
Proceeding as before, we ‘complete the square’ with respect to x2 (we don’t need to complete the square
for x1): we have

− x2
1 + 2x2x3

= − x2
1 +

1

2
(x2 + x3)2 − 1

2
(x2 − x3)2

Hence, if we let
y1 = x1

y2 = 1√
2

(x2 + x3)

y3 = 1√
2

(x2 − x3)

then we have
x tAx = −y 2

1 + y 2
2 − y 2

3 .

Furthermore, if we let

Q =

1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2

 ,

and defined P = Q−1, then

P tAP =

−1
1
−1

 .

Hence, p = 1, q = 2 and
sig(BA) = −1.

3.3 Euclidean spaces

Throughout this section V will be a finite dimensional R-vector space and K = R.

Definition 3.3.1. Let B ∈ BilR(V ) be a symmetric bilinear form. We say that B is an inner product
on V if B satisfies the following property:

B(v , v) ≥ 0, for every v ∈ V , and B(v , v) = 0⇔ v = 0V .

If B ∈ BilK(V ) is an inner product on V then we will write

〈u, v〉 def
= B(u, v).

Remark 3.3.2. Suppose that 〈, 〉 is an inner product on V . Then, we have the following properties:

i) 〈λu + v , w〉 = λ〈u, w〉+ 〈v , w〉, for every u, v , w ∈ V ,λ ∈ K,

ii) 〈u,λv + w〉 = λ〈u, v〉+ 〈u, w〉, for every u, v , w ∈ V ,λ ∈ K,

iii) 〈u, v〉 = 〈v , u〉, for every u, v ∈ V .

iv) 〈v , v〉 ≥ 0, for every v ∈ V , with equality precisely when v = 0V .

Property iv) is often referred to as the positive-definite property of an inner product.

Definition 3.3.3. An Euclidean space, or inner product space, is a pair (V , 〈, 〉), where V is a finite
dimensional R-vector space and 〈, 〉 is an inner product on V .

Given an inner product space (V , 〈, 〉) we define the norm function on V (with respect to 〈, 〉) to be the
function

||.|| : V → R≥0 ; v 7→ ||v || =
√
〈v , v〉.

For any v ∈ V we define the length of v (with respect to 〈, 〉) to be ||v || ∈ R≥0.
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Let (V1, 〈, 〉1), (V2, 〈, 〉2) be inner product spaces. Then, we say that a linear morphism

f : V1 → V2,

is an Euclidean morphism if, for every u, v ∈ V1 we have

〈u, v〉1 = 〈f (u), f (v)〉2.

An Euclidean morphism whose underlying linear morphism is an isomorphism is called a Euclidean
isomorphism.

If f : (V , 〈, 〉) → (V , 〈, 〉) is a Euclidean morphism such that the domain and codomain are the same
Euclidean space, then we say that f is an orthogonal morphism, or an orthogonal transformation. We
denote the set of all orthgonal transformations of (V , 〈, 〉) by O(V , 〈, 〉), or simply O(V ) when there is
no confusion.

Example 3.3.4. 1. We define n-dimensional Euclidean space, denoted En, to be the Euclidean space
(Rn, ·), where · is the usual ‘dot product’ from analytic geometry: that is, for x , y ∈ Rn we have

x · y def
= x ty = x1y1 + ... + xnyn.

It easy to check that · is bilinear and symmetric and, moreover, we have

x · x = x tx = x2
1 + ... + x2

n ≥ 0,

with equality precisely when x = 0.

Given x ∈ En, the length of x is

||x || =
√

x2
1 + ... + x2

n .

2. Consider the symmetric bilinear form BA ∈ BilR(R3) where

A =

1 0 0
0 0 −1
0 −1 0

 .

Then, you can check that

x =

0
1
1

 ∈ R3,

has the property that
BA(x , x) = −2 < 0,

so that BA is not an inner product on R3.

3. Let BA ∈ BilR(R4) be the symmetric bilinear form defined by

A =


1 1 0 0
1 2 0 0
0 0 2 1
0 0 1 1

 .

