Then, the adjoint of f is the morphism

1 -3 -1
Q- Q%; x— |1 5 0|x
0 2 3
As a verification, you can check that
1 1 -3 -—-1f (-1 1 0 1] (1 -1
B 11,11 5 0 0 =B -1 3 0| |1|.]0
0 0 2 3 -1 -3 2 5|10 -1

3.2 Real and complex symmetric bilinear forms
Throughout the remainder of these notes we will assume that K € {R, C}.
Throughout this section we will assume that all bilinear forms are symmetric.

When we consider symmetric bilinear forms on real or complex vector spaces we obtain some particularly
nice results.@ For a C-vector space V and symmetric bilinear form B € Bilc(V) we will see that there
is a basis B C V such that

[Bls = ldimv-
First we introduce the important polarisation identity.

Lemma 3.2.1 (Polarisation identity). Let B € Bilg(V) be a symmetric bilinear form. Then, for any
u,v €V, we have

B(u,v) = % (B(u+v,u+v)—B(u,u) — B(v,v)).

Proof: Left as an exercise for the reader. O

Corollary 3.2.2. Let B € Bilg(V) be symmetric and nonzero. Then, there exists some nonzero v € V
such that B(v, v) # 0.

Proof: Suppose that the result does not hold: that is, for every v € V we have B(v,v) =0. Then,
using the polarisation identity (Lemma [3.2.1]) we have, for every u,v € V,

B(u,v):E(B(u—i—v,u—i—v,)—B(u,u)—B(v,v)):%(0—0—0):0.

2
Hence, we must have that B = 0 is the zero bilinear form, which contradicts our assumption on B.
Hence, ther must exist some v € V such that B(v, v) # 0. O

This seemingly simple result has some profound consequences for nondegenerate complex symmetric
bilinear forms.

Theorem 3.2.3 (Classification of nondegenerate symmetric bilinear forms over C). Let B € Bilc(V) be
symmetric and nondegenerate. Then, there exists an ordered basis B C V such that

[Blz = ldim v -

Proof: By Corollary we know that there exists some nonzero v; € V such that B(vi,v1) # 0
(we know that B is nonzero since it is nondegenerate). Let £; = spanc{vi} and consider Ei- C V.

We have E; N Ei- = {0y }: indeed, let x € E; N E{-. Then, x = cvy, for some ¢ € C. As x € Ej- we
must have
0= B(x,v1) = B(cevi, v1) = cB(v1, v1),

so that ¢ =0 (as B(vy, v1) # 0). Thus, by Proposition [3.1.17} we must have
V=FEaoE".

60 Actually, all results that hold for C-vector space also hold for K-vector spaces, where K is an algebraically closed field.
To say that K is algebraically closed means that the Fundamental Theorem of Algebra holds for K[t]; equivalently, every
polynomial f € K[t] can be written as a product of linear factors.
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Moreover, B restricts to a nondegenerate symmetric bilinear form on ElL: indeed, the restriction is
. L 1 . / /
B Ef x i = C; (u, ') = B(u, u'),

and this is a symmetric bilinear form. We need to check that it is nondegenerate. Suppose that w € Ej-
is such that, for every z € Ef- we have
B(z,w) = 0.

Then, for any v € V, we have v = cv; + z,z € Ej-, c € C, so that
B(v,w) = B(cvi + z,w) = cB(vi,w) + B(z,w) =0+ 0=0,

where we have used the assumption on w and that w € Ej-. Hence, using nongeneracy of B on V we
see that w = Oy. Hence, we have that B is also nondegenerate on Ef-.

As above, we can now find vo € Ej- such that B(vz, v2) # 0 and, if we denote E, = spanc{v.}, then
Ei = B0 E,

where E2l is the B-complement of E; in Ell. Hence, we have

V=EoEaE.
Proceeding in the manner we obtain

V=E® --®E,
where n = dim V, and where E; = spanc{v;}. Moreover, by construction we have that

B(vi,vj) =0, fori#j.

Define
1
B(V,', V,')
we know that the square root \/B(v;, v;) exists (and is nonzero) since we are considering (C—scalars
Then, it is easy to see that

i — Vi

1
B(bib)=4"""7
0, i #J.
Finally, since
V =spanc{bi} @ --- ® spanc{bn},

we have that B = (by, ..., b,) is an ordered basis such that
[Blg = I
O

Corollary 3.2.4. Let A € GL,(C) be a symmetric matrix (so that A = A'). Then, there exists P €
GL,(C) such that

P'AP = I,.
Proof: This is just Theore and Proposition applied to the bilinear form Ba € Bilc(C").
The assumptions on A ensure that Ba is symmetric and nondegenerate. O

Corollary 3.2.5. Suppose that X,Y € GL,(C) are both symmetric. Then, there is a nondegenerate
bilinear form B € Bilc(C") and bases B,C C C" such that

X =[Bls, Y = [Ble-

61This is a consequence of the Fundamental Theorem of Algebra: for any ¢ € C we have that
t? —c=0,

has a solution.
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Proof: By the previous Corollary we can find P, @ € GL,(C) such that
PXP=1,=Q'YQ = (Q)'PXPQ'=Y = (PQT)'XPQ'=Y.

