Math 110, Summer 2012: Practice Exam 1 SOLUTIONS

Choose $3 / 5$ of the following problems. Make sure to justify all steps in your solutions.

1. Let V be a \mathbb{K}-vector space, for some number field \mathbb{K}. Let $U \subset V$ be a nonempty subset of V.
i) Define what it means for $U \subset V$ to be a vector subspace of V. Define $\operatorname{span}_{\mathbb{K}} U$.
ii) Prove that $\operatorname{span}_{\mathbb{K}} U$ is a vector subspace of V.
iii) Consider the \mathbb{Q}-vector space $V=\operatorname{Mat}_{2}(\mathbb{Q})$ and the subset

$$
U=\left\{I_{2}, A, A^{2}\right\}, \quad \text { where } A=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Find $v \in U$ such that

$$
\operatorname{span}_{\mathbb{Q}} U=\operatorname{span}_{\mathbb{Q}} U^{\prime}
$$

where $U^{\prime}=U \backslash\{v\}$. Show that U^{\prime} is linearly independent.
iv) Find a vector $w \in \operatorname{Mat} \boldsymbol{m}_{2}(\mathbb{Q})$ such that $w \notin \operatorname{span}_{\mathbb{Q}} U$. Is the set $U^{\prime} \cup\{w\}$ linearly independent? Explain your answer.
v) Extend the set $U^{\prime} \cup\{w\}$ to a basis \mathcal{B} of $\operatorname{Mat}_{2}(\mathbb{Q})$, taking care to explain how you know the set \mathcal{B} you've obtained is a basis.
Solution:
i) $U \subset V$ is a subspace if, for any $u, v \in U, \lambda, \mu \in \mathbb{K}$ we have $\lambda u+\mu v \in U$. We define

$$
\operatorname{span}_{\mathbb{K}} U=\left\{\sum_{j=1}^{k} c_{j} u_{j} \in V \mid c_{j} \in \mathbb{K}, u_{j} \in U, k \in \mathbb{N}\right\} .
$$

ii) Let $u, v \in \operatorname{span}_{\mathbb{K}} U, \lambda \mu \in \mathbb{K}$. Then, we must have

$$
u=c_{1} u_{1}+\ldots+c_{m} u_{m}, v=d_{1} v_{1}+\ldots+d_{n} v_{n}
$$

where $u_{i}, v_{j} \in U, c_{i}, d_{j} \in \mathbb{K}$. Then,

$$
\lambda u+\mu v=\lambda c_{1} u_{1}+\ldots+\lambda c_{m} u_{m}+\mu d_{1} v_{1}+\ldots+\mu d_{n} v_{n}=a_{1} w_{1}+\ldots+a_{k} w_{k}
$$

where $a_{l} \in \mathbb{K}, w_{l} \in U$. Hence, $\lambda u+\mu v \in U$.
iii) We see that

$$
U=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\right\}
$$

There is a nontrivial linear relation

$$
0_{M a t(\mathbb{Q})}=\left[\begin{array}{cc}
2 & 0 \\
-2 & 2
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]=2 A-I_{2}-A^{2}
$$

Thus, by the Elimination Lemma we know that

$$
\operatorname{span}_{\mathbb{Q}} U=\operatorname{span}_{\mathbb{Q}}\left\{I_{2}, A^{2}\right\}
$$

so that we can take $v=A \in U$. Set $U^{\prime}=\left\{I_{2}, A^{2}\right\}$. Suppose that there is a linear relation

$$
\lambda_{1} I_{2}+\lambda_{2} A^{2}=0_{M a t_{2}(\mathbb{Q})} \Longrightarrow\left[\begin{array}{cc}
\lambda_{1}+\lambda_{2} & 0 \\
-2 \lambda_{2} & \lambda_{1}+\lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

so that $\lambda_{2}=0, \lambda_{1}+\lambda_{2}=0$. Hence, we must have $\lambda_{1}=\lambda_{2}=0$ and U^{\prime} is linearly independent.
iv) If we take