Then, BA is an inner product: indeed, let x ∈ R3. Then, we have

BA(x , x) = x2
1 + 2x1x2 + 2x2

2 + 2x2
3 + 2x3x4 + x2

4 = (x1 + x2)2 + x2
2 + x2

3 + (x3 + x4)2 ≥ 0,
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and we have BA(x , x) = 0 precisely when

x1 + x2 = 0, x2 = 0, x3 = 0, x3 + x4 = 0,

so that x1 = x2 = x3 = x4 = 0 and x = 0.

With respect to this inner product, the vector

x =


1
−1
0
1

 ∈ R4,

has length
||x || =

√
〈x , x〉 =

√
2.

4. In fact, a symmetric bilinear form B on an n-dimensional R-vector space V is an inner product
precisely when sig(B) = n.64

5. Consider the linear morphism TA ∈ EndR(R2), where

A =
1√
2

[
1 −1
1 1

]
.

Then, TA is an orthogonal transformation of E2: indeed, for any x , y ∈ R2, we have

TA(x) · TA(y) = (Ax)t(Ay) = x tAtAy = x ty = x · y ,

since A−1 = At .

This example highlights a more general property of orthogonal transformations of En to be dis-
cussed later:

A ∈ O(En) if and only if A−1 = At .65

6. If (V , 〈, 〉) is an Euclidean space then idV is always an orthogonal transformation.

Remark 3.3.5. 1. A Euclidean space is simply a R-vector space V equipped with an inner product. This
means that it is possible for the same R-vector space V to have two distinct Euclidean space structures
(ie, we can equip the same R-vector space with two distinct inner products). However, as we will see
shortly, given a R-vector space V there is essentially only one Euclidean space structure on V : this
means that we can find a Euclidean isomorphism between the two distinct Euclidean space structures
on V .

2. It is important to remember that the norm function ||.|| is not linear. In fact, the norm function is
not additive: indeed, let v ∈ V be nonzero. Then,

0 = ||0v || = ||v + (−v)||,

so that if ||.|| were additive then we would have ||v ||+ ||− v || = 0, for every v ∈ V . As ||v ||, ||− v || ≥ 0
then we would have that

||v || = || − v || = 0, for every v ∈ V .

That is, every v ∈ V would have length 0. However, the only v ∈ V that can have length 0 is v = 0V .

Moreover, for any v ∈ V ,λ ∈ K, we have

||λv || = |λ|||v ||.
64This is shown in a few paragraphs.
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Theorem 3.3.6. Let (V , 〈, 〉) be an Euclidean space. Then,

a) for any u, v ∈ V we have

||u + v || ≤ ||u||+ ||v ||. (triangle inequality)

b) ||v || = 0 if and only if v = 0V .

c) if 〈u, v〉 = 0 then

||u||2 + ||v ||2 = ||u + v ||2. (Pythagoras’ theorem)

d) for any u, v ∈ V we have

|〈u, v〉| ≤ ||u||||v ||. (Cauchy-Schwarz inequality)

Proof: Left as an exercise for the reader.

We will now show that there is essentially only one Euclidean space structure that we can give an
arbitrary finite dimensional R-vector space. Moreover, this Euclidean space structure is well-known to
us all.

Lemma 3.3.7. Suppose that 〈, 〉 is an inner product on V . Then, 〈, 〉 ∈ BilR(V ) is nondegenerate.

Proof: We need to show the following property of 〈, 〉:

if v ∈ V is such that 〈u, v〉 = 0, for every u ∈ V , then v = 0V .

So, suppose that v ∈ V is such that 〈u, v〉 = 0, for every u ∈ V . In particular, we must have

〈v , v〉 = 0 =⇒ v = 0V ,

by the defining property of an inner product (Remark 3.3.2, iv)). Hence, 〈, 〉 is nondegenerate.

Hence, using Sylvester’s law of inertia (Theorem 3.2.6), we know that for an Euclidean space (V , 〈, 〉)
there is an ordered basis B ⊂ V such that

[〈, 〉]B =

d1

. . .

dn

 , where di ∈ {1,−1}, n = dim V .

