
Math 110, Summer 2012: Practice Exam 1 SOLUTIONS

Choose 3/5 of the following problems. Make sure to justify all steps in your solutions.

1. Let V be a K-vector space, for some number field K. Let U ⊂ V be a nonempty subset of V .

i) Define what it means for U ⊂ V to be a vector subspace of V . Define spanKU.

ii) Prove that spanKU is a vector subspace of V .

iii) Consider the Q-vector space V = Mat2(Q) and the subset

U = {I2,A,A2}, where A =

[
1 0
−1 1

]
.

Find v ∈ U such that
spanQU = spanQU

′,

where U ′ = U \ {v}. Show that U ′ is linearly independent.

iv) Find a vector w ∈ Mat2(Q) such that w /∈ spanQU. Is the set U ′ ∪ {w} linearly independent?
Explain your answer.

v) Extend the set U ′ ∪ {w} to a basis B of Mat2(Q), taking care to explain how you know the set B
you’ve obtained is a basis.

Solution:

i) U ⊂ V is a subspace if, for any u, v ∈ U,λ,µ ∈ K we have λu + µv ∈ U. We define

spanKU = {
k∑

j=1

cjuj ∈ V | cj ∈ K, uj ∈ U, k ∈ N}.

ii) Let u, v ∈ spanKU,λµ ∈ K. Then, we must have

u = c1u1 + ... + cmum, v = d1v1 + ... + dnvn,

where ui , vj ∈ U, ci , dj ∈ K. Then,

λu + µv = λc1u1 + ... + λcmum + µd1v1 + ... + µdnvn = a1w1 + ... + akwk ,

where al ∈ K,wl ∈ U. Hence, λu + µv ∈ U.

iii) We see that

U =

{[
1 0
0 1

]
,

[
1 0
−1 1

]
,

[
1 0
−2 1

]}
.

There is a nontrivial linear relation

0Mat2(Q) =

[
2 0
−2 2

]
−
[

1 0
0 1

]
−
[

1 0
−2 1

]
= 2A− I2 − A2.

Thus, by the Elimination Lemma we know that

spanQU = spanQ{I2,A2},

1



so that we can take v = A ∈ U. Set U ′ = {I2,A2}. Suppose that there is a linear relation

λ1I2 + λ2A
2 = 0Mat2(Q) =⇒

[
λ1 + λ2 0
−2λ2 λ1 + λ2

]
=

[
0 0
0 0

]
,

so that λ2 = 0,λ1 + λ2 = 0. Hence, we must have λ1 = λ2 = 0 and U ′ is linearly independent.

iv) If we take

w =

[
0 1
0 0

]
,

then is is easy to see that w /∈ spanQU
′ (it’s not possible to find c1, c2 ∈ Q such that c1I2+c2A

2 =
w). Then, by a result from class (Corollary to Elimination Lemma) we see that U ′ ∪ {w} must
be linearly independent.

v) Since U ′ ∪ {w} consists of 3 vectors and is linearly independent and Mat2(Q) is has dimension 4,
we need only find some vector z /∈ spanQU

′ ∪ {w} to obtain a basis U ′ ∪ {w , z} (since this set is
then linearly independent, by a similar argument as in iv)). There are many ways to proceed: we
will use the most general. Let S denote the standard ordered basis of Mat2(Q). Then,

[A2]S =


1
0
−2
1

 , [I2]S =


1
0
0
1

 , [w ]S =


0
1
0
0

 .

Then, b ∈ spanQ{[A2]S , [I2]S , [w ]S} if and only if the matrix equation
1 1 0
0 0 1
−2 0 0
1 1 0

 x = b,

is consistent. So we form the augmented matrix
1 1 0 b1
0 0 1 b2
−2 0 0 b3
1 1 0 b4

 ∼


1 1 0 b1
0 0 1 b2
0 2 0 b3 + 2b1
0 0 0 b4 − b1


and there is no pivot in the last column if and only if b4 = b1. Thus, b /∈ spanQ{[A2]S , [I2]S , [w ]S}
if and only if b4 6= b1. Thus, since the S-coordinate morphism is an isomorphism we have that

e11 =

[
1 0
0 0

]
/∈ spanQU

′ ∪ {w}.