$$
w=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

then is is easy to see that $w \notin \operatorname{span}_{\mathbb{Q}} U^{\prime}$ (it's not possible to find $c_{1}, c_{2} \in \mathbb{Q}$ such that $c_{1} l_{2}+c_{2} A^{2}=$ $w)$. Then, by a result from class (Corollary to Elimination Lemma) we see that $U^{\prime} \cup\{w\}$ must be linearly independent.
v) Since $U^{\prime} \cup\{w\}$ consists of 3 vectors and is linearly independent and $\operatorname{Mat}_{2}(\mathbb{Q})$ is has dimension 4, we need only find some vector $z \notin \operatorname{span}_{\mathbb{Q}} U^{\prime} \cup\{w\}$ to obtain a basis $U^{\prime} \cup\{w, z\}$ (since this set is then linearly independent, by a similar argument as in iv)). There are many ways to proceed: we will use the most general. Let \mathcal{S} denote the standard ordered basis of $\operatorname{Mat}_{2}(\mathbb{Q})$. Then,

$$
\left[A^{2}\right]_{\mathcal{S}}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1
\end{array}\right],\left[I_{2}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],[w]_{\mathcal{S}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

Then, $\underline{b} \in \operatorname{span}_{\mathbb{Q}}\left\{\left[A^{2}\right]_{\mathcal{S}},\left[I_{2}\right]_{\mathcal{S}},[w]_{\mathcal{S}}\right\}$ if and only if the matrix equation

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 0 & 0 \\
1 & 1 & 0
\end{array}\right] \underline{x}=\underline{b},
$$

is consistent. So we form the augmented matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & b_{1} \\
0 & 0 & 1 & b_{2} \\
-2 & 0 & 0 & b_{3} \\
1 & 1 & 0 & b_{4}
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 0 & b_{1} \\
0 & 0 & 1 & b_{2} \\
0 & 2 & 0 & b_{3}+2 b_{1} \\
0 & 0 & 0 & b_{4}-b_{1}
\end{array}\right]
$$

and there is no pivot in the last column if and only if $b_{4}=b_{1}$. Thus, $\underline{b} \notin \operatorname{span}_{\mathbb{Q}}\left\{\left[A^{2}\right]_{\mathcal{S}},\left[I_{2}\right]_{\mathcal{S}},[w]_{\mathcal{S}}\right\}$ if and only if $b_{4} \neq b_{1}$. Thus, since the \mathcal{S}-coordinate morphism is an isomorphism we have that

$$
e_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \notin \operatorname{span}_{\mathbb{Q}} U^{\prime} \cup\{w\} .
$$

Hence, the set

$$
\mathcal{B}=\left\{I_{2}, A^{2}, w, e_{11}\right\},
$$

is linearly independent. As this set contains 4 vectors then it must be a basis, by a result from class.

Alternatively, you can just come up with some matrix $B \in \operatorname{Mat}_{2}(\mathbb{Q})$ and show that $B \notin \operatorname{span}_{\mathbb{Q}} U^{\prime} \cup$ $\{w\}$. In any case, you will need to prove that you know the B you choose is not an element of $\operatorname{span}_{\mathbb{Q}} U^{\prime} \cup\{w\}$.
2. i) Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right) \subset V$ be an ordered subset of the \mathbb{K}-vector space V. Define what it means for \mathcal{B} to be an ordered basis of V using the notions of linear independence AND span.
ii) Consider the maximal linear independence property: let $E \subset V$ be a linearly independent subset of the \mathbb{K}-vector space V. Then, if $E \subset E^{\prime}$ and E^{\prime} is linearly independent then $E^{\prime}=E$.