Moreover, since 〈, 〉 is an inner product we must have that sig(〈, 〉) = n: indeed, we have

sig(〈, 〉) = p − q ∈ {−n,−(n − 1), ... , n − 1, n},

so that sig(〈, 〉) = n if and only if q = 0, so that there are no −1s appearing on the diagonal of [〈, 〉]B.
If some di = −1 then we would have

0 ≤ 〈bi , bi 〉 = −1,

which is impossible. Hence, we must have d1 = d2 = ... = dn = 1, so that

[〈, 〉]B = In.

Theorem 3.3.8 (Classification of Euclidean spaces). Let (V , 〈, 〉) be an Euclidean space, n = dim V .
Then, there is a Euclidean isomorphism

f : (V , 〈, 〉)→ En.
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Proof: Let B ⊂ V be an ordered basis such that

[〈, 〉]B = In.

Then, let
f = [−]B : V → Rn,

be the B-coordinate morphism. Then, this is an isomorphism of R-vector spaces so that we need only
show that

〈u, v〉 = [u]B · [v ]B,

for every u, v ∈ V . Now, let u, v ∈ V and suppose that

u =
n∑

i=1

λi bi , u =
n∑

j=1

µj bj .

Then,

〈u, v〉 = 〈
n∑

i=1

λi bi ,
n∑

j=1

µj bj〉 =
∑

i ,j

λiµj〈bi , bj〉 =
n∑

i=1

λiµi ,

where we have used bilinearity of 〈, 〉 and that

〈bi , bj〉 =

{
1, i = j ,

0, i 6= j .

Now, we also have

[u]B · [v ]B = [u]t
B[v ]B = [λ1 · · · λn]

µ1

...
µn

 =
n∑

i=1

λiµi = 〈u, v〉,

and the result follows.

Corollary 3.3.9. Let (V1, 〈, 〉1), (V2, 〈, 〉2) be Euclidean spaces. Then, if dim V1 = dim V2 then (V1, 〈, 〉1)
and (V2, 〈, 〉2) are Euclidean-isomorphic.

Proof: By Theorem 3.3.8 we have Euclidean isomorphisms

f1 : (V1, 〈, 〉1)→ En, f2 : (V2, 〈, 〉2)→ En.

Then, as the composition of two Euclidean isomorphisms is again a Euclidean isomorphism66 then we
obtain an isomorphism

f −1
2 ◦ f1 : (V1, 〈, 〉1)→ (V2, 〈, 〉2).

In fact, the condition defining an Euclidean morphism (not necessarily an isomorphism) is extremely
strong: if (V1, 〈, 〉1) and (V2, 〈, 〉2) are Euclidean spaces and f : V1 → V2 is a Euclidean morphism, then
it is easy to check that we must have

||v || = ||f (v)||, for every v ∈ V ,

so that f is length preserving. If you think about what this means geometrically then we obtain that

‘Euclidean morphisms are always injective’

since no nonzero vector can be mapped to 0V2 by f . As a consequence, we obtain

66Check this.
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Proposition 3.3.10. Let (V1, 〈, 〉1), (V2, 〈, 〉2) be Euclidean spaces of the same dimension. Then, if
there exists an Euclidean morphism

f : V1 → V2,

it must automatically be an Euclidean isomorphism.

Corollary 3.3.11. Let (V , 〈, 〉) be an Euclidean space. Then, every Euclidean endomorphism

f : V → V

is an orthogonal transformation (= Euclidean isomorphism). Hence, we have

O(V ) = {f ∈ EndR(V ) | f is Euclidean}.

Definition 3.3.12. The set of orthogonal transformations of En is called the orthogonal group of size
n and is denoted O(n).

Suppose that g ∈ O(n) is an orthogonal transformation of En and identify g with its standard matrix
[g ]S(n) . Then, we must have, for every x , y ∈ Rn, that

x · y = (gx) · (gy) = (gx)t(gy) = x tg tgy ,

so that
x ty = x tg tgy ,

for every x , y ∈ Rn. Hence, by Lemma 3.1.6, we must have that

g tg = In.