Hence, the set
B = {I2,A2,w , e11},

is linearly independent. As this set contains 4 vectors then it must be a basis, by a result from
class.

Alternatively, you can just come up with some matrix B ∈ Mat2(Q) and show that B /∈ spanQU
′∪

{w}. In any case, you will need to prove that you know the B you choose is not an element of
spanQU

′ ∪ {w}.
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2. i) Let B = (b1, ... , bn) ⊂ V be an ordered subset of the K-vector space V . Define what it means for
B to be an ordered basis of V using the notions of linear independence AND span.

ii) Consider the maximal linear independence property: let E ⊂ V be a linearly independent subset of
the K-vector space V . Then, if E ⊂ E ′ and E ′ is linearly independent then E ′ = E.

Prove that if B ⊂ V is a basis (satisfying the definition you gave in 2a)) then B is maximal linearly
independent.

iii) Consider the Q-vector space Q{1,2,3} = {f : {1, 2, 3} → Q}. Let

B = {f1, f2, f3} ⊂ Q{1,2,3},

where

f1(1) = 0, f1(2) = −1, f1(3) = 1, f2(1) = 0, f2(2) = 1, f2(3) = 1, f3(1) = 1, f3(2) = 1, f3(3) = 1.

Prove that B is a basis of Q{1,2,3}.

iv) Let B be as defined in 2iii). Define the B-coordinate morphism

[−]B : Q{1,2,3} → Q3,

and determine the B-coordinates of f ∈ Q{1,2,3}, where

f (1) = 2, f (2) = −1, f (3) = 2.

v) Suppose that C = (c1, c2, c3) ⊂ Q{1,2,3} is an ordered basis such that the change of coordinate matrix

PC←B =

1 0 −1
0 1 1
1 −1 −1

 .

Determine c1, c2, c3 ∈ Q{1,2,3}, ie, for each i ∈ {1, 2, 3}, determine c1(i), c2(i), c3(i).

Solution:

i) B is a basis if it is a linearly independent set and spanKB = V . Since it is an ordered set it is an
ordered basis.

ii) We know that B is linearly independent, by definition of a basis. So we must show that,

B ⊂ B′, with B′ linearly indepndent =⇒ B′ = B.

Suppose that B 6= B′. Then, there is some v ∈ B′ such that v /∈ B. Also, we can’t have v = 0V

as B′ is linearly independent (any set containing 0V is linearly dependent). As spanKB = V then
there are λ1, ... ,λn ∈ K such that

v = λ1b1 + ... + λnbn =⇒ v −
n∑

i=1

λibi = 0V .

As each bi ∈ B ⊂ B′ then we have obtained a nontrivial linear relation (the coefficient of v is 1)
among vectors in B′, contradicting the linear independence of B′. Hence, our initial assumption
that B 6= B′ must be false so that B′ = B.

iii) Consider the standard ordered basis S = {e1, e2, e3} ⊂ Q{1,2,3}. We are going to show that B is
linearly independent by using the S-coordinate isomorphism: we have

[f1]S =

 0
−1
1

 , [f2]S =

0
1
1

 , [f3]S =

1
1
1

 .
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Then, as  0 0 1
−1 1 1
1 1 1

 ∼
1 0 0

0 1 0
0 0 1

 ,

then the set {[f1]S , [f2]S , [f3]S} is linearly independent. Since the S-coordinate morphism is an
isomorphism we have that {f1, f2, f3} is also linearly independent. Hence, as Q{1,2,3} has dimension
3, B must be a basis.

iv) We use the change of coordinate matrix

PB←S = P−1S←B =

 0 0 1
−1 1 1
1 1 1

−1 =

 0 −1/2 1/2
−1 1/2 1/2
1 0 0

 .

Then, we have

[f ]B = PB←S [f ]S =

 0 −1/2 1/2
−1 1/2 1/2
1 0 0

 2
−1
2

 =

 3/2
−3/2

2

 .

v) We have

PB←C = P−1C←B =

1 0 −1
0 1 1
1 −1 −1

−1 =

 0 1 1
1 0 −1
−1 1 1

 = [[c1]B[c2]B[c3]B] .

