
Then, the adjoint of f is the morphism

f + : Q3 → Q3 ; x 7→

1 −3 −1
1 5 0
0 2 3

 x .

As a verification, you can check that

B

1
1
0

 ,

1 −3 −1
1 5 0
0 2 3

−1
0
−1

 = B

 1 0 1
−1 3 0
−3 2 5

1
1
0

 ,

−1
0
−1

 .

3.2 Real and complex symmetric bilinear forms

Throughout the remainder of these notes we will assume that K ∈ {R,C}.

Throughout this section we will assume that all bilinear forms are symmetric.

When we consider symmetric bilinear forms on real or complex vector spaces we obtain some particularly
nice results.60 For a C-vector space V and symmetric bilinear form B ∈ BilC(V ) we will see that there
is a basis B ⊂ V such that

[B]B = Idim V .

First we introduce the important polarisation identity.

Lemma 3.2.1 (Polarisation identity). Let B ∈ BilK(V ) be a symmetric bilinear form. Then, for any
u, v ∈ V , we have

B(u, v) =
1

2
(B(u + v , u + v)− B(u, u)− B(v , v)) .

Proof: Left as an exercise for the reader.

Corollary 3.2.2. Let B ∈ BilK(V ) be symmetric and nonzero. Then, there exists some nonzero v ∈ V
such that B(v , v) 6= 0.

Proof: Suppose that the result does not hold: that is, for every v ∈ V we have B(v , v) = 0. Then,
using the polarisation identity (Lemma 3.2.1) we have, for every u, v ∈ V ,

B(u, v) =
1

2
(B(u + v , u + v , )− B(u, u)− B(v , v)) =

1

4
(0− 0− 0) = 0.

Hence, we must have that B = 0 is the zero bilinear form, which contradicts our assumption on B.
Hence, ther must exist some v ∈ V such that B(v , v) 6= 0.

This seemingly simple result has some profound consequences for nondegenerate complex symmetric
bilinear forms.

Theorem 3.2.3 (Classification of nondegenerate symmetric bilinear forms over C). Let B ∈ BilC(V ) be
symmetric and nondegenerate. Then, there exists an ordered basis B ⊂ V such that

[B]B = Idim V .

Proof: By Corollary 3.2.2 we know that there exists some nonzero v1 ∈ V such that B(v1, v1) 6= 0
(we know that B is nonzero since it is nondegenerate). Let E1 = spanC{v1} and consider E⊥1 ⊂ V .

We have E1 ∩ E⊥1 = {0V }: indeed, let x ∈ E1 ∩ E⊥1 . Then, x = cv1, for some c ∈ C. As x ∈ E⊥1 we
must have

0 = B(x , v1) = B(cv1, v1) = cB(v1, v1),

so that c = 0 (as B(v1, v1) 6= 0). Thus, by Proposition 3.1.17, we must have

V = E1 ⊕ E⊥1 .

60Actually, all results that hold for C-vector space also hold for K-vector spaces, where K is an algebraically closed field.
To say that K is algebraically closed means that the Fundamental Theorem of Algebra holds for K[t]; equivalently, every
polynomial f ∈ K[t] can be written as a product of linear factors.
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Moreover, B restricts to a nondegenerate symmetric bilinear form on E⊥1 : indeed, the restriction is

B|E⊥1 : E⊥1 × E⊥1 → C ; (u, u′) 7→ B(u, u′),

and this is a symmetric bilinear form. We need to check that it is nondegenerate. Suppose that w ∈ E⊥1
is such that, for every z ∈ E⊥1 we have

B(z , w) = 0.

Then, for any v ∈ V , we have v = cv1 + z , z ∈ E⊥1 , c ∈ C, so that

B(v , w) = B(cv1 + z , w) = cB(v1, w) + B(z , w) = 0 + 0 = 0,

where we have used the assumption on w and that w ∈ E⊥1 . Hence, using nongeneracy of B on V we
see that w = 0V . Hence, we have that B is also nondegenerate on E⊥1 .

