Math 110, Summer 2012: Practice Exam 1

Choose $3 / 5$ of the following problems. Make sure to justify all steps in your solutions.

1. Let V be a \mathbb{K}-vector space, for some number field \mathbb{K}. Let $U \subset V$ be a nonempty subset of V.
i) Define what it means for $U \subset V$ to be a vector subspace of V. Define $\operatorname{span}_{\mathbb{K}} U$.
ii) Prove that $\operatorname{span}_{\mathbb{K}} U$ is a vector subspace of V.
iii) Consider the \mathbb{Q}-vector space $V=\operatorname{Mat}_{2}(\mathbb{Q})$ and the subset

$$
U=\left\{I_{2}, A, A^{2}\right\}, \text { where } A=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Find $v \in U$ such that

$$
\operatorname{span}_{\mathbb{Q}} U=\operatorname{span}_{\mathbb{Q}} U^{\prime}
$$

where $U^{\prime}=U \backslash\{v\}$. Show that U^{\prime} is linearly independent.
iv) Find a vector $w \in \operatorname{Mat}_{2}(\mathbb{Q})$ such that $w \notin \operatorname{span}_{\mathbb{Q}} U$. Is the set $U^{\prime} \cup\{w\}$ linearly independent? Explain your answer.
v) Extend the set $U^{\prime} \cup\{w\}$ to a basis \mathcal{B} of $\operatorname{Mat}_{2}(\mathbb{Q})$, taking care to explain how you know the set \mathcal{B} you've obtained is a basis.
2. i) Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right) \subset V$ be an ordered subset of the \mathbb{K}-vector space V. Define what it means for \mathcal{B} to be an ordered basis of V using the notions of linear independence AND span.
ii) Consider the maximal linear independence property: let $E \subset V$ be a linearly independent subset of the \mathbb{K}-vector space V. Then, if $E \subset E^{\prime}$ and E^{\prime} is linearly independent then $E^{\prime}=E$.

Prove that if $\mathcal{B} \subset V$ is a basis (satisfying the definition you gave in 2 a)) then \mathcal{B} is maximal linearly independent.
iii) Consider the \mathbb{Q}-vector space $\mathbb{Q}^{\{1,2,3\}}=\{f:\{1,2,3\} \rightarrow \mathbb{Q}\}$. Let

$$
\mathcal{B}=\left\{f_{1}, f_{2}, f_{3}\right\} \subset \mathbb{Q}^{\{1,2,3\}}
$$

where

$$
f_{1}(1)=0, f_{1}(2)=-1, f_{1}(3)=1, f_{2}(1)=0, f_{2}(2)=1, f_{2}(3)=1, f_{3}(1)=1, f_{3}(2)=1, f_{3}(3)=1
$$

Prove that \mathcal{B} is a basis of $\mathbb{Q}^{\{1,2,3\}}$.
iv) Let \mathcal{B} be as defined in 2iii). Define the \mathcal{B}-coordinate morphism

$$
[-]_{\mathcal{B}}: \mathbb{Q}^{\{1,2,3\}} \rightarrow \mathbb{Q}^{3},
$$

and determine the \mathcal{B}-coordinates of $f \in \mathbb{Q}^{\{1,2,3\}}$, where

$$
f(1)=2, f(2)=-1, f(3)=2
$$

v) Suppose that $\mathcal{C}=\left(c_{1}, c_{2}, c_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}}$ is an ordered basis such that the change of coordinate matrix

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

Determine $c_{1}, c_{2}, c_{3} \in \mathbb{Q}^{\{1,2,3\}}$, ie, for each $i \in\{1,2,3\}$, determine $c_{1}(i), c_{2}(i), c_{3}(i)$.
3. i) Define the kernel $\operatorname{ker} f$ of a linear morphism $f: V \rightarrow W$ and the rank of f, rank f.
ii) Consider the function

$$
f: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{2} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1}-x_{2}+2 x_{3} \\
x_{1}+x_{3}
\end{array}\right] .
$$

Explain briefly why f is a linear morphism. What is the rank of f ? Justify your answer. Using only the rank of f prove that f is not injective (do not row-reduce!).
iii) Let $\mathcal{S}^{(2)} \subset \mathbb{Q}^{2}, \mathcal{S}^{(3)} \subset \mathbb{Q}^{3}$ be the standard ordered bases. Find invertible matrices $P \in \mathrm{GL}_{2}(\mathbb{Q})$, $Q \in \mathrm{GL}_{3}(\mathbb{Q})$ such that

$$
Q^{-1}[f]_{\mathcal{S}^{(3)}}^{\mathcal{S}^{(2)}} P=\left[\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right],
$$

where $r=\operatorname{rank} f$.
iv) Prove or disprove: for the P you obtained in 3iii), a column of P is a basis of $\operatorname{ker} f$.
4. i) Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$. Define what it means for A to be diagonalisable.
ii) Suppose that $P^{-1} A P=D$, with D a diagonal matrix and $P \in G L_{n}(\mathbb{C})$. Prove that the columns of P are eigenvectors of A.
For 4iii)-vi) we assume that $A \in \operatorname{Mat}_{2}(\mathbb{C}), A^{2}=I_{2}$ and that A is NOT a diagonal matrix.
iii) Show that the only possible eigenvalues of A are $\lambda=1$ or $\lambda=-1$.
iv) Let $u \in \mathbb{C}^{2}$ be nonzero. Show that $A(A u+u)=A u+u$.
v) Prove that there always exists some nonzero $w \in \mathbb{C}^{2}$ such that $A w \neq-w$. Deduce that $\lambda=1$ must occur as an eigenvalue of A. Prove that $\lambda=1$ must also occur as an eigenvalue of A.
vi) Deduce that A is diagonalisable.
5. i) Define what it means for a linear endomorphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ to be nilpotent. Define the exponent of $f, \eta(f)$.
ii) Consider the endomorphism

$$
f: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
-x_{1}+x_{2}-x_{3} \\
-x_{1}+x_{2}-x_{3} \\
0
\end{array}\right]
$$

Show that f is nilpotent and determine the exponent of $f, \eta(f)$.
iii) Define the height of a vector $v \in \mathbb{C}^{3}$ (with respect to f), ht (v). Find a vector $v \in \mathbb{C}^{3}$ such that $h t(v)=2$.
iv) Find a determine a basis \mathcal{B} of \mathbb{C}^{3} such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

v) What is the partition of 3 corresponding to the similarity class of f ?

