Then, the adjoint of f is the morphism

$$
f^{+}: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3} ; \underline{x} \mapsto\left[\begin{array}{ccc}
1 & -3 & -1 \\
1 & 5 & 0 \\
0 & 2 & 3
\end{array}\right] \underline{x} .
$$

As a verification, you can check that

$$
B\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{ccc}
1 & -3 & -1 \\
1 & 5 & 0 \\
0 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right]\right)=B\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 3 & 0 \\
-3 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right]\right) .
$$

3.2 Real and complex symmetric bilinear forms

Throughout the remainder of these notes we will assume that $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$.
Throughout this section we will assume that all bilinear forms are symmetric.
When we consider symmetric bilinear forms on real or complex vector spaces we obtain some particularly nice results ${ }^{60}$ For a \mathbb{C}-vector space V and symmetric bilinear form $B \in \operatorname{Bil}_{\mathbb{C}}(V)$ we will see that there is a basis $\mathcal{B} \subset V$ such that

$$
[B]_{\mathcal{B}}=I_{\operatorname{dim} v}
$$

First we introduce the important polarisation identity.
Lemma 3.2.1 (Polarisation identity). Let $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ be a symmetric bilinear form. Then, for any $u, v \in V$, we have

$$
B(u, v)=\frac{1}{2}(B(u+v, u+v)-B(u, u)-B(v, v))
$$

Proof: Left as an exercise for the reader.
Corollary 3.2.2. Let $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ be symmetric and nonzero. Then, there exists some nonzero $v \in V$ such that $B(v, v) \neq 0$.

Proof: Suppose that the result does not hold: that is, for every $v \in V$ we have $B(v, v)=0$. Then, using the polarisation identity (Lemma 3.2.1) we have, for every $u, v \in V$,

$$
B(u, v)=\frac{1}{2}(B(u+v, u+v,)-B(u, u)-B(v, v))=\frac{1}{4}(0-0-0)=0
$$

Hence, we must have that $B=0$ is the zero bilinear form, which contradicts our assumption on B. Hence, ther must exist some $v \in V$ such that $B(v, v) \neq 0$.
This seemingly simple result has some profound consequences for nondegenerate complex symmetric bilinear forms.

Theorem 3.2.3 (Classification of nondegenerate symmetric bilinear forms over $\mathbb{C})$. Let $B \in \operatorname{Bil}_{\mathbb{C}}(V)$ be symmetric and nondegenerate. Then, there exists an ordered basis $\mathcal{B} \subset V$ such that

$$
[B]_{\mathcal{B}}=I_{\operatorname{dim} v}
$$

Proof: By Corollary 3.2 .2 we know that there exists some nonzero $v_{1} \in V$ such that $B\left(v_{1}, v_{1}\right) \neq 0$ (we know that B is nonzero since it is nondegenerate). Let $E_{1}=\operatorname{span}_{\mathbb{C}}\left\{v_{1}\right\}$ and consider $E_{1}^{\perp} \subset V$.
We have $E_{1} \cap E_{1}^{\perp}=\{0 v\}$: indeed, let $x \in E_{1} \cap E_{1}^{\perp}$. Then, $x=c v_{1}$, for some $c \in \mathbb{C}$. As $x \in E_{1}^{\perp}$ we must have

$$
0=B\left(x, v_{1}\right)=B\left(c v_{1}, v_{1}\right)=c B\left(v_{1}, v_{1}\right)
$$

so that $c=0$ (as $\left.B\left(v_{1}, v_{1}\right) \neq 0\right)$. Thus, by Proposition 3.1.17, we must have

$$
V=E_{1} \oplus E_{1}^{\perp}
$$

[^0]Moreover, B restricts to a nondegenerate symmetric bilinear form on E_{1}^{\perp} : indeed, the restriction is

$$
B_{\mid E_{1}^{\perp}}: E_{1}^{\perp} \times E_{1}^{\perp} \rightarrow \mathbb{C} ;\left(u, u^{\prime}\right) \mapsto B\left(u, u^{\prime}\right)
$$

and this is a symmetric bilinear form. We need to check that it is nondegenerate. Suppose that $w \in E_{1}^{\perp}$ is such that, for every $z \in E_{1}^{\perp}$ we have

