Math 110, Summer 2012: Practice Exam 1 SOLUTIONS

Choose 3/5 of the following problems. Make sure to justify all steps in your solutions.

1. Let V be a K-vector space, for some number field K. Let U C V be a nonempty subset of V.
i) Define what it means for U C V to be a vector subspace of V. Define spang U.
ii) Prove that spang U is a vector subspace of V.

iii) Consider the Q-vector space V = Mat,(Q) and the subset

U={h, A A*}, where A= {_11 ﬂ

Find v € U such that
spang U = spang ',

where U’ = U\ {v}. Show that U’ is linearly independent.

iv) Find a vector w € Maty(Q) such that w ¢ spangU. Is the set U’ U {w} linearly independent?
Explain your answer.

v) Extend the set U’ U {w} to a basis B of Mat,(Q), taking care to explain how you know the set B
you've obtained is a basis.

Solution:

i) U C Vis a subspace if, for any u,v € U, A\, u € K we have Au+ pv € U. We define

K
spanKU:{chujé VigeK ueU keN}

j=1
i) Let u, v € spangU, Aw € K. Then, we must have

u=-cu1+ ..+ cplm, v=-divi+..+dvy,

where u;, v; € U, ¢;, d; € K. Then,

AU+ pv = Acpug + ... + AU, + pdivi + ..+ pdpvy, = aiwg + .+ apwg,

where a; € K, w; € U. Hence, Au+ pv € U.

o= I 9

There is a nontrivial linear relation

2 0 1 0 1 0
OMatz(Q) = |:2 2:| - |:0 1:| - |:2 1:| =2A— I2 - A2-

Thus, by the Elimination Lemma we know that

iii) We see that

spang U = spanQ{lz, Az},



so that we can take v = A € U. Set U’ = {h, A?}. Suppose that there is a linear relation

) )\1+)\2 0 0 0
A1h + AA” = Opan@) = [_2/\2 A1+ A2 “lo o)

so that A\ = 0, A\; + X\, = 0. Hence, we must have A\; = A\, = 0 and U’ is linearly independent.
o1
— 10 o’
then is is easy to see that w ¢ spang U’ (it's not possible to find ¢1, c; € Q such that ah+oA? =

w). Then, by a result from class (Corollary to Elimination Lemma) we see that U’ U {w} must
be linearly independent.

If we take

Since U" U {w} consists of 3 vectors and is linearly independent and Mat,(Q) is has dimension 4,
we need only find some vector z ¢ spangp U’ U {w} to obtain a basis U’ U {w, z} (since this set is
then linearly independent, by a similar argument as in iv)). There are many ways to proceed: we
will use the most general. Let S denote the standard ordered basis of Mat;(Q). Then,

1 1 0
0 0 1
[A%]s = ol kls = o] Wls = |,
1 1 0

Then, b € spang{[A°]s, [k]s, [w]s} if and only if the matrix equation

1
0
-2
1

_ O O =
Ix
Il
o

O O = O

is consistent. So we form the augmented matrix

by
by
bs
bs

by

b
bs + 2b;
by — by

1
0
-2
1

= O O
O O = O
O OO
ON O
O O~ O

and there is no pivot in the last column if and only if by = by. Thus, b ¢ spang{[A?]s, [k]s, [w]s}
if and only if by # by. Thus, since the S-coordinate morphism is an isomorphism we have that

10
€11 = [0 0} ¢ spangU' U {w}.
Hence, the set
B = {I2,A2, w, 611},

is linearly independent. As this set contains 4 vectors then it must be a basis, by a result from
class.

Alternatively, you can just come up with some matrix B € Mat»(Q) and show that B ¢ spang U'U
{w}. In any case, you will need to prove that you know the B you choose is not an element of
spangU’' U {w}.



2. i) Let B = (b1, ..., by) C V be an ordered subset of the K-vector space V. Define what it means for
B to be an ordered basis of V using the notions of linear independence AND span.

ii) Consider the maximal linear independence property: let E C V be a linearly independent subset of
the K-vector space V. Then, if E C E' and E’ is linearly independent then E' = E.

Prove that if B C V is a basis (satisfying the definition you gave in 2a)) then B is maximal linearly
independent.

iii) Consider the Q-vector space Q{123} = {f: {1,2,3} — Q}. Let
B ={f f fi} c Q123
where

A(1)=0,A(2)=-1AB)=1 A1) =0,6(2)=163) =1, (1) =1,42) =1 A(3) = 1.