As above, we can now find v2 ∈ E⊥1 such that B(v2, v2) 6= 0 and, if we denote E2 = spanC{v2}, then

E⊥1 = E2 ⊕ E⊥2 ,

where E⊥2 is the B-complement of E2 in E⊥1 . Hence, we have

V = E1 ⊕ E2 ⊕ E⊥2 .

Proceeding in the manner we obtain
V = E1 ⊕ · · · ⊕ En,

where n = dim V , and where Ei = spanC{vi}. Moreover, by construction we have that

B(vi , vj ) = 0, for i 6= j .

Define

bi =
1√

B(vi , vi )
vi ;

we know that the square root
√

B(vi , vi ) exists (and is nonzero) since we are considering C-scalars.61

Then, it is easy to see that

B(bi , bj ) =

{
1, i = j ,

0, i 6= j .

Finally, since
V = spanC{b1} ⊕ · · · ⊕ spanC{bn},

we have that B = (b1, ... , bn) is an ordered basis such that

[B]B = In.

Corollary 3.2.4. Let A ∈ GLn(C) be a symmetric matrix (so that A = At). Then, there exists P ∈
GLn(C) such that

P tAP = In.

Proof: This is just Theorem3.2.3 and Proposition 3.1.8 applied to the bilinear form BA ∈ BilC(Cn).
The assumptions on A ensure that BA is symmetric and nondegenerate.

Corollary 3.2.5. Suppose that X , Y ∈ GLn(C) are both symmetric. Then, there is a nondegenerate
bilinear form B ∈ BilC(Cn) and bases B, C ⊂ Cn such that

X = [B]B, Y = [B]C .

61This is a consequence of the Fundamental Theorem of Algebra: for any c ∈ C we have that

t2 − c = 0,

has a solution.
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Proof: By the previous Corollary we can find P, Q ∈ GLn(C) such that

P tXP = In = QtYQ =⇒ (Q−1)tP tXPQ−1 = Y =⇒ (PQ−1)tXPQ−1 = Y .

Now, let B = BX ∈ BilC(Cn), B = S(n) and C = (c1, ... , cn), where ci is the i th column of PQ−1. Then,
the above identity states that

[B]C = P t
B←C[B]BPB←C = Y .

The result follows.

The situation is not as simple for an R-vector space V and nondegenerate symmetric bilinear form
B ∈ BilR(V ), however we can still obtain a nice classification result.

Theorem 3.2.6 (Sylvester’s law of inertia). Let V be an R-vector space, B ∈ BilR(V ) a nondegenerate
symmetric bilinear form. Then, there is an ordered basis B ⊂ V such that [B]B is a diagonal matrix

[B]B =


d1

d2

. . .

dn

 ,

where di ∈ {1,−1}.

Moreover, if p = the number of 1s appearing on the diagonal and q = the number of −1s appearing on
the diagonal, then p and q are invariants of B: this means that if C ⊂ V is any other basis of V such
that

[B]C =


e1

e2

. . .

en

 ,

where ej ∈ {1,−1}, and p′ (resp. q′) denotes the number of 1s (resp. −1s) on the diagonal. Then,

p = p′, q = q′.

Proof: The proof is similar to the proof of Theorem 3.2.3: we determine v1, ... , vn ∈ V such that

V = spanR{v1} ⊕ · · · ⊕ spanR{vn},

and with B(vi , vj ) = 0, whenever i 6= j . However, we now run into a problem: what if B(vi , vi ) < 0?
We can’t find a real square root of a negative number so we can’t proceed as in the complex case.
However, if we define

δi =
√
|B(vi , vi )|, for every i ,

then we can obtain a basis B = (b1, ... , bn), where we define

bi =
1

δi
vi .

Then, we see that

B(bi , bj ) =

{
0, i 6= j ,

±1, i = j ,

and [B]B is of the required form.