Prove that if $\mathcal{B} \subset V$ is a basis (satisfying the definition you gave in 2 a)) then \mathcal{B} is maximal linearly independent.
iii) Consider the \mathbb{Q}-vector space $\mathbb{Q}^{\{1,2,3\}}=\{f:\{1,2,3\} \rightarrow \mathbb{Q}\}$. Let

$$
\mathcal{B}=\left\{f_{1}, f_{2}, f_{3}\right\} \subset \mathbb{Q}^{\{1,2,3\}}
$$

where

$$
f_{1}(1)=0, f_{1}(2)=-1, f_{1}(3)=1, f_{2}(1)=0, f_{2}(2)=1, f_{2}(3)=1, f_{3}(1)=1, f_{3}(2)=1, f_{3}(3)=1
$$

Prove that \mathcal{B} is a basis of $\mathbb{Q}^{\{1,2,3\}}$.
iv) Let \mathcal{B} be as defined in 2iii). Define the \mathcal{B}-coordinate morphism

$$
[-]_{\mathcal{B}}: \mathbb{Q}^{\{1,2,3\}} \rightarrow \mathbb{Q}^{3},
$$

and determine the \mathcal{B}-coordinates of $f \in \mathbb{Q}^{\{1,2,3\}}$, where

$$
f(1)=2, f(2)=-1, f(3)=2
$$

v) Suppose that $\mathcal{C}=\left(c_{1}, c_{2}, c_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}}$ is an ordered basis such that the change of coordinate matrix

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

Determine $c_{1}, c_{2}, c_{3} \in \mathbb{Q}^{\{1,2,3\}}$, ie, for each $i \in\{1,2,3\}$, determine $c_{1}(i), c_{2}(i), c_{3}(i)$.

Solution:

i) \mathcal{B} is a basis if it is a linearly independent set and $\operatorname{span}_{\mathbb{K}} \mathcal{B}=V$. Since it is an ordered set it is an ordered basis.
ii) We know that \mathcal{B} is linearly independent, by definition of a basis. So we must show that,

$$
\mathcal{B} \subset \mathcal{B}^{\prime}, \text { with } \mathcal{B}^{\prime} \text { linearly indepndent } \Longrightarrow \mathcal{B}^{\prime}=\mathcal{B}
$$

Suppose that $\mathcal{B} \neq \mathcal{B}^{\prime}$. Then, there is some $v \in \mathcal{B}^{\prime}$ such that $v \notin \mathcal{B}$. Also, we can't have $v=0_{v}$ as \mathcal{B}^{\prime} is linearly independent (any set containing 0_{V} is linearly dependent). As $\operatorname{span}_{\mathbb{K}} \mathcal{B}=V$ then there are $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{K}$ such that

$$
v=\lambda_{1} b_{1}+\ldots+\lambda_{n} b_{n} \Longrightarrow v-\sum_{i=1}^{n} \lambda_{i} b_{i}=0_{v}
$$

As each $b_{i} \in \mathcal{B} \subset \mathcal{B}^{\prime}$ then we have obtained a nontrivial linear relation (the coefficient of v is 1) among vectors in \mathcal{B}^{\prime}, contradicting the linear independence of \mathcal{B}^{\prime}. Hence, our initial assumption that $\mathcal{B} \neq \mathcal{B}^{\prime}$ must be false so that $\mathcal{B}^{\prime}=\mathcal{B}$.
iii) Consider the standard ordered basis $\mathcal{S}=\left\{e_{1}, e_{2}, e_{3}\right\} \subset \mathbb{Q}^{\{1,2,3\}}$. We are going to show that \mathcal{B} is linearly independent by using the \mathcal{S}-coordinate isomorphism: we have

$$
\left[f_{1}\right]_{\mathcal{S}}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right],\left[f_{2}\right]_{\mathcal{S}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[f_{3}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Then, as

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

then the set $\left\{\left[f_{1}\right]_{\mathcal{S}},\left[f_{2}\right]_{\mathcal{S}},\left[f_{3}\right]_{\mathcal{S}}\right\}$ is linearly independent. Since the \mathcal{S}-coordinate morphism is an isomorphism we have that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is also linearly independent. Hence, as $\mathbb{Q}^{\{1,2,3\}}$ has dimension $3, \mathcal{B}$ must be a basis.
iv) We use the change of coordinate matrix

$$
P_{\mathcal{B} \leftarrow \mathcal{S}}=P_{\mathcal{S} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
0 & -1 / 2 & 1 / 2 \\
-1 & 1 / 2 & 1 / 2 \\
1 & 0 & 0
\end{array}\right] .
$$