Prove that B is a basis of Q{123},

iv) Let B be as defined in 2iii). Define the B-coordinate morphism

[-]5 : Q3 — @3,
and determine the B-coordinates of f € Q{1:23} where

F(1) =2 f(2) = -1, f(3) = 2.

v) Suppose that C = (c1, ¢, c3) € Q1123} is an ordered basis such that the change of coordinate matrix

1 0 -1
Pees=10 1 1
1 -1 -1

Determine ¢y, ¢, c3 € Q123} e, for each i € {1,2,3}, determine c(i), co(i), c3(f).
Solution:

i) B is a basis if it is a linearly independent set and spang/3 = V. Since it is an ordered set it is an
ordered basis.

i) We know that B is linearly independent, by definition of a basis. So we must show that,

B C B, with B’ linearly indepndent = B’ = 3.

Suppose that B £ B’. Then, there is some v € B’ such that v ¢ B. Also, we can't have v = 0y
as BB is linearly independent (any set containing Oy is linearly dependent). As spang3 = V then
there are A\, ..., A, € K such that

V= )\lbl + ... +Anbn —— VvV — ZA’b’ = OV
i=1

As each b; € B C B’ then we have obtained a nontrivial linear relation (the coefficient of v is 1)
among vectors in B, contradicting the linear independence of B’. Hence, our initial assumption
that B # B’ must be false so that B/ = 5.

iii) Consider the standard ordered basis S = {e;, &, e3} € Q{123}. We are going to show that B is
linearly independent by using the S-coordinate isomorphism: we have

0 0 1

(Als = |-1| . [Rls=|1]|. [Als = |1
1 1 1



Then, as
0 01 1 00
-1 1 1|~ {0 1 0],
1 11 0 0 1
then the set {[fi]s,[f2]s, [3]s} is linearly independent. Since the S-coordinate morphism is an

isomorphism we have that {fi, f, 3} is also linearly independent. Hence, as Q{123} has dimension
3, B must be a basis.

iv) We use the change of coordinate matrix

-1

0 0 1 0 -1/2 1)2
Pscs=Pslpg=1-1 1 1| =[-1 1/2 1/2
1 11 1 0 0
Then, we have
0 -1/2 1)2 2 3/2
[fls = Pseslfls= |-1 1/2 1/2| |-1| = [-3/2
1 0 0 2 2
v) We have
—1
1 0 -1 0 1 1
Psec=Plys=10 1 1 =11 0 —1| =]la]slc]slc]s].
1 -1 -1 -1 1 1
Hence,
a=h—f,oa=h+h g=H—hHh+1f,
so that

Cl(].) = —l, C1(2) = 0, C1(3) = 0, Cg(l) = ]., C2(2) = 0, C2(3) = 2, C3(].) = ]., C3(2) = —]., C3(3) =1

3. i) Define the kernel ker f of a linear morphism f : V — W and the rank of f, rankf.

ii) Consider the function

X X1 — Xo + 2x:
f: 3_> 2. — 1 — X2 3 .
Q Q' ii [ X1+ X3

Explain briefly why f is a linear morphism. What is the rank of f? Justify your answer. Using only the
rank of f prove that f is not injective (do not row-reduce!).

i) Let S@ < Q2 8G) ¢ Q3 be the standard ordered bases. Find invertible matrices P € GL,(Q),
Q € GL3(Q) such that
_ @ /. 0
Q l[f]gB)P = |:0 0:| )
where r = rankf.
iv) Prove or disprove: for the P you obtained in 3iii), a column of P is a basis of ker f.

Solution:

i) We have
kerf ={veV]|f(v)=0w}

and rankf = dimimf, where imf = {w € W | 3v € V, such that f(v) = w}.



i)

ii)

For every x € Q3 we have

X,

w-[ 3]

so that f must be linear since it is a matrix transformation. The rank of f is 2: we have that f is
surjective since there is a pivot in every row of the matrix

[f]sm |1 -1 2 10 1
ST 0 1 01 -—-1y°
By the Rank Theorem

3 =dimQ® = dimker f + rankf = dimkerf = 1.

Thus, ker fneq{0gs} so that f is not injective.

There is more than one approach to this problem via elementary matrices or following the proof of
the classification of morphisms theorem. We will follow the latter: first, we find a basis of ker f.
This is the same as finding the solution set of the matrix equation

1 -1 2
& 0 JXZQ

Hence, we have

X1 —X
ker f = x| |x1+x3=0 x—x3=0p = x| |xeQ
X3 X
-1
Thus, the set 1 is a basis of ker f. We extend this to a basis of Q3: for example,
1
-1 |1 0
1 0|,|1f ¢,
1 0 0

which can be easily show to be a linearly independent set, hence a basis of Q3. Now consider the
matrix

1 0 -1

P=10 1 1

0 0 1

Let

Then, we must have
_1r8®@ 1 00
Q l[f]$(3)P: |:O 1 0:| .