Hence, we see that we can identify

[−]S(n) : O(n)→ {X ∈ Matn(R) | X tX = In}.

Moreover, this identification satisfies the following properties:

- [idEn ]S(n) = In,

- for every f , g ∈ O(n), [f ◦ g ]S(n) = [f ]S(n) [g ]S(n) .

Hence, the correspondence

[−]S(n) : O(n)→ {X ∈ Matn(R) | X tX = In},

is an isomorphism of groups.

From now on, when we consider orthogonal transformations g ∈ O(n) we will identify g with
its standard matrix. Then, the previous discussion shows that g ∈ GLn(R) and g tg = In.

Let’s think a little bit more about the condition

AtA = In,

for A ∈ Matn(R).

i) If A is such that AtA = In then we must have that det(A)2 = 1, since det(A) = det(At). In
particular, det(A) ∈ {1,−1}67 so that A ∈ GLn(R): the inverse of A is A−1 = At . Furthermore,
this implies that we must have

AAt = AA−1 = In,

so that
67It is NOT true that if A ∈ GLn(R) such that det A = 1 then A ∈ O(n). For example, consider

A =

[
1 1
1 2

]
.

Then, it is not the case that At A = I2 so that A /∈ O(2).
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AtA = In if and only if AAt = In.

ii) Let us write
A = [a1 · · · an],

so that the i th column of A is ai . Then, as A ∈ GLn(R) we have that {a1, ... , an} is linearly
independent and defines a basis of Rn. Moreover, as the i th row of At is at

i , then the condition
AtA = In implies that

ai · aj = at
i aj =

{
1, i = j ,

0, i 6= j .
.

In particular, we see that each column of A has length 168 (with respect to the inner product
·), and that the ·-complement of ai is precisely

spanR{aj | j 6= i}.

iii) A matrix A ∈ Matn(R) such that
AtA = In,

will be called an orthogonal matrix.

iv) A matrix A ∈ Matn(R) is an orthogonal matrix if and only if for every x , y ∈ Rn we have

(Ax) · (Ay) = x · y .

We can interpret this result using the slogan

‘orthogonal transformations are the ‘rigid’ transformations’

Example 3.3.13. 1. Let θ ∈ R and consider the matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
∈ Mat2(R).

Then, you may know already that Rθ corresponds to the ‘rotate by θ counterclockwise’ morphism
of R2. If not, then this is easily seen: since Rθ defines a linear transformation of R2 we need only
determine what happens to the standard basis of R2. We have

Rθe1 =

[
cos θ
sin θ

]
, Rθe2 =

[
− sin θ
cos θ

]
,

and by considering triangles and the unit circle the result follows.

You can check easily that
R t
θRθ = I2,

so that Rθ ∈ O(2).

In fact, it can be shown that every orthogonal transformation of R2 that has determinant 1 is
of the form Rθ, for some θ. Moreover, every orthogonal transformation of R2 is of one of the
following forms:

Rθ, or

[
0 1
1 0

]
Rθ.

68Similarly, we obtain that each row must have legnth 1
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3.3.1 Orthogonal complements, bases and the Gram-Schmidt process

Definition 3.3.14. Let (V , 〈, 〉) be an Euclidean space, S ⊂ V a nonempty subset. We define the
orthogonal complement of S , denoted S⊥, to be the 〈, 〉-complement of S defined in Definition 3.1.15.
Hence,

S⊥ = {v ∈ V | 〈v , s〉 = 0, for every s ∈ S} = {v ∈ V | 〈s, v〉 = 0, for every s ∈ S}.

S⊥ is a subspace of V , for any subset S ⊂ V .69

Proposition 3.3.15. Let (V , 〈, 〉) be an Euclidean space and U ⊂ V a subspace. Then,

V = U ⊕ U⊥.

