Math 110, Summer 2012: Practice Exam 2

Choose $3 / 4$ of the following problems. Make sure to justify all steps in your solutions.

1. Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$.
i) Define the representation of $\mathbb{C}[t]$ determined by A, ρ_{A}. Define the minimal polynomial μ_{A} of A.
ii) What is the statement of the division algorithm for $\mathbb{C}[t]$?
iii) Let $f \in \operatorname{ker} \rho_{A}$ be nonzero. Prove that μ_{A} divides f.

For iv) - vi) let

$$
A=\left[\begin{array}{cccc}
-2 & 0 & 1 & -1 \\
0 & -2 & -1 & 1 \\
1 & 1 & 1 & 3 \\
-1 & -1 & 3 & 1
\end{array}\right]
$$

iv) Show that

$$
\mu_{A}=(t+2)^{3}(t-4)
$$

v) Let $U_{1}=\operatorname{ker} T_{\left(A+2 I_{4}\right)^{3}}, U_{2}=\operatorname{ker} T_{A-4 I_{4}}$. Determine a basis $\mathcal{B} \subset U_{1}$ and the matrix $N=[f]_{\mathcal{B}}$, where

$$
f: U_{1} \rightarrow U_{1} ; u \mapsto A u+2 u
$$

vi) f is nilpotent (you DO NOT have to show this). Determine a basis $\mathcal{C} \subset U_{1}$ such that $[f]_{\mathcal{C}}$ is block diagonal, each block being a 0-Jordan block.
vii) Determine a matrix $P \in G L_{4}(\mathbb{C})$ such that $P^{-1} A P$ is in Jordan canonical form.
2. i) Let V be a finite dimensional \mathbb{K}-vector space, \mathbb{K} a number field. Define what it means for a function

$$
B: V \times V \rightarrow \mathbb{K}
$$

to be a \mathbb{K}-bilinear form on V.
ii) Define what it means for a \mathbb{K}-bilinear form B to be nondegenerate.
iii) Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right) \subset V$ be an ordered basis of V, B a \mathbb{K}-bilinear form on V. Define the matrix of B with respect to \mathcal{B}. What is the fundamental relation between $B(u, v)$ and $[B]_{\mathcal{B}}$, for any $u, v \in V$?
iv) Let B be a \mathbb{K}-bilinear form on $V, \mathcal{B} \subset V$ an ordered basis of V. Prove that if $[B]_{\mathcal{B}}$ is invertible then B is nondegenerate.
v) Consider the bilinear form

$$
B: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R} ;(\underline{u}, \underline{v}) \mapsto \operatorname{det}([\underline{u} \underline{v}]), \text { where }[\underline{u} \underline{v}] \text { is the matrix with columns } \underline{u}, \underline{v} .
$$

Is B nondegenerate? Justify your answer.
3. i) Let V be a finite dimensional \mathbb{R}-vector space, B a symmetric \mathbb{R}-bilinear form on V. Define what it means for B to be an inner product.
ii) Consider the bilinear form

$$
B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(A, B) \mapsto \operatorname{tr}\left(A^{t} X B\right), \text { where } X=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Without using the matrix of B with respect to some basis, show that B is symmetric. (Hint: You may find the following facts useful: $\operatorname{tr}(A)=\operatorname{tr}\left(A^{t}\right)$, for $A \in M a t_{2}(\mathbb{R}), \operatorname{tr}(U V)=\operatorname{tr}(V U)$, for $U, V \in$ $\operatorname{Mat}_{2}(\mathbb{R})$.)
iii) Determine the matrix of $B,[B]_{\mathcal{S}}$, with respect to the standard basis $\mathcal{S}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$,
iv) Determine the canonical form of B : ie, determine $P \in \mathrm{GL}_{4}(\mathbb{R})$ such that

$$
P^{t}[B]_{\mathcal{S}} P=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & d_{3} & \\
& & & d_{4}
\end{array}\right], d_{i} \in\{1,-1\}
$$

v) Find $C \in \operatorname{Mat}_{2}(\mathbb{R})$ such that $B(C, C)<0$. Explain why B is not an inner product.
4. i) Let $(V,\langle\rangle$,$) be a Euclidean space. Define the notion of the length of vector v \in V$.
ii) Define what it means for a linear morphism $f: V \rightarrow V$ to be
a) a Euclidean morphism,
b) an orthogonal transformation.

Prove that if $f: V \rightarrow V$ is a Euclidean morphism then f is an orthogonal transformation.
iii) Prove that if $f \in O\left(\mathbb{E}^{n}\right)$ is an orthogonal transformation, $\mathcal{B} \subset \mathbb{R}^{n}$ is an ordered basis of \mathbb{R}^{n}, then $A=[f]_{\mathcal{B}}$ satisfies $A^{t} A=I_{n}$.
iv) Let $S \subset \mathbb{E}^{4}$ be a nonempty subset. Define what it means for S to orthogonal.
v) Determine an orthogonal basis of $\operatorname{ker} f$, where

$$
f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} ; \underline{x} \mapsto\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & -1 & 0 & 1
\end{array}\right] \underline{x}
$$

Here we are assuming that orthogonality is with respect to the 'dot prduct' on \mathbb{R}^{4}.
Explain why f is not a Euclidean morphism.
vi) Determine the orthogonal complement W of $\operatorname{ker} f$.