$$
B(z, w)=0 .
$$

Then, for any $v \in V$, we have $v=c v_{1}+z, z \in E_{1}^{\perp}, c \in \mathbb{C}$, so that

$$
B(v, w)=B\left(c v_{1}+z, w\right)=c B\left(v_{1}, w\right)+B(z, w)=0+0=0
$$

where we have used the assumption on w and that $w \in E_{1}^{\perp}$. Hence, using nongeneracy of B on V we see that $w=0 v$. Hence, we have that B is also nondegenerate on E_{1}^{\perp}.
As above, we can now find $v_{2} \in E_{1}^{\perp}$ such that $B\left(v_{2}, v_{2}\right) \neq 0$ and, if we denote $E_{2}=\operatorname{span}_{\mathbb{C}}\left\{v_{2}\right\}$, then

$$
E_{1}^{\perp}=E_{2} \oplus E_{2}^{\perp}
$$

where E_{2}^{\perp} is the B-complement of E_{2} in E_{1}^{\perp}. Hence, we have

$$
V=E_{1} \oplus E_{2} \oplus E_{2}^{\perp}
$$

Proceeding in the manner we obtain

$$
V=E_{1} \oplus \cdots \oplus E_{n}
$$

where $n=\operatorname{dim} V$, and where $E_{i}=\operatorname{span}_{\mathbb{C}}\left\{v_{i}\right\}$. Moreover, by construction we have that

$$
B\left(v_{i}, v_{j}\right)=0, \quad \text { for } i \neq j
$$

Define

$$
b_{i}=\frac{1}{\sqrt{B\left(v_{i}, v_{i}\right)}} v_{i}
$$

we know that the square root $\sqrt{B\left(v_{i}, v_{i}\right)}$ exists (and is nonzero) since we are considering \mathbb{C}-scalars 61 Then, it is easy to see that

$$
B\left(b_{i}, b_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Finally, since

$$
V=\operatorname{span}_{\mathbb{C}}\left\{b_{1}\right\} \oplus \cdots \oplus \operatorname{span}_{\mathbb{C}}\left\{b_{n}\right\}
$$

we have that $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ is an ordered basis such that

$$
[B]_{\mathcal{B}}=I_{n}
$$

Corollary 3.2.4. Let $A \in G L_{n}(\mathbb{C})$ be a symmetric matrix (so that $A=A^{t}$). Then, there exists $P \in$ $\mathrm{GL}_{n}(\mathbb{C})$ such that

$$
P^{t} A P=I_{n} .
$$

Proof: This is just Theorem3.2.3 and Proposition 3.1.8 applied to the bilinear form $B_{A} \in \operatorname{Bil}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$. The assumptions on A ensure that B_{A} is symmetric and nondegenerate.
Corollary 3.2.5. Suppose that $X, Y \in \mathrm{GL}_{n}(\mathbb{C})$ are both symmetric. Then, there is a nondegenerate bilinear form $B \in \operatorname{Bil}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$ and bases $\mathcal{B}, \mathcal{C} \subset \mathbb{C}^{n}$ such that

$$
X=[B]_{\mathcal{B}}, Y=[B]_{\mathcal{C}}
$$

[^1]has a solution.

Proof: By the previous Corollary we can find $P, Q \in \mathrm{GL}_{n}(\mathbb{C})$ such that

$$
P^{t} X P=I_{n}=Q^{t} Y Q \Longrightarrow\left(Q^{-1}\right)^{t} P^{t} X P Q^{-1}=Y \Longrightarrow\left(P Q^{-1}\right)^{t} X P Q^{-1}=Y
$$

Now, let $B=B_{X} \in \operatorname{Bil}_{\mathbb{C}}\left(\mathbb{C}^{n}\right), \mathcal{B}=\mathcal{S}^{(n)}$ and $\mathcal{C}=\left(c_{1}, \ldots, c_{n}\right)$, where c_{i} is the $i^{t h}$ column of $P Q^{-1}$. Then, the above identity states that

$$
[B]_{\mathcal{C}}=P_{\mathcal{B} \leftarrow \mathcal{C}}^{t}[B]_{\mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{C}}=Y
$$

The result follows.
The situation is not as simple for an \mathbb{R}-vector space V and nondegenerate symmetric bilinear form $B \in \operatorname{Bi}_{\mathbb{R}}(V)$, however we can still obtain a nice classification result.