Now, let B = Bx € Bilc(C"), B =8 and C = (cy, ..., ¢,), where ¢; is the i column of PQ~1. Then,
the above identity states that
[Blc = PiclBlsPsec =Y.

The result follows. O

The situation is not as simple for an R-vector space V' and nondegenerate symmetric bilinear form
B € Bilg(V), however we can still obtain a nice classification result.

Theorem 3.2.6 (Sylvester's law of inertia). Let V be an R-vector space, B € Bilg(V) a nondegenerate
symmetric bilinear form. Then, there is an ordered basis B C V such that [B]g is a diagonal matrix

di
[Bls =
dp

where d; € {1, —1}.

Moreover, if p = the number of 1s appearing on the diagonal and g = the number of —1s appearing on
the diagonal, then p and q are invariants of B: this means that if C C V is any other basis of V' such
that

€1
€2
[Ble = . :
€n
where ej € {1, —1}, and p’ (resp. q') denotes the number of 1s (resp. —1s) on the diagonal. Then,
p=p.q=4.
Proof: The proof is similar to the proof of Theorem we determine vy, ..., v, € V such that
V =spang{vi} & - - & spang{v,},

and with B(vj, vj) = 0, whenever i # j. However, we now run into a problem: what if B(v;, v;) < 0?7
We can't find a real square root of a negative number so we can't proceed as in the complex case.

However, if we define
5 = +/|B(vi, vj)|, for every i,

then we can obtain a basis B = (by, ..., b,), where we define
1
b,’ = (STV,'.
Then, we see that
0, i #J,
Bbi by =% 7T
+1, i =,

and [B]p is of the required form.

Let us reorder B so that, for i = 1, ..., p, we have B(b;, b;) > 0. Then, if we denote
P = spang{bs, ..., by}, and Q =spang{bpi1,...,bn},

we have
dimP =p, dmQ =¢q (=n—p).
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We see that the restriction of B to P satisfies
B(u,u) >0, for every u € P,

and that if P C P’, P # P’, with P’ C V a subspace, then there is some v € P’ such that B(v, v) < 0:
indeed, as v ¢ P then we have

v=Mb+ ..+ )\pbp + ,ulbp+1 + ...+ qun,
and some p; # 0. Then, since P C P’ we must have b,;; € P’ and
B(bp+j. bpj) <0

Hence, we can see that p is the dimension of the largest subspace U of V for which the restriction of
B to U satisfies B(u, u) > 0, for every u € U.

Similarly, we can define g to be the dimension of the largest subspace U’ € V for which the restriction
of B to U’ satisfies B(u', u’) < 0, for every v’ € U'.

Therefore, we have defined p and g only in terms of B so that they are invariants of B. O
Corollary 3.2.7. For every symmetric A € GL,(R), there exists X € GL,(R) such that
di
d>
XTAX =
dn
with d; € {1, -1}.

Definition 3.2.8. Suppose that B € Bilg(V/) is nondegenerate and symmetric and that p, g are as in
Theorem Then, we define the signature of B, denoted sig(B), to be the number

sig(B)=p—gq.
It is an invariant of B: for any basis B C V such that
di

d>
[Bls = .

with d; € {1, —1}, the quantity p — q is the same.

3.2.1 Computing the canonical form of a real nondegenerate symmetric bilinear form
([, p.185-191)

Suppose that B € Bilg(V) is symmetric and nondegenerate, with V' a finite dimensional R-vector
space. Suppose that B C V is an ordered basis such that

d
[Bls = . :
dn

where d; € {1, —1}. Such a basis exists by Theorem How do we determine B?

