R})$.)

- iii) Determine the matrix of B, $[B]_S$, with respect to the standard basis $S = (e_{11}, e_{12}, e_{21}, e_{22})$,
- iv) Determine the canonical form of B: ie, determine $P \in GL_4(\mathbb{R})$ such that

$$P^{t}[B]_{\mathcal{S}}P = egin{bmatrix} d_{1} & & & \ & d_{2} & & \ & & d_{3} & \ & & & d_{4} \end{bmatrix}$$
, $d_{i} \in \{1, -1\}.$

- v) Find $C \in Mat_2(\mathbb{R})$ such that B(C, C) < 0. Explain why B is not an inner product.
- 4. i) Let (V, \langle , \rangle) be a Euclidean space. Define the notion of the length of vector $v \in V$.
- ii) Define what it means for a linear morphism $f: V \rightarrow V$ to be
 - a) a Euclidean morphism,
 - b) an orthogonal transformation.

Prove that if $f: V \to V$ is a Euclidean morphism then f is an orthogonal transformation.

iii) Prove that if $f \in O(\mathbb{E}^n)$ is an orthogonal transformation, $\mathcal{B} \subset \mathbb{R}^n$ is an ordered basis of \mathbb{R}^n , then $A = [f]_{\mathcal{B}}$ satisfies $A^t A = I_n$.

- iv) Let $S \subset \mathbb{E}^4$ be a nonempty subset. Define what it means for S to orthogonal.
- v) Determine an orthogonal basis of ker f, where

$$f: \mathbb{R}^4 \to \mathbb{R}^4; \underline{x} \mapsto \begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{bmatrix} \underline{x}.$$

Here we are assuming that orthogonality is with respect to the 'dot prduct' on \mathbb{R}^4 .

Explain why f is not a Euclidean morphism.

vi) Determine the orthogonal complement W of ker f.