Then, we have

$$
[f]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{S}}[f]_{\mathcal{S}}=\left[\begin{array}{ccc}
0 & -1 / 2 & 1 / 2 \\
-1 & 1 / 2 & 1 / 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
-3 / 2 \\
2
\end{array}\right]
$$

v) We have

$$
P_{\mathcal{B} \leftarrow \mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 1
\end{array}\right]=\left[\left[c_{1}\right]_{\mathcal{B}}\left[c_{2}\right]_{\mathcal{B}}\left[c_{3}\right]_{\mathcal{B}}\right]
$$

Hence,

$$
c_{1}=f_{2}-f_{3}, c_{2}=f_{1}+f_{3}, c_{3}=f_{1}-f_{2}+f_{3}
$$

so that

$$
c_{1}(1)=-1, c_{1}(2)=0, c_{1}(3)=0, c_{2}(1)=1, c_{2}(2)=0, c_{2}(3)=2, c_{3}(1)=1, c_{3}(2)=-1, c_{3}(3)=1
$$

3. i) Define the kernel $\operatorname{ker} f$ of a linear morphism $f: V \rightarrow W$ and the rank of f, rank f.
ii) Consider the function

$$
f: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{2} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1}-x_{2}+2 x_{3} \\
x_{1}+x_{3}
\end{array}\right]
$$

Explain briefly why f is a linear morphism. What is the rank of f ? Justify your answer. Using only the rank of f prove that f is not injective (do not row-reduce!).
iii) Let $\mathcal{S}^{(2)} \subset \mathbb{Q}^{2}, \mathcal{S}^{(3)} \subset \mathbb{Q}^{3}$ be the standard ordered bases. Find invertible matrices $P \in \mathrm{GL}_{2}(\mathbb{Q})$, $Q \in \mathrm{GL}_{3}(\mathbb{Q})$ such that

$$
Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} P=\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right],
$$

where $r=\operatorname{rank} f$.
iv) Prove or disprove: for the P you obtained in 3iii), a column of P is a basis of $\operatorname{ker} f$.

Solution:

i) We have

$$
\operatorname{ker} f=\left\{v \in V \mid f(v)=0_{w}\right\}
$$

and $\operatorname{rank} f=\operatorname{dimim} f$, where $\operatorname{im} f=\{w \in W \mid \exists v \in V$, such that $f(v)=w\}$.
ii) For every $x \in \mathbb{Q}^{3}$ we have

$$
f(\underline{x})=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & 1
\end{array}\right] \underline{x},
$$

so that f must be linear since it is a matrix transformation. The rank of f is 2 : we have that f is surjective since there is a pivot in every row of the matrix

$$
[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

By the Rank Theorem

$$
3=\operatorname{dim} \mathbb{Q}^{3}=\operatorname{dim} \operatorname{ker} f+\operatorname{rank} f \Longrightarrow \operatorname{dim} \operatorname{ker} f=1
$$

Thus, ker fneq $\left\{0_{\mathbb{Q}^{3}}\right\}$ so that f is not injective.
iii) There is more than one approach to this problem via elementary matrices or following the proof of the classification of morphisms theorem. We will follow the latter: first, we find a basis of $\operatorname{ker} f$. This is the same as finding the solution set of the matrix equation

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & 1
\end{array}\right] \underline{x}=\underline{0}
$$

Hence, we have

$$
\operatorname{ker} f=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}+x_{3}=0, x_{2}-x_{3}=0\right\}=\left\{\left.\left[\begin{array}{c}
-x \\
x \\
x
\end{array}\right] \right\rvert\, x \in \mathbb{Q}\right\}
$$

Thus, the set $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis of $\operatorname{ker} f$. We extend this to a basis of \mathbb{Q}^{3} : for example,