Hence,
c1 = f2 − f3, c2 = f1 + f3, c3 = f1 − f2 + f3,

so that

c1(1) = −1, c1(2) = 0, c1(3) = 0, c2(1) = 1, c2(2) = 0, c2(3) = 2, c3(1) = 1, c3(2) = −1, c3(3) = 1.

3. i) Define the kernel ker f of a linear morphism f : V →W and the rank of f , rankf .

ii) Consider the function

f : Q3 → Q2 ;

x1x2
x3

 7→ [
x1 − x2 + 2x3

x1 + x3

]
.

Explain briefly why f is a linear morphism. What is the rank of f ? Justify your answer. Using only the
rank of f prove that f is not injective (do not row-reduce!).

iii) Let S(2) ⊂ Q2,S(3) ⊂ Q3 be the standard ordered bases. Find invertible matrices P ∈ GL2(Q),
Q ∈ GL3(Q) such that

Q−1[f ]S
(2)

S(3)P =

[
Ir 0
0 0

]
,

where r = rankf .

iv) Prove or disprove: for the P you obtained in 3iii), a column of P is a basis of ker f .

Solution:

i) We have
ker f = {v ∈ V | f (v) = 0W },

and rankf = dim imf , where imf = {w ∈W | ∃v ∈ V , such that f (v) = w}.
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ii) For every x ∈ Q3 we have

f (x) =

[
1 −1 2
1 0 1

]
x ,

so that f must be linear since it is a matrix transformation. The rank of f is 2: we have that f is
surjective since there is a pivot in every row of the matrix

[f ]S
(2)

S(3) =

[
1 −1 2
1 0 1

]
∼
[

1 0 1
0 1 −1

]
.

By the Rank Theorem

3 = dimQ3 = dim ker f + rankf =⇒ dim ker f = 1.

Thus, ker fneq{0Q3} so that f is not injective.

iii) There is more than one approach to this problem via elementary matrices or following the proof of
the classification of morphisms theorem. We will follow the latter: first, we find a basis of ker f .
This is the same as finding the solution set of the matrix equation[

1 −1 2
1 0 1

]
x = 0.

Hence, we have

ker f =


x1x2
x3

 | x1 + x3 = 0, x2 − x3 = 0

 =


−xx

x

 | x ∈ Q

 .

Thus, the set


−1

1
1

 is a basis of ker f . We extend this to a basis of Q3: for example,


−1

1
1

1
0
0

 ,

0
1
0

 ,

which can be easily show to be a linearly independent set, hence a basis of Q3. Now consider the
matrix

P =

1 0 −1
0 1 1
0 0 1

 .

Let

Q = [f (e1) f (e2)] =

[
1 −1
1 0

]
.

Then, we must have

Q−1[f ]S
(2)

S(3)P =

[
1 0 0
0 1 0

]
.

v) By construction, we have a column of P is a basis of ker f . If you obtained P,Q using elementary
matrices (so that you may not have obtained the same P,Q as I have) then you can see that,
since

Q−1[f ]S
(2)

S(3)P =

[
1 0 0
0 1 0

]
,
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the last column of Q−1[f ]S
(2)

S(3)P is the zero vector in Q2. Then, if P = [p1 p2 p3], so that i th

column of P is pi , then

Q−1[f ]S
(2)

S(3)P =
[
Q−1[f ]S

(2)

S(3)p1 Q
−1[f ]S

(2)

S(3)p2 Q
−1[f ]S

(2)

S(3)p3
]

,

so that
0 = Q−1[f ]S

(2)

S(3)p3 = Q−1[f (p3)]S(2) .

Since Q is invertible we must have

[f (p3)]S(2) = 0 =⇒ f (p3) = 0,

and as dim ker f = 1 we see that p3 must be define a basis of ker f .

4. i) Let A ∈ Matn(C). Define what it means for A to be diagonalisable.

ii) Suppose that P−1AP = D, with D a diagonal matrix and P ∈ GLn(C). Prove that the columns of
P are eigenvectors of A.

For 4iii)-vi) we assume that A ∈ Mat2(C), A2 = I2 and that A is NOT a diagonal matrix.

iii) Show that the only possible eigenvalues of A are λ = 1 or λ = −1.

iv) Let u ∈ C2 be nonzero. Show that A(Au + u) = Au + u.

v) Prove that there always exists some nonzero w ∈ C2 such that Aw 6= −w . Deduce that λ = 1 must
occur as an eigenvalue of A. Prove that λ = 1 must also occur as an eigenvalue of A.

vi) Deduce that A is diagonalisable.