By construction, we have a column of P is a basis of ker f. If you obtained P, @ using elementary
matrices (so that you may not have obtained the same P, @ as | have) then you can see that,
since

_ @ 1 0 0
Q l[f]gﬁ)P: |:0 1 O:l '



the last column of Q_l[f]ggP is the zero vector in Q2. Then, if P = [p; p» p3], so that it
column of P is p;, then

_ (2) _ 2 _ (2) _ (2)
QASHP = [@MASHm @ AASHr: QISP

so that (2)
0=Q '[fl3wps = Q' [f(ps)lsw-
Since @ is invertible we must have

[f(p3)lse =0 = f(p3) =0,

and as dim ker f = 1 we see that p3 must be define a basis of ker f.

4. i) Let A € Mat,(C). Define what it means for A to be diagonalisable.

ii) Suppose that P~1AP = D, with D a diagonal matrix and P € GL,(C). Prove that the columns of
P are eigenvectors of A.

For 4iii)-vi) we assume that A € Mat,(C), A%> = I, and that A is NOT a diagonal matrix.

iii) Show that the only possible eigenvalues of Aare A=1or A = —1.

iv) Let u € C? be nonzero. Show that A(Au + u) = Au + u.

v) Prove that there always exists some nonzero w € C? such that Aw # —w. Deduce that A = 1 must
occur as an eigenvalue of A. Prove that A = 1 must also occur as an eigenvalue of A.

vi) Deduce that A is diagonalisable.

Solution:

)

i)

ii)

A is diagonalisable if it is similar to a diagonal matrix, ie, if there is P € GL,(C) such that
P~1AP = D, with D a diagonal matrix.

As P~YAP = D then we see that AP = PD. Suppose that

Now, if P=[py --- p,], so the i column of P is p;, then

AP = [Ap: - Api]

and
PD = [cip1 -+ capa] = [AP1 -+ Apa].

Hence, we have
Api = cipi,

so that the columns of P are eigenvectors of A.

Suppose that ) is an eigenvalue of A. Then, let v be an eigenvector of A with associated eigenvalue
A (so that v # O¢z). Then,

v=hv=A%=A(Av) = A(\v) = Mv = \?v.

Hence, as v # O¢2, then we must have A2 =1 so that \ can be either 1 or —1.



iv) We have
A(Au+u) = A%u+ Au = Au + u.

v) Suppose that for every nonzero w € C? we have Aw = —w. Then, we would have Ae =
—e1, Ae; = —ey, implying that A = —/,. However, we have assumed that A is not a diagonal
matrix. Hence, there must exist some nonzero w € C2 such that Aw # —w. Now, let u =
Aw + w # Ocz2. Then, by iv) we have

Au = u,
so that A = 1 is an eigenvalue of A. A similar argument shows that A = —1 must be an eigenvalue
also (here we can find nonzero z € C? such that Az # z. Then, A(Az — z) = z — Az, so that
u' = Az — z is an eigenvector with associated eigenvalue A = —1).

vi) We have just shown that A admits two distinct eigenvalues. Hence, since A is 2 X 2 we have that
A is diagonalisable (by a result from class).

5. i) Define what it means for a linear endomorphism f € Endc(V) to be nilpotent. Define the exponent
of f, 1(f).

ii) Consider the endomorphism

X1 —X1—|—X2—X3
FCoC xol-=|—x+x—x;
X3 0

Show that f is nilpotent and determine the exponent of f, n(f).

iii) Define the height of a vector v € C3 (with respect to f), ht(v). Find a vector v € C3 such that
ht(v) = 2.

iv) Find a determine a basis B of C3 such that
010
[fls= (0 0 0O
0 00

v) What is the partition of 3 corresponding to the similarity class of f7?

Solution:

i) f is nilpotent if there exists some r € N such that f" = fo---of = Ogng.(v) € Endc(V) is the
zero morphism. The exponent of f is the smallest integer r such that f” = 0 while f"~1 #£ 0.

ii) You can check that 2 = 0 € Endc(C?) and, since f is nonzero, the exponent of f is (f) = 2.

iii) We define ht(v) to be the smallest integer r such that f"(v) = Ocs, while f"~(v) # Ocs. The
vector e; € C3 is such that
ht(el) = 2,

since f(el) # 0@3, while f2(e1) = 0@3.

iv) Using the algorithm from the notes you find that B = (f(e1), e1, & + €3) is an ordered basis such
that

010
[fls= 10 0 0
000

Indeed, we have

1 0
Hi = ker f = Ey = spang 1,1 , Hy=C2.
0 1



Then,
Hy = Hy & Gy = Hy @ spang{et},

and, if §; = {f(el)} = {el + 32},

Hy = Hy @ spangS1 @ Gi = {0} @ spangS; @ span{ex + e3}.

Thus, the table you would obtain is
€1
fle1) ex+es

v) The partition associated to the nilpotent/similarity class of f is

m(F) 12 1+2.



