
Remark 2.4.13. The mathematical reason that Z and C[t] obey the same algebraic properties is that
they are both examples of Euclidean domains: these are commutative rings for which there exists a
division algorithm, Euclidean algorithm and the notion of prime elements.

More specifically, a Euclidean domain is a commutative ring without zerodivisors for which there exists
a well defined ‘degree’ function. As a consequence of the existence of the degree function the division
algorithm and Euclidean algorithm hold. Moreover, it can be show that such commutative rings are
principal ideal domains and are therefore unique factorisation domains: this means that the ‘unique
factorisation’ property holds.

2.5 Canonical form of an endomorphism

([1], p.142-146)

Throughout this section we fix a linear endomorphism L ∈ EndC(V ), for some finite dimensional
C-vector space V . We denote n = dimC V .

We recall the notation from Corollary 2.4.7: for L ∈ EndC(V ), f = a0 + a1t + ... + ak tk ∈ C[t], we
define the endomorphism

f (L) = ρL(f ) = a0idV + a1L + a2L2 + ... + ak Lk ∈ EndC(V ),

where Li = L ◦ · · · ◦ L is the i-fold composition of the endomorphism L.

Definition 2.5.1. Any nonzero f ∈ ker ρL is called an annihilating polynomial of L.

In particular, the minimal polynomial µL of L is an annihilating polynomial of L.

The following theorem is the culmination of our discussion regarding polynomials and representations of
the polynomial algebra. It allows us to use the minimal polynomial of L to decompose V into a direct
sum of L-invariant subspaces. Hence, we can find a basis of V for which the matrix of L with respect to
this basis is block diagonal. We will then see that we can use our results on nilpotent endomorphisms
to find a basis of V for which the matrix of L is ‘almost diagonal’ - this is the Jordan canonical form
(Theorem 2.5.12).

Theorem 2.5.2. Suppose that f ∈ ker ρ is an annihilating polynomial of L and that f = f1f2, with f1

and f2 relatively prime. Then, we can write

V = U1 ⊕ U2,

with U1 and U2 both L-invariant (Definition 2.2.1), and such that

f1(L)(u2) = 0V , f2(L)(u1) = 0V ,

for every u1 ∈ U1, u2 ∈ U2.

Moreover,
U1 = ker f2(L), U2 = ker f1(L).

Proof: As f1 and f2 are relatively prime we know that there exists g1, g2 ∈ C[t] such that

f1g1 + f2g2 = 1 ∈ C[t].

This follows from Lemma 2.4.11. Hence, we have

idv = ρL(1) = ρL(f1g1 + f2g2) = ρL(f1)ρL(g1) + ρL(f2)ρL(g2) = f1(L)g1(L) + f2(L)g2(L).

Define
U1 = imf1(L), U2 = imf2(L).

Then, since
f1(L) ◦ L = L ◦ f1(L), f2(L) ◦ L = L ◦ f2(L),
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(you should check this) we have that, if u1 = f1(L)(x1) ∈ U1, u2 = f2(L)(x2) ∈ U2, then

L(u1) = L◦f1(L)(x1) = f1(L)◦L(x1) ∈ imf1(L) = U1, L(u2) = L◦f2(L)(x2) = f2(L)◦L(x2) ∈ imf2(L) = U2.

Hence, U1, U2 are L-invariant.

Now, let u1 ∈ U1 = imf1(L) so that u1 = f1(L)(x1), for some x1 ∈ V . Then,

f2(L)(u1) = f2(L)(f1(L)(x1)) = f (L)(x1),

since f1f2 = f and ρL(f ) = ρL(f1f2) = ρL(f1)ρL(f2) (ρL is a representation of C[t]). Our assumption is
that f is an annhiliating polynomial of L so that f (L) = 0EndC(V ) and we obtain

f2(L)(u1) = f (L)(x1) = 0V .

Similarly we obtain that
f1(L)(u2) = 0V , for every u2 ∈ U2.

Let v ∈ V . Then,

v = idV (v) = (f1(L)g1(L) + f2(L)g2(L))(v) = f1(L)(g1(L)(v)) + f2(L)(g2(L)(v)) ∈ U1 + U2.