Theorem 3.2.6 (Sylvester's law of inertia). Let V be an \mathbb{R}-vector space, $B \in \operatorname{Bil}_{\mathbb{R}}(V)$ a nondegenerate symmetric bilinear form. Then, there is an ordered basis $\mathcal{B} \subset V$ such that $[B]_{\mathcal{B}}$ is a diagonal matrix

$$
[B]_{\mathcal{B}}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]
$$

where $d_{i} \in\{1,-1\}$.
Moreover, if $p=$ the number of $1 s$ appearing on the diagonal and $q=$ the number of $-1 s$ appearing on the diagonal, then p and q are invariants of B : this means that if $\mathcal{C} \subset V$ is any other basis of V such that

$$
[B]_{\mathcal{C}}=\left[\begin{array}{llll}
e_{1} & & & \\
& e_{2} & & \\
& & \ddots & \\
& & & e_{n}
\end{array}\right]
$$

where $e_{j} \in\{1,-1\}$, and p^{\prime} (resp. q^{\prime}) denotes the number of $1 s$ (resp. $-1 s$) on the diagonal. Then,

$$
p=p^{\prime}, q=q^{\prime}
$$

Proof: The proof is similar to the proof of Theorem 3.2.3 we determine $v_{1}, \ldots, v_{n} \in V$ such that

$$
V=\operatorname{span}_{\mathbb{R}}\left\{v_{1}\right\} \oplus \cdots \oplus \operatorname{span}_{\mathbb{R}}\left\{v_{n}\right\}
$$

and with $B\left(v_{i}, v_{j}\right)=0$, whenever $i \neq j$. However, we now run into a problem: what if $B\left(v_{i}, v_{i}\right)<0$? We can't find a real square root of a negative number so we can't proceed as in the complex case. However, if we define

$$
\delta_{i}=\sqrt{\left|B\left(v_{i}, v_{i}\right)\right|}, \text { for every } i
$$

then we can obtain a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$, where we define

$$
b_{i}=\frac{1}{\delta_{i}} v_{i}
$$

Then, we see that

$$
B\left(b_{i}, b_{j}\right)=\left\{\begin{array}{l}
0, \quad i \neq j \\
\pm 1, \quad i=j
\end{array}\right.
$$

and $[B]_{\mathcal{B}}$ is of the required form.
Let us reorder \mathcal{B} so that, for $i=1, \ldots, p$, we have $B\left(b_{i}, b_{i}\right)>0$. Then, if we denote

$$
P=\operatorname{span}_{\mathbb{R}}\left\{b_{1}, \ldots, b_{p}\right\}, \quad \text { and } Q=\operatorname{span}_{\mathbb{R}}\left\{b_{p+1}, \ldots, b_{n}\right\}
$$

we have

$$
\operatorname{dim} P=p, \operatorname{dim} Q=q(=n-p)
$$

We see that the restriction of B to P satisfies

$$
B(u, u)>0, \text { for every } u \in P
$$

and that if $P \subset P^{\prime}, P \neq P^{\prime}$, with $P^{\prime} \subset V$ a subspace, then there is some $v \in P^{\prime}$ such that $B(v, v) \leq 0$: indeed, as $v \notin P$ then we have

$$
v=\lambda_{1} b_{1}+\ldots+\lambda_{p} b_{p}+\mu_{1} b_{p+1}+\ldots+\mu_{q} b_{n}
$$

and some $\mu_{j} \neq 0$. Then, since $P \subset P^{\prime}$ we must have $b_{p+j} \in P^{\prime}$ and

$$
B\left(b_{p+j}, b_{p+j}\right)<0 .
$$

Hence, we can see that p is the dimension of the largest subspace U of V for which the restriction of B to U satisfies $B(u, u)>0$, for every $u \in U$.

Similarly, we can define q to be the dimension of the largest subspace $U^{\prime} \in V$ for which the restriction of B to U^{\prime} satisfies $B\left(u^{\prime}, u^{\prime}\right)<0$, for every $u^{\prime} \in U^{\prime}$.