Suppose that C C V is any ordered basis. Then, we know that

Pé. g[BlcPeen = [B]s,
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by Proposition Hence, the problem of determining B is equivalent to the problem of determining
Pc. g (since we already know C and we can use Pc. g to determine @

Therefore, suppose that A = [a;] € GL,(R) is symmetric. We want to determine P € GL,(R) such that

d1
d>
PIAP = . ,
dn
where d; € {1, —1}.
Consider the column vector of variables
X1
K =
Xn
Then, we have
x'Ax = alle + ...+ a,,,,x,% +2 Z a,-jx,-xj.
i<j

By performing the ‘completing the square’ process for each variable x; we will find variables

Y1 = quxi+ qi2xe + ... + GinXn,
Yo = Qo1x1 + QX1 + ... + QanXy

Yn = qn1X1 + qn2X2 + ...+ qnnXn

such that

XAX=Yi + o+ Yy = Yo~ — Vi

Then, P = [g;] ! is the matrix we are looking for.

Why? The above system of equations corresponds to the matrix equation
y=Qx, @Q=][gj] € GL,(R),

which we can consider as a change of coordiante transformation Py, g from the standard basis S(")
R" to a basis B (we consider x to be the S("-coordinate vector of the corresponding element of R").

Then, we see that
(Py) A(Py) = x*Ax = y? + ... +y§ —y3+1 — =y

where P = QL. As

Y'P'APy = (Py)'A(Py) =i+ .+ Y — Yo — =V =Y" o 2

we see that P!AP is of the desired form. Moreover, B is the required basis.

It is better to indicate this method through an example.

62\Why?
63The assighment x — x'Ax is called a quadratic form. The study of quadratic forms and their properties is primarily
determined by the symmetric bilinear forms defined by A.
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Example 3.2.9. 1. Let

2 -2 0 -1

so that A is symmetric and invertible. Consider the column vector of variable x as above. Then, we
have
x"Ax = x12 + 2x22 — xf — 2x1X3 + Ax1X4 + 2X0x3 — dXoX4.

Let's complete the square with respect to x;: we have
X12 + 2x22 — XZ — 2x1X3 + Ax1x4 + 2x0x3 — dXo Xy
= x2 = 2x1(x3 — 2x4) + (x3 — 2x4)% — (X3 — 2x3)° + 2x2 — X2 + 2x0x3 — 4xoXs
= (31— (3 — 2x2))? +25¢ — X2 — 5xZ + 2x0x3 — dxoxg + dx3xg
Now we set
Y1 =x1 — x3+2xg.
Then, complete the square with respect to the remaining x, terms: we have
2 2 2 2
Y1 +2x5 — x5 — 5x5 + 2x0x3 — dxoxs + 4x3x4

1 1
= y2 +2(x3 + xo(x3 — 2x4) + Z(X3 —2x4)?) — §(X3 —2x3)% — X2 — x¢ — dxsxq

1 3
= )’12 +2(x2 + §(X3 - 2X4))2 — §X32 — 7Xf — 2X3Xy

Now we set
Yo = \ﬁ(Xz + %Xe, —X4)-
We obtain
3
X12 + 2x22 — XZ — 2x1x3 + 4x1X4 + 2x0x3 — dXoXq = }’12 + y22 — §x2 — 7xf — 2X3Xy.
Completing the square with respect to x3 we obtain
2 > 35 2
Yi+y, — §x3 —7x; — 2x3Xs
3 14 49 49
=ity - §(X§ T XXt EXE) + gxf
3 7 49
=i+ - E(X3 + §X4)2 FX‘%'
Then, set
¥3 3(xz+ Lxa),
Y4 = %M
So, if we let

QO
I

o O O
o o
o%
NIlw

then we have
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Hence, if we define P = Q~1, then we have that

Hence, we have that p = 3, = 1 and that if Ba € Bilg(R*) then

sig(Ba) =3—-1=2.

2. Consider the matrix

-1 0 0
A=10 0 1
0 1 0

which is symmetric and invertible. Consider the column vector of variables x as before. Then, we have
tA o 2
X AX = —X] + 2xpX3.

Proceeding as before, we ‘complete the square’ with respect to x» (we don't need to complete the square
for x1): we have

— X2 + 2x0x3
> 1 » 1 2
= —x +50e+x3)" - 50— x)
2 2
Hence, if we let
1= X1

then we have

Furthermore, if we let

1 0 0
Q=1 % 7|
0 %5
and defined P = Q1, then
-1
PIAP = 1
-1
Hence, p=1,g =2 and
sig(Ba) = —1.

3.3 Euclidean spaces
Throughout this section V will be a finite dimensional R-vector space and K = R.

Definition 3.3.1. Let B € Bilg(V) be a symmetric bilinear form. We say that B is an inner product
on V if B satisfies the following property:

B(v,v) >0, foreveryve V,and B(v,v)=0< v =0y.

If B € Bilg(V) is an inner product on V then we will write

(u, v) % B(u, v).
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