Hence, V = U1 + U2.

Now, let x ∈ U1 ∩U2. Therefore, we have f1(L)(x) = 0V = f2(L)(x) by what we showed above. Hence,

x = f1(L)(g1(L)(x))+f2(L)(g2(L)(x)) = g1(L)(f1(L)(x))+g2(L)(f2(L)(x)) = g1(L)(0V )+g2(L)(0V ) = 0V .

Here we have used that h(L) ◦ g(L) = g(L) ◦ h(L), for any g , h ∈ C[t], which can be easily verified.

Hence, we have
V = U1 ⊕ U2,

Finally, suppose that f2(L)(w) = 0V , for some w ∈ V . Then, we want to show that w ∈ U1. Since
V = U1 ⊕ U2 then we have

w = u1 + u2,

where u1 ∈ U1, u2 ∈ U2. Thus, we have x1, x2 ∈ V such that

u1 = f1(L)(x1), x2 = f2(L)(x2).

Thus,
0V = f2(L)(w) = f2(L)(u1 + u2) = f2(L)(u1) + f2(L)(u2) = 0V + f2(L)(u2),

and
f1(L)(u2) = 0,

as u2 ∈ U2. Therefore,

u2 = g1(L)(f1(L)(u2)) + g2(L)(f2(L)(u2)) = 0V + 0V = 0V ,

so that w = u1 ∈ U1. We obtain that ker f1(L) = U2 similarly.

Corollary 2.5.3 (Primary Decomposition Theorem). Let f ∈ C[t] be an annihilating polynomial of
L ∈ EndC(V ). Suppose that f is decomposed into the following linear factors:50

f = a(t − λ1)n1 (t − λ2)n2 · · · (t − λk )nk .

Then, there are L-invariant subspaces U1, ... , Uk ⊂ V such that

V = U1 ⊕ ...⊕ Uk ,

and such that each Ui is annihilated by the endomorphism

(L− λi idV )ni = (L− λi idV ) ◦ · · · ◦ (L− λi idV ).

50This is always possible by the Fundamental Theorem of Algebra.
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Proof: This is a direct consequence of Theorem 2.5.2: apply Theorem 2.5.2 to

f1 = (t − λ1)n1 , g1 = (t − λ2)n2 · · · (t − λk )nk ,

which are obviously relatively prime polynomials, to obtain

V = U1 ⊕ V1,

where U1 = ker f1(L), V1 = ker g1(L). Then, V1 is L-invariant so that L restricts to a well-defined
endomorphism of V1, denoted L1 ∈ EndC(V1). Then, g1 is an annihilating polynomial of L1.

Now, we can write
g1 = f2g2,

where
f2 = (t − λ2)n2 , g2 = (t − λ3)n3 · · · (t − λk )nk .

Then, f2 and g2 are relatively prime so we can apply Theorem 2.5.2 to V1 to obtain

V1 = U2 ⊕ V2.

with U2 = ker f2(L), V2 = ker g2(L). Then, V2 is L1-invariant (and also L-invariant, when we consider V2

as a subspace of V ) so that L1 restricts to a well-defined endomorphism of V2, denoted L2 ∈ EndC(V2).
Then, g2 is an annihilating polynomial of L2.

Proceeding in this way we see that we can write

V = U1 ⊕ · · · ⊕ Uk ,

where Ui = ker(L− λi idv )ni .

Remark 2.5.4. Theorem 2.5.2 and the Primary Decomposition Theorem (Corollary 2.5.3) form the
theoretical basis for the study of endomorphisms of a finite dimensional C-vector space. These results
allow us to deduce many properties of an endomorphism L if we know its minimal polynomial (or its
characteristic polynomial). The next few Corollaries demonstrate this.

Corollary 2.5.5. Let L ∈ EndC(V ). Then, L is diagonalisable if and only if µL is a product of distinct
linear factors, ie,

µL = (t − c1)(t − c2) · · · (t − ck ),

with ci 6= cj for i 6= j .

Proof: (⇒) Suppose that L is diagonalisable so that we have

E L
λ1
⊕ · · · ⊕ E L

λk
= V ,

with E L
λi

the λi -eigenspace of L. Consider the polynomial

f = (t − λ1) · · · (t − λk ) ∈ C[t].