Therefore, we have defined p and q only in terms of B so that they are invariants of B.
Corollary 3.2.7. For every symmetric $A \in G L_{n}(\mathbb{R})$, there exists $X \in G L_{n}(\mathbb{R})$ such that

$$
X^{t} A X=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]
$$

with $d_{i} \in\{1,-1\}$.
Definition 3.2.8. Suppose that $B \in \operatorname{Bil}_{\mathbb{R}}(V)$ is nondegenerate and symmetric and that p, q are as in Theorem 3.2.6. Then, we define the signature of B, denoted $\operatorname{sig}(B)$, to be the number

$$
\operatorname{sig}(B)=p-q
$$

It is an invariant of B : for any basis $\mathcal{B} \subset V$ such that

$$
[B]_{\mathcal{B}}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]
$$

with $d_{i} \in\{1,-1\}$, the quantity $p-q$ is the same.

3.2.1 Computing the canonical form of a real nondegenerate symmetric bilinear form

([1], p.185-191)
Suppose that $B \in \operatorname{Bi}_{\mathbb{R}}(V)$ is symmetric and nondegenerate, with V a finite dimensional \mathbb{R}-vector space. Suppose that $\mathcal{B} \subset V$ is an ordered basis such that

$$
[B]_{\mathcal{B}}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]
$$

where $d_{i} \in\{1,-1\}$. Such a basis exists by Theorem 3.2.6. How do we determine \mathcal{B} ?
Suppose that $\mathcal{C} \subset V$ is any ordered basis. Then, we know that

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}^{t}[B]_{\mathcal{C}} P_{\mathcal{C} \leftarrow \mathcal{B}}=[B]_{\mathcal{B}},
$$

by Proposition 3.1.8. Hence, the problem of determining \mathcal{B} is equivalent to the problem of determining $P_{\mathcal{C} \leftarrow \mathcal{B}}$ (since we already know \mathcal{C} and we can use $P_{\mathcal{C} \leftarrow \mathcal{B}}$ to determine \mathcal{B}^{62}).
Therefore, suppose that $A=\left[a_{i j}\right] \in G L_{n}(\mathbb{R})$ is symmetric. We want to determine $P \in \mathrm{GL}_{n}(\mathbb{R})$ such that

$$
P^{t} A P=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]
$$

where $d_{i} \in\{1,-1\}$.
Consider the column vector of variables

$$
\underline{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Then, we have

$$
\underline{x}^{t} A \underline{x}=a_{11} x_{1}^{2}+\ldots+a_{n n} x_{n}^{2}+2 \sum_{i<j} a_{i j} x_{i} x_{j} \quad{ }^{63}
$$

By performing the 'completing the square' process for each variable x_{i} we will find variables

$$
\begin{aligned}
y_{1} & =q_{11} x_{1}+q_{12} x_{2}+\ldots+q_{1 n} x_{n} \\
y_{2} & =q_{21} x_{1}+q_{22} x_{1}+\ldots+q_{2 n} x_{n} \\
\vdots & \\
y_{n} & =q_{n 1} x_{1}+q_{n 2} x_{2}+\ldots+q_{n n} x_{n}
\end{aligned}
$$

such that

$$
\underline{x}^{t} A \underline{x}=y_{1}^{2}+\ldots+y_{p}^{2}-y_{p+1}^{2}-\ldots-y_{n}^{2}
$$

Then, $P=\left[q_{i j}\right]^{-1}$ is the matrix we are looking for.
Why? The above system of equations corresponds to the matrix equation

$$
\underline{y}=Q \underline{x}, \quad Q=\left[q_{i j}\right] \in G L_{n}(\mathbb{R})
$$

which we can consider as a change of coordiante transformation $P_{\mathcal{B} \leftarrow \mathcal{S}^{(n)}}$ from the standard basis $\mathcal{S}^{(n)} \subset$ \mathbb{R}^{n} to a basis \mathcal{B} (we consider \underline{x} to be the $\mathcal{S}^{(n)}$-coordinate vector of the corresponding element of \mathbb{R}^{n}). Then, we see that

$$
(P \underline{y})^{t} A(P \underline{y})=\underline{x}^{t} A \underline{x}=y_{1}^{2}+\ldots+y_{p}^{2}-y_{p+1}^{2}-\ldots-y_{n}^{2}
$$

where $P=Q^{-1}$. As

$$
\underline{y}^{t} P^{t} A P \underline{y}=(P \underline{y})^{t} A(P \underline{y})=y_{1}^{2}+\ldots+y_{p}^{2}-y_{p+1}^{2}-\ldots-y_{n}^{2}=\underline{y}^{t}\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & \ddots & & & \\
& & & -1 & & \\
& & & \ddots & \\
& & & & -1
\end{array}\right] \underline{y}
$$

we see that $P^{t} A P$ is of the desired form. Moreover, \mathcal{B} is the required basis.
It is better to indicate this method through an example.