Solution:

i) A is diagonalisable if it is similar to a diagonal matrix, ie, if there is P ∈ GLn(C) such that
P−1AP = D, with D a diagonal matrix.

ii) As P−1AP = D then we see that AP = PD. Suppose that

D =

c1 . . .

cn

 .

Now, if P = [p1 · · · pn], so the i th column of P is pi , then

AP = [Ap1 · · · Apn],

and
PD = [c1p1 · · · cnpn] = [Ap1 · · · Apn].

Hence, we have
Api = cipi ,

so that the columns of P are eigenvectors of A.

iii) Suppose that λ is an eigenvalue of A. Then, let v be an eigenvector of A with associated eigenvalue
λ (so that v 6= 0C2). Then,

v = I2v = A2v = A(Av) = A(λv) = λAv = λ2v .

Hence, as v 6= 0C2 , then we must have λ2 = 1 so that λ can be either 1 or −1.
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iv) We have
A(Au + u) = A2u + Au = Au + u.

v) Suppose that for every nonzero w ∈ C2 we have Aw = −w . Then, we would have Ae1 =
−e1,Ae2 = −e2, implying that A = −I2. However, we have assumed that A is not a diagonal
matrix. Hence, there must exist some nonzero w ∈ C2 such that Aw 6= −w . Now, let u =
Aw + w 6= 0C2 . Then, by iv) we have

Au = u,

so that λ = 1 is an eigenvalue of A. A similar argument shows that λ = −1 must be an eigenvalue
also (here we can find nonzero z ∈ C2 such that Az 6= z . Then, A(Az − z) = z − Az , so that
u′ = Az − z is an eigenvector with associated eigenvalue λ = −1).

vi) We have just shown that A admits two distinct eigenvalues. Hence, since A is 2× 2 we have that
A is diagonalisable (by a result from class).

5. i) Define what it means for a linear endomorphism f ∈ EndC(V ) to be nilpotent. Define the exponent
of f , η(f ).

ii) Consider the endomorphism

f : C3 → C3 ;

x1x2
x3

 7→
−x1 + x2 − x3
−x1 + x2 − x3

0

 .

Show that f is nilpotent and determine the exponent of f , η(f ).

iii) Define the height of a vector v ∈ C3 (with respect to f ), ht(v). Find a vector v ∈ C3 such that
ht(v) = 2.

iv) Find a determine a basis B of C3 such that

[f ]B =

0 1 0
0 0 0
0 0 0

 .

v) What is the partition of 3 corresponding to the similarity class of f ?

Solution:

i) f is nilpotent if there exists some r ∈ N such that f r = f ◦ · · · ◦ f = 0EndC(V ) ∈ EndC(V ) is the
zero morphism. The exponent of f is the smallest integer r such that f r = 0 while f r−1 6= 0.

ii) You can check that f 2 = 0 ∈ EndC(C2) and, since f is nonzero, the exponent of f is η(f ) = 2.

iii) We define ht(v) to be the smallest integer r such that f r (v) = 0C3 , while f r−1(v) 6= 0C3 . The
vector e1 ∈ C3 is such that

ht(e1) = 2,

since f (e1) 6= 0C3 , while f 2(e1) = 0C3 .

iv) Using the algorithm from the notes you find that B = (f (e1), e1, e2 + e3) is an ordered basis such
that

[f ]B =

0 1 0
0 0 0
0 0 0

 .

Indeed, we have

H1 = ker f = E0 = spanC


1

1
0

 ,

0
1
1

 , H2 = C3.
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Then,
H2 = H1 ⊕ G2 = H1 ⊕ spanC{e1},

and, if S1 = {f (e1)} = {e1 + e2},

H1 = H0 ⊕ spanCS1 ⊕ G1 = {0} ⊕ spanCS1 ⊕ span{e2 + e3}.

Thus, the table you would obtain is
e1

f (e1) e2 + e3

v) The partition associated to the nilpotent/similarity class of f is

π(f ) : 12↔ 1 + 2.
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