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

which can be easily show to be a linearly independent set, hence a basis of \mathbb{Q}^{3}. Now consider the matrix

$$
P=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Let

$$
Q=\left[f\left(e_{1}\right) f\left(e_{2}\right)\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]
$$

Then, we must have

$$
Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

v) By construction, we have a column of P is a basis of $\operatorname{ker} f$. If you obtained P, Q using elementary matrices (so that you may not have obtained the same P, Q as I have) then you can see that, since

$$
Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],
$$

the last column of $Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} P$ is the zero vector in \mathbb{Q}^{2}. Then, if $P=\left[\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right]$, so that $i^{\text {th }}$ column of P is p_{i}, then

$$
Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} P=\left[Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} p_{1} Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} p_{2} Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} p_{3}\right],
$$

so that

$$
\underline{0}=Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} p_{3}=Q^{-1}\left[f\left(p_{3}\right)\right]_{\mathcal{S}^{(2)}} .
$$

Since Q is invertible we must have

$$
\left[f\left(p_{3}\right)\right]_{\mathcal{S}^{(2)}}=\underline{0} \Longrightarrow f\left(p_{3}\right)=\underline{0}
$$

and as $\operatorname{dim} \operatorname{ker} f=1$ we see that p_{3} must be define a basis of $\operatorname{ker} f$.
4. i) Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$. Define what it means for A to be diagonalisable.
ii) Suppose that $P^{-1} A P=D$, with D a diagonal matrix and $P \in G L_{n}(\mathbb{C})$. Prove that the columns of P are eigenvectors of A.
For 4iii)-vi) we assume that $A \in \operatorname{Mat}_{2}(\mathbb{C}), A^{2}=I_{2}$ and that A is NOT a diagonal matrix.
iii) Show that the only possible eigenvalues of A are $\lambda=1$ or $\lambda=-1$.
iv) Let $u \in \mathbb{C}^{2}$ be nonzero. Show that $A(A u+u)=A u+u$.
v) Prove that there always exists some nonzero $w \in \mathbb{C}^{2}$ such that $A w \neq-w$. Deduce that $\lambda=1$ must occur as an eigenvalue of A. Prove that $\lambda=1$ must also occur as an eigenvalue of A.
vi) Deduce that A is diagonalisable.

Solution:

i) A is diagonalisable if it is similar to a diagonal matrix, ie, if there is $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that $P^{-1} A P=D$, with D a diagonal matrix.
ii) As $P^{-1} A P=D$ then we see that $A P=P D$. Suppose that

$$
D=\left[\begin{array}{lll}
c_{1} & & \\
& \ddots & \\
& & c_{n}
\end{array}\right]
$$

Now, if $P=\left[\begin{array}{lll}p_{1} & \cdots & p_{n}\end{array}\right]$, so the $i^{\text {th }}$ column of P is p_{i}, then

$$
A P=\left[A p_{1} \cdots A p_{n}\right]
$$

and

$$
P D=\left[\begin{array}{lll}
c_{1} p_{1} & \cdots & c_{n} p_{n}
\end{array}\right]=\left[\begin{array}{lll}
A p_{1} & \cdots & A p_{n}
\end{array}\right] .
$$

Hence, we have

$$
A p_{i}=c_{i} p_{i}
$$

so that the columns of P are eigenvectors of A.
iii) Suppose that λ is an eigenvalue of A. Then, let v be an eigenvector of A with associated eigenvalue λ (so that $v \neq 0_{\mathbb{C}^{2}}$). Then,

$$
v=I_{2} v=A^{2} v=A(A v)=A(\lambda v)=\lambda A v=\lambda^{2} v
$$

Hence, as $v \neq 0_{\mathbb{C}^{2}}$, then we must have $\lambda^{2}=1$ so that λ can be either 1 or -1 .
iv) We have