[^2]Example 3.2.9. 1. Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 2 & 1 & -2 \\
-1 & 1 & 0 & 0 \\
2 & -2 & 0 & -1
\end{array}\right]
$$

so that A is symmetric and invertible. Consider the column vector of variable \underline{x} as above. Then, we have

$$
\underline{x}^{t} A \underline{x}=x_{1}^{2}+2 x_{2}^{2}-x_{4}^{2}-2 x_{1} x_{3}+4 x_{1} x_{4}+2 x_{2} x_{3}-4 x_{2} x_{4} .
$$

Let's complete the square with respect to x_{1} : we have

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}^{2}-x_{4}^{2}-2 x_{1} x_{3}+4 x_{1} x_{4}+2 x_{2} x_{3}-4 x_{2} x_{4} \\
= & x_{1}^{2}-2 x_{1}\left(x_{3}-2 x_{4}\right)+\left(x_{3}-2 x_{4}\right)^{2}-\left(x_{3}-2 x_{4}\right)^{2}+2 x_{2}^{2}-x_{4}^{2}+2 x_{2} x_{3}-4 x_{2} x_{4} \\
= & \left(x_{1}-\left(x_{3}-2 x_{4}\right)\right)^{2}+2 x_{2}^{2}-x_{3}^{2}-5 x_{4}^{2}+2 x_{2} x_{3}-4 x_{2} x_{4}+4 x_{3} x_{4}
\end{aligned}
$$

Now we set

$$
y_{1}=x_{1}-x_{3}+2 x_{4} .
$$

Then, complete the square with respect to the remaining x_{2} terms: we have

$$
\begin{aligned}
& y_{1}^{2}+2 x_{2}^{2}-x_{3}^{2}-5 x_{4}^{2}+2 x_{2} x_{3}-4 x_{2} x_{4}+4 x_{3} x_{4} \\
= & y_{1}^{2}+2\left(x_{2}^{2}+x_{2}\left(x_{3}-2 x_{4}\right)+\frac{1}{4}\left(x_{3}-2 x_{4}\right)^{2}\right)-\frac{1}{2}\left(x_{3}-2 x_{4}\right)^{2}-x_{3}^{2}-x_{4}^{2}-4 x_{3} x_{4} \\
= & y_{1}^{2}+2\left(x_{2}+\frac{1}{2}\left(x_{3}-2 x_{4}\right)\right)^{2}-\frac{3}{2} x_{3}^{2}-7 x_{4}^{2}-2 x_{3} x_{4}
\end{aligned}
$$

Now we set

$$
y_{2}=\sqrt{2}\left(x_{2}+\frac{1}{2} x_{3}-x_{4}\right) .
$$

We obtain

$$
x_{1}^{2}+2 x_{2}^{2}-x_{4}^{2}-2 x_{1} x_{3}+4 x_{1} x_{4}+2 x_{2} x_{3}-4 x_{2} x_{4}=y_{1}^{2}+y_{2}^{2}-\frac{3}{2} x_{3}^{2}-7 x_{4}^{2}-2 x_{3} x_{4} .
$$

Completing the square with respect to x_{3} we obtain

$$
\begin{aligned}
& y_{1}^{2}+y_{2}^{2}-\frac{3}{2} x_{3}^{2}-7 x_{4}^{2}-2 x_{3} x_{4} \\
= & y_{1}^{2}+y_{2}^{2}-\frac{3}{2}\left(x_{3}^{2}+\frac{14}{3} x_{3} x_{4}+\frac{49}{9} x_{4}^{2}\right)+\frac{49}{6} x_{4}^{2} \\
= & y_{1}^{2}+y_{2}^{2}-\frac{3}{2}\left(x_{3}+\frac{7}{3} x_{4}\right)^{2}+\frac{49}{6} x_{4}^{2} .
\end{aligned}
$$