Proof: We know that dim V = dim U + dim U⊥ by Proposition 3.1.17. Hence, if we show that
U ∩ U⊥ = {0V } then we must have

V = U + U⊥ = U ⊕ U⊥.70

Assume that v ∈ U ∩ U⊥. Then, v ∈ U and v ∈ U⊥ so that

0 = 〈v , v〉 =⇒ v = 0V ,

since 〈, 〉 is an inner product. The result follows.

Remark 3.3.16. 1. Just as we have shown before, we have

S⊥ = (spanR S)⊥.

2. If we are thinking geometrically (as we should do whenever we are given any Euclidean space V ) then
we see that the orthogonal complement U⊥ of a subspace U is the subspace of V which is ‘perpendicular’
to U. For example, consider the Euclidean space E3, U is the ‘x-axis’, which we’ll denote L. Then, the
subspace that is perpendicular to the x-axis is the x = 0-plane Π. Indeed, we have

L =


x

0
0

 ∈ R3

 , and Π =


0

y
z

 ∈ R3

 .

It is easy to check that Π = L⊥.71

Definition 3.3.17. Let (V , 〈, 〉) be an Euclidean space, U ⊂ V a subspace and v ∈ V . Then, we define
the projection of v onto U to be the vector projU v defined as follows: using Proposition 3.3.15 we know
that V = U ⊕ U⊥ so that there exists (unique!) u ∈ U, z ∈ U⊥ such that v = u + z . Then, we define

projU v
def
= u ∈ U.

Remark 3.3.18. In fact, the assignment

projU : V → U ; v 7→ projU v ,

is precisely the ‘projection onto U’ morphism defined earlier. As a consequence we see that

projU (v + v ′) = projU v + projU v ′, and projU λv = λ projU v .

We can think of projU v in more geometric terms.

69Check this.
70This follows from the dimension formula.
71Do this!
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Proposition 3.3.19. Let (V , 〈, 〉) be an Euclidean space, U ⊂ V a subspace and v ∈ V . Then,
projU v ∈ U is the unique vector in U such that

|| projU v − v || ≤ ||u − v ||, u ∈ U.

Hence, we can say that projU v is the closest vector to v in U.

Proof: Let u ∈ U. Then, we have

(projU v − v) + (u − projU v) = (u − v),

and, since projU v − v ∈ U⊥ (Definition 3.3.17) and u − projU v ∈ U, then

||u − v ||2 = || projU v − v ||2 + ||u − projU v ||2 ≥ || projU v − v ||2,

where we have used Pythagoras’ theorem (Theorem 3.3.6). Hence, we have

||u − v || ≥ || projU v − v ||, for any u ∈ U.

Suppose that w ∈ U is such that

||w − v || ≤ ||u − v ||, for any u ∈ U.

This implies that we must have
||w − v || = || projU v − v ||,

by what we have just shown.

Now, using Pythagoras’ theorem, and that v − projU v ∈ U⊥, projU v − w ∈ U, we obtain

||v−w ||2 = ||v−projU v +projU v−w ||2 = ||v−projU v ||2 + || projU v−w ||2 =⇒ || projU v−w ||2 = 0,

and projU v = w . Hence, projU v is the unique element of U satisfying the above inequality.

Example 3.3.20. Consider the Euclidean space E2 and let L ⊂ R2 be a line through the origin. Suppose
that v ∈ R2 is an arbitrary vector. What does projL v look like geometrically?

Using Proposition 3.3.19 we know that w = projL v ∈ L is the unique vector in L that is closest to v .

- if v ∈ L then projL v = v , as v ∈ L is the closest vector v (trivially).

- if v /∈ L then consider the line L′ perpendicular to L and for which the endpoint of the vector v lies
on L′ (so it might not be the case that L′ is a line through the origin). The point of intersection
L ∩ L′ defines the vector projL v .

In fact, it is precisely this geometric intuition that guides the definition of projL v : we have defined
projL v ∈ L as the unique vector such that

v = projL v + z , z ∈ L⊥.