Let us reorder B so that, for i = 1, ... , p, we have B(bi , bi ) > 0. Then, if we denote

P = spanR{b1, ... , bp}, and Q = spanR{bp+1, ... , bn},

we have
dim P = p, dim Q = q (= n − p).
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We see that the restriction of B to P satisfies

B(u, u) > 0, for every u ∈ P,

and that if P ⊂ P ′, P 6= P ′, with P ′ ⊂ V a subspace, then there is some v ∈ P ′ such that B(v , v) ≤ 0:
indeed, as v /∈ P then we have

v = λ1b1 + ... + λpbp + µ1bp+1 + ... + µqbn,

and some µj 6= 0. Then, since P ⊂ P ′ we must have bp+j ∈ P ′ and

B(bp+j , bp+j ) < 0.

Hence, we can see that p is the dimension of the largest subspace U of V for which the restriction of
B to U satisfies B(u, u) > 0, for every u ∈ U.

Similarly, we can define q to be the dimension of the largest subspace U ′ ∈ V for which the restriction
of B to U ′ satisfies B(u′, u′) < 0, for every u′ ∈ U ′.

Therefore, we have defined p and q only in terms of B so that they are invariants of B.

Corollary 3.2.7. For every symmetric A ∈ GLn(R), there exists X ∈ GLn(R) such that

X tAX =


d1

d2

. . .

dn

 ,

with di ∈ {1,−1}.

Definition 3.2.8. Suppose that B ∈ BilR(V ) is nondegenerate and symmetric and that p, q are as in
Theorem 3.2.6. Then, we define the signature of B, denoted sig(B), to be the number

sig(B) = p − q.

It is an invariant of B: for any basis B ⊂ V such that

[B]B =


d1

d2

. . .

dn

 ,

with di ∈ {1,−1}, the quantity p − q is the same.

3.2.1 Computing the canonical form of a real nondegenerate symmetric bilinear form

([1], p.185-191)

Suppose that B ∈ BilR(V ) is symmetric and nondegenerate, with V a finite dimensional R-vector
space. Suppose that B ⊂ V is an ordered basis such that

[B]B =


d1

d2

. . .

dn

 ,

where di ∈ {1,−1}. Such a basis exists by Theorem 3.2.6. How do we determine B?

Suppose that C ⊂ V is any ordered basis. Then, we know that

P t
C←B[B]CPC←B = [B]B,
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by Proposition 3.1.8. Hence, the problem of determining B is equivalent to the problem of determining
PC←B (since we already know C and we can use PC←B to determine B62).

Therefore, suppose that A = [aij ] ∈ GLn(R) is symmetric. We want to determine P ∈ GLn(R) such that

P tAP =


d1

d2

. . .

dn

 ,

where di ∈ {1,−1}.

Consider the column vector of variables

x =

x1

...
xn

 .

Then, we have
x tAx = a11x2

1 + ... + annx2
n + 2

∑
i<j

aij xi xj .
63

By performing the ‘completing the square’ process for each variable xi we will find variables

y1 = q11x1 + q12x2 + ... + q1nxn,
y2 = q21x1 + q22x1 + ... + q2nxn

...
yn = qn1x1 + qn2x2 + ... + qnnxn

such that
x tAx = y 2

1 + ... + y 2
p − y 2

p+1 − ...− y 2
n .

Then, P = [qij ]
−1 is the matrix we are looking for.

Why? The above system of equations corresponds to the matrix equation

y = Qx , Q = [qij ] ∈ GLn(R),

which we can consider as a change of coordiante transformation PB←S(n) from the standard basis S(n) ⊂
Rn to a basis B (we consider x to be the S(n)-coordinate vector of the corresponding element of Rn).
Then, we see that

(Py)tA(Py) = x tAx = y 2
1 + ... + y 2

p − y 2
p+1 − ...− y 2

n ,

where P = Q−1. As

y tP tAPy = (Py)tA(Py) = y 2
1 + ... + y 2

p − y 2
p+1 − ...− y 2

n = y t



1
1

. . .

−1
. . .

−1


y ,

we see that P tAP is of the desired form. Moreover, B is the required basis.

It is better to indicate this method through an example.