$$
A(A u+u)=A^{2} u+A u=A u+u
$$

v) Suppose that for every nonzero $w \in \mathbb{C}^{2}$ we have $A w=-w$. Then, we would have $A e_{1}=$ $-e_{1}, A e_{2}=-e_{2}$, implying that $A=-l_{2}$. However, we have assumed that A is not a diagonal matrix. Hence, there must exist some nonzero $w \in \mathbb{C}^{2}$ such that $A w \neq-w$. Now, let $u=$ $A w+w \neq 0_{\mathbb{C}^{2}}$. Then, by iv) we have

$$
A u=u
$$

so that $\lambda=1$ is an eigenvalue of A. A similar argument shows that $\lambda=-1$ must be an eigenvalue also (here we can find nonzero $z \in \mathbb{C}^{2}$ such that $A z \neq z$. Then, $A(A z-z)=z-A z$, so that $u^{\prime}=A z-z$ is an eigenvector with associated eigenvalue $\lambda=-1$).
vi) We have just shown that A admits two distinct eigenvalues. Hence, since A is 2×2 we have that A is diagonalisable (by a result from class).
5. i) Define what it means for a linear endomorphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ to be nilpotent. Define the exponent of $f, \eta(f)$.
ii) Consider the endomorphism

$$
f: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
-x_{1}+x_{2}-x_{3} \\
-x_{1}+x_{2}-x_{3} \\
0
\end{array}\right]
$$

Show that f is nilpotent and determine the exponent of $f, \eta(f)$.
iii) Define the height of a vector $v \in \mathbb{C}^{3}$ (with respect to f), ht (v). Find a vector $v \in \mathbb{C}^{3}$ such that $h t(v)=2$.
iv) Find a determine a basis \mathcal{B} of \mathbb{C}^{3} such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

v) What is the partition of 3 corresponding to the similarity class of f ?

Solution:

i) f is nilpotent if there exists some $r \in \mathbb{N}$ such that $f^{r}=f \circ \cdots \circ f=0_{\operatorname{End}_{C}(V)} \in \operatorname{End}_{\mathbb{C}}(V)$ is the zero morphism. The exponent of f is the smallest integer r such that $f^{r}=0$ while $f^{r-1} \neq 0$.
ii) You can check that $f^{2}=0 \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$ and, since f is nonzero, the exponent of f is $\eta(f)=2$.
iii) We define ht (v) to be the smallest integer r such that $f^{r}(v)=0_{\mathbb{C}^{3}}$, while $f^{r-1}(v) \neq 0_{\mathbb{C}^{3}}$. The vector $e_{1} \in \mathbb{C}^{3}$ is such that

$$
h t\left(e_{1}\right)=2
$$

since $f\left(e_{1}\right) \neq 0_{\mathbb{C}^{3}}$, while $f^{2}\left(e_{1}\right)=0_{\mathbb{C}^{3}}$.
iv) Using the algorithm from the notes you find that $\mathcal{B}=\left(f\left(e_{1}\right), e_{1}, e_{2}+e_{3}\right)$ is an ordered basis such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Indeed, we have

$$
H_{1}=\operatorname{ker} f=E_{0}=\operatorname{span}_{\mathbb{C}}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}, H_{2}=\mathbb{C}^{3}
$$

Then,

$$
H_{2}=H_{1} \oplus G_{2}=H_{1} \oplus \operatorname{span}_{\mathbb{C}}\left\{e_{1}\right\}
$$

and, if $S_{1}=\left\{f\left(e_{1}\right)\right\}=\left\{e_{1}+e_{2}\right\}$,

$$
H_{1}=H_{0} \oplus \operatorname{span}_{\mathbb{C}} S_{1} \oplus G_{1}=\{0\} \oplus \operatorname{span}_{\mathbb{C}} S_{1} \oplus \operatorname{span}\left\{e_{2}+e_{3}\right\}
$$

Thus, the table you would obtain is
e_{1}

$$
f\left(e_{1}\right) \quad e_{2}+e_{3}
$$

v) The partition associated to the nilpotent/similarity class of f is

$$
\pi(f): 12 \leftrightarrow 1+2
$$