Then, set

$$
\begin{array}{lc}
y_{3}= & \sqrt{\frac{3}{2}}\left(x_{3}+\frac{7}{3} x_{4}\right), \\
y_{4}= & \frac{7}{\sqrt{6}} x_{4}
\end{array}
$$

So, if we let

$$
Q=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & \sqrt{2} & \frac{1}{\sqrt{2}} & -\sqrt{2} \\
0 & 0 & \sqrt{\frac{3}{2}} & \frac{7}{\sqrt{6}} \\
0 & 0 & 0 & \frac{7}{\sqrt{6}}
\end{array}\right],
$$

then we have

$$
\underline{y}=Q \underline{x}
$$

Hence, if we define $P=Q^{-1}$, then we have that

$$
P^{t} A P=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & 1
\end{array}\right]
$$

Hence, we have that $p=3, q=1$ and that if $B_{A} \in \operatorname{Bil}_{\mathbb{R}}\left(\mathbb{R}^{4}\right)$ then

$$
\operatorname{sig}\left(B_{A}\right)=3-1=2
$$

2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

which is symmetric and invertible. Consider the column vector of variables \underline{x} as before. Then, we have

$$
\underline{x}^{t} A \underline{x}=-x_{1}^{2}+2 x_{2} x_{3}
$$

Proceeding as before, we 'complete the square' with respect to x_{2} (we don't need to complete the square for x_{1}): we have

$$
\begin{aligned}
& -x_{1}^{2}+2 x_{2} x_{3} \\
= & -x_{1}^{2}+\frac{1}{2}\left(x_{2}+x_{3}\right)^{2}-\frac{1}{2}\left(x_{2}-x_{3}\right)^{2}
\end{aligned}
$$

Hence, if we let

$$
\begin{array}{lc}
y_{1}= & x_{1} \\
y_{2}= & \frac{1}{\sqrt{2}}\left(x_{2}+x_{3}\right) \\
y_{3}= & \frac{1}{\sqrt{2}}\left(x_{2}-x_{3}\right)
\end{array}
$$

then we have

$$
\underline{x}^{t} A \underline{x}=-y_{1}^{2}+y_{2}^{2}-y_{3}^{2}
$$

Furthermore, if we let

$$
Q=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

and defined $P=Q^{-1}$, then

$$
P^{t} A P=\left[\begin{array}{lll}
-1 & & \\
& 1 & \\
& & -1
\end{array}\right]
$$

Hence, $p=1, q=2$ and

$$
\operatorname{sig}\left(B_{A}\right)=-1
$$

3.3 Euclidean spaces

Throughout this section V will be a finite dimensional \mathbb{R}-vector space and $\mathbb{K}=\mathbb{R}$.
Definition 3.3.1. Let $B \in \operatorname{Bi}_{\mathbb{R}}(V)$ be a symmetric bilinear form. We say that B is an inner product on V if B satisfies the following property:

$$
B(v, v) \geq 0, \text { for every } v \in V, \text { and } B(v, v)=0 \Leftrightarrow v=0 v
$$

If $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ is an inner product on V then we will write

$$
\langle u, v\rangle \stackrel{\text { def }}{=} B(u, v) .
$$

[^0]: ${ }^{60}$ Actually, all results that hold for \mathbb{C}-vector space also hold for \mathbb{K}-vector spaces, where \mathbb{K} is an algebraically closed field. To say that \mathbb{K} is algebraically closed means that the Fundamental Theorem of Algebra holds for $\mathbb{K}[t]$; equivalently, every polynomial $f \in \mathbb{K}[t]$ can be written as a product of linear factors.

[^1]: ${ }^{61}$ This is a consequence of the Fundamental Theorem of Algebra: for any $c \in \mathbb{C}$ we have that

 $$
 t^{2}-c=0
 $$

[^2]: ${ }^{62}$ Why?
 ${ }^{63}$ The assignment $\underline{x} \mapsto \underline{x}^{t} A \underline{x}$ is called a quadratic form. The study of quadratic forms and their properties is primarily determined by the symmetric bilinear forms defined by A.