Definition 3.3.21. Let (V , 〈, 〉) be an Euclidean space. We say that a subset S ⊂ V is an orthogonal
set if, for every s, t ∈ S , s 6= t, we have

〈s, t〉 = 0.

Lemma 3.3.22. Let S ⊂ V be an orthogonal set of nonzero vectors. Then, S is linearly independent.

Proof: Left as en exercise for the reader.

Lemma 3.3.23. Let S = {s1, ... , sk} ⊂ V be an orthogonal set and such that S contains only nonzero
vectors. Then, for any v ∈ V , we have

projspanR S v =
〈v , s1〉
〈s1, s1〉

s1 + ... +
〈v , sk〉
〈sk , sk〉

sk .
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Proof: Since S is linearly independent we have that S forms a basis of spanR S . Hence, for any
v ∈ V , we can write

projspanR S v = λ1s1 + ... + λk sk ,

for unique λ1, ... ,λk ∈ R. Hence, for each i = 1, ... , k, we have

〈projspanR S v , si 〉 = λi 〈si , si 〉,
using that S is orthogonal. Hence, we have that

λi =
〈projspanR S v , si 〉

〈si , si 〉
.

Now, since v − projspanR S v ∈ (spanR S)⊥ we see that, for each i ,

0 = 〈v − projspanR S v , si 〉 = 〈v , si 〉 − 〈projspanR S v , si 〉 =⇒ 〈v , si 〉 = 〈projspanR S , si 〉.
The result follows.

Definition 3.3.24. Let (V , 〈, 〉) be an Euclidean space. A basis B ⊂ V is called an orthogonal basis if
it is an orthogonal set.

An orthogonal basis B is called orthonormal if, for every b ∈ B, we have ||b|| = 1.

Remark 3.3.25. 1. Recall that we defined an orthogonal matrix A ∈ Matn(R) to be a matrix such that

AtA = In.

The remarks at the end of the previous section imply that the columns of an orthogonal matrix
define an orthonormal basis.

2. Not every basis in an Euclidean space is an orthogonal basis: for example, consider the Euclidean
space E2. Then,

B =

([
1
0

]
,

[
1
1

])
= (b1, b2),

is a basis of R2 but we have
b1 · b2 = 1 6= 0.

3. It is not true that any orthogonal set E ⊂ V defines an orthogonal basis of spanR E : for example, let
v ∈ V be nonzero and consider the subset E = {0V , v}. Then, E is orthogonal72 but E is not a basis,
as E is a linearly dependent set. However, if E contains nonzero vectors and is orthogonal then E is an
orthogonal basis of spanR E , by Lemma 3.3.22.

At first glance it would appear to be quite difficult to determine an orthogonal (or orthonormal) basis of
V . This is essentially the same problem as coming up with an orthogonal matrix. Moreover, it is hard
to determine whether orthogonal bases even exist!

It is a quite remarkable result that given ANY basis B of an Euclidean space (V , 〈, 〉) we can determine
an orthonormal basis B′ of V . This is the Gram-Schmidt process.

Theorem 3.3.26 (Gram-Schmidt process). Let (V , 〈, 〉) be an Euclidean space, B = (b1, ... , bn) ⊂ V
an arbitrary ordered basis of V . Then, there exists an orthonormal basis B′ = (b′1, ... , b′n) ⊂ V .

Proof: Consider the following algorithm: define

c1 = b1.

We inductively define ci : for 2 ≤ i ≤ n define

ci = bi − projEi−1
bi ,

where Ei−1
def
= spanR{c1, ... , ci−1}.

If i < j then
〈ci , cj〉 = 0,

since cj ∈ E⊥j−1 by construction73, and ci ∈ Ej−1.

72Check this.
73Think about why this is true. What is the definition of cj ?
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Hence, C = (c1, ... , cn) is an orthogonal basis. To obtain an orthonormal basis B′ = (b′1, ... , b′n) given
an orthogonal basis C, we simply set

b′i =
ci

||ci ||
.

Then, we have
||b′i || = 1,

and B′ is an orthonormal basis.