62Why?
63The assignment x 7→ x t Ax is called a quadratic form. The study of quadratic forms and their properties is primarily

determined by the symmetric bilinear forms defined by A.
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Example 3.2.9. 1. Let

A =


1 0 −1 2
0 2 1 −2
−1 1 0 0
2 −2 0 −1

 ,

so that A is symmetric and invertible. Consider the column vector of variable x as above. Then, we
have

x tAx = x2
1 + 2x2

2 − x2
4 − 2x1x3 + 4x1x4 + 2x2x3 − 4x2x4.

Let’s complete the square with respect to x1: we have

x2
1 + 2x2

2 − x2
4 − 2x1x3 + 4x1x4 + 2x2x3 − 4x2x4

= x2
1 − 2x1(x3 − 2x4) + (x3 − 2x4)2 − (x3 − 2x4)2 + 2x2

2 − x2
4 + 2x2x3 − 4x2x4

= (x1 − (x3 − 2x4))2 + 2x2
2 − x2

3 − 5x2
4 + 2x2x3 − 4x2x4 + 4x3x4

Now we set
y1 = x1 − x3 + 2x4.

Then, complete the square with respect to the remaining x2 terms: we have

y 2
1 + 2x2

2 − x2
3 − 5x2

4 + 2x2x3 − 4x2x4 + 4x3x4

= y 2
1 + 2(x2

2 + x2(x3 − 2x4) +
1

4
(x3 − 2x4)2)− 1

2
(x3 − 2x4)2 − x2

3 − x2
4 − 4x3x4

= y 2
1 + 2(x2 +

1

2
(x3 − 2x4))2 − 3

2
x2

3 − 7x2
4 − 2x3x4

Now we set
y2 =

√
2
(
x2 + 1

2 x3 − x4

)
.

We obtain

x2
1 + 2x2

2 − x2
4 − 2x1x3 + 4x1x4 + 2x2x3 − 4x2x4 = y 2

1 + y 2
2 −

3

2
x2

3 − 7x2
4 − 2x3x4.

Completing the square with respect to x3 we obtain

y 2
1 + y 2

2 −
3

2
x2

3 − 7x2
4 − 2x3x4

= y 2
1 + y 2

2 −
3

2
(x2

3 +
14

3
x3x4 +

49

9
x2

4 ) +
49

6
x2

4

= y 2
1 + y 2

2 −
3

2
(x3 +

7

3
x4)2 +

49

6
x2

4 .

Then, set

y3 =
√

3
2 (x3 + 7

3 x4),

y4 = 7√
6

x4

.

So, if we let

Q =


1 0 −1 2

0
√

2 1√
2
−
√

2

0 0
√

3
2

7√
6

0 0 0 7√
6

 ,

then we have
y = Qx .
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Hence, if we define P = Q−1, then we have that

P tAP =


1

1
−1

1

 .

Hence, we have that p = 3, q = 1 and that if BA ∈ BilR(R4) then

sig(BA) = 3− 1 = 2.

2. Consider the matrix

A =

−1 0 0
0 0 1
0 1 0


which is symmetric and invertible. Consider the column vector of variables x as before. Then, we have

x tAx = −x2
1 + 2x2x3.

Proceeding as before, we ‘complete the square’ with respect to x2 (we don’t need to complete the square
for x1): we have

− x2
1 + 2x2x3

= − x2
1 +

1

2
(x2 + x3)2 − 1

2
(x2 − x3)2

Hence, if we let
y1 = x1

y2 = 1√
2

(x2 + x3)

y3 = 1√
2

(x2 − x3)

then we have
x tAx = −y 2

1 + y 2
2 − y 2

3 .

Furthermore, if we let

Q =

1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2

 ,

and defined P = Q−1, then

P tAP =

−1
1
−1

 .

Hence, p = 1, q = 2 and
sig(BA) = −1.

3.3 Euclidean spaces

Throughout this section V will be a finite dimensional R-vector space and K = R.

Definition 3.3.1. Let B ∈ BilR(V ) be a symmetric bilinear form. We say that B is an inner product
on V if B satisfies the following property:

B(v , v) ≥ 0, for every v ∈ V , and B(v , v) = 0⇔ v = 0V .

If B ∈ BilK(V ) is an inner product on V then we will write

〈u, v〉 def
= B(u, v).
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