Corollary 3.3.27. Let (V , 〈, 〉) be an Euclidean space, E ⊂ V an orthogonal set consisting of nonzero
vectors. Then, E can be extended to an orthogonal basis of V .

Proof: Left as an exercise for the reader.

Remark 3.3.28. 1. Let’s illuminate exactly what we have done in the proof of Theorem 3.3.26, making
use of Lemma 3.3.23.

Let B = (b1, ... , bn) be any basis. We can organise the algorithm from Theorem 3.3.26 into a table

c1 = b1

c2 = b2 − 〈b2,c1〉
〈c1,c1〉 c1

c3 = b3 − 〈b3,c1〉
〈c1,c1〉 c1 − 〈b3,c2〉

〈c2,c2〉 c2

...

cn = bn − 〈bn,c1〉
〈c1,c1〉 c1 − ...− 〈bn,cn−1〉

〈cn−1,cn−1〉cn−1

Then C = (c1, ... , cn) is an orthogonal basis of V . To obtain an orthonormal basis of V we set

b′i =
ci

||ci ||
, for each i .

Then, B′ = (b′1, ... , b′n) is orthonormal.

In practice in can be quite painful to actually perform the Gram-Schmidt process (if dim V is large).
However, it is important to know that the Gram-Schmidt process allows us to show that orthonormal
bases exist.

2. If B is orthogonal to start with then the basis C we obtain after performing the Gram-Schmidt process
is just C = B.

3. It is important to remember that the Gram-Schmidt process depends on the inner product 〈, 〉
used to define the Euclidean space (V , 〈, 〉).

Example 3.3.29. Let V = E2 and consider the basis

B =

([
1
−1

]
,

[
2
5

])
.

Let’s perform the Gram-Schmidt process to obtain an orthogonal basis C = (c1, c2) of E2. We have

c1 =

[
1
−1

]

c2 =

[
2
5

]
−

2
5

·
 1
−1


 1
−1

·
 1
−1


[

1
−1

]
=

[
2
5

]
− 2.1+5.(−1)

12+(−1)2

[
1
−1

]
=

[
2
5

]
+ 3

2

[
1
−1

]
=

[
7/2
7/2

]

Then, you can check that [
1
−1

]
·
[

7/2
7/2

]
= 7/2− 7/2 = 0.

If we define

b′1 =
1√
2

[
1
−1

]
, b′2 =

2

7
√

2

[
7/2
7/2

]
,

we have that B′ = (b′1, b′2) is orthonormal.
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Corollary 3.3.30 (QR factorisation). Let A ∈ GLn(R). Then, there exists an orthogonal matrix Q ∈
O(n) and a upper-triangular matrix R such that

A = QR.

Proof: This is a simple restatement of the Gram-Schmidt process. Suppose that

A = [a1 · · · an].

Then B = (a1, ... , an) is an ordered basis of Rn. Apply the Gram-Schmidt process (with respect to the
dot product) to obtain an orthonormal basis B′ = (b1, ... , bn) as above. Then, we have

b1 = 1
r1

a1

b2 = 1
r2

(a2 − (a2 · b1)b1)
...

bn = 1
rn

(an − (an · b1)b1 − ...− (an · bn−1)bn−1)

where ri ∈ R>0 is the length of the ci vectors from the Gram-Schmidt process. We have also slightly
modified the Gram-Schmidt process (in what way?) but you can check that (b1, ... , bn) is an orthonormal
basis.74

By moving all bi terms to the left hand side of the above equations we obtain the table

r1b1 = a1

(a2 · b1)b1 + r2b2 = a2

...
(an · b1)b1 + ... + (an · bn−1)bn−1 + rnbn = an

and we can rewrite these equations using matrices: if

Q = [b1 · · · bn] ∈ O(n), R =


r1 a2 · b1 a3 · b1 · · · an · b1

0 r2 a3 · b2 · · · an · b2

0 0 r3 · · · an · b3

...
. . .

...
0 · · · rn

 ,

then we see that the above equations correspond to

QR = A.

3.4 Hermitian spaces

74Do this!
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