Then, we claim that ρL(f ) = 0 ∈ EndC(V ): indeed, let v ∈ V and write v = e1 + ... + ek with ei ∈ E L
λi

.
Then, for each i , we have

ρL(f )(ei ) = (L− λ1idV ) · · · (L− λk idV )(ei ) = 0V ,

because (L − λs idV )(L − λt idV ) = (L − λt idV )(L − λs idV ), for every s, t.51 Hence, we must have
ρL(f )(v) = 0V , for every v ∈ V , so that ρL(f ) = 0 ∈ EndC(V ). Hence, by Proposition 2.4.4, there is
some g ∈ C[t] such that

f = µLg .

As f is a product of distinct linear factors the same must be true of µL.

51We can move (L− λi idV ) to the front of ρL(f ) and, since L(ei ) = λi ei , we obtain (L− λi idV )(ei ) = 0V .
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(⇐) Suppose that
µL = (t − c1) · · · (t − ck ) ∈ C[t].

Then, by Corollary 2.5.3, we obtain a direct sum decomposition

V = U1 ⊕ · · · ⊕ Uk ,

where Ui = ker(L− ci idV ). Hence,

Ui = {v ∈ V | (L− ci idV )(v) = 0V } = {v ∈ V | L(v) = ci v} = E L
ci

is precisely the ci -eigenspace of L. Thus, as we have written V as a direct sum of eigenspaces of L we
must have that L is diagonalisable.

Example 2.5.6. 1. Let A ∈ Matn(C) be such that

Ak − In = 0n,

for some k ∈ N. Then, we see that

f = tk − 1 ∈ ker ρA,

where ρA = ρTA
is the representation of C[t] defined by the endomorphism TA ∈ EndC(Cn).

Therefore, the minimal polynomial of A, µA, must divide f so that there is g ∈ C[t] such that

f = µAg .

Now, we have
f = (t − 1)(t − ω) · · · (t − ωk−1),

where ω = cos(2π/k) + sin(2π/k)
√
−1; in particular, f has distinct linear factors. Thus, the same

must be true of µA. Hence, by Corollary 2.5.5 we have that A is diagonalisable.

For those of you that are taking Math 113 this has an important consequence:

‘every commutative finite group can be realised as a subgroup of Dn, for some n’

where Dn is the group of diagonal n × n complex matrices. This uses Cayley’s theorem (for
groups) and the fact that a family of commuting diagonalisable matrices can be simultaneously
diagonalised (mentioned as a footnote on LH3).

2. More generally, A ∈ Matn(C) is such that there exists a polynomial relation

0 = f (A) = ρA(f ),

for some f ∈ C[t] with distinct linear factors, then A is diagonalisable. For example, if

A2 − 3A + 2In = 0n,

then A is diagonalisable.

The previous Corollary shows that the zeros of the minimal polynomial are eigenvalues of L, for L
diagonalisable. In fact, this is true for any L ∈ EndC(V ).

Corollary 2.5.7. Let L ∈ EndC(V ) and µL ∈ C[t] the minimal polynomial of L. Then, µL(c) = 0 if and
only if c ∈ C is an eigenvalue of L.
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Proof: Suppose that
µL = (t − c1)n1 · · · (t − ck )nk .

Then, µL(c) = 0 if and only if c = ci , for some i ∈ {1, ... , k}. We will show that each ci is an eigenvalue
of L and, conversely, if λ is an eigenvalue of L then λ = ci , for some i . This shows that the set of
eigenvalues of L is precisely {c1, ... , ck}.

Let U1, ... , Uk ⊂ V be the L-invariant subspaces such that

V = U1 ⊕ · · · ⊕ Uk ,

from Corollary 2.5.3. Then, the proof of Corollary 2.5.3 shows that Ui = ker(L − ci idV )ni . As ni ≥ 1
we can find nonzero w ∈ V such that (L− ci idV )(v) = 0V : namely, we take

w = (L− ci idV )r−1(v),

where r = ht(v) is equal to the height of any nonzero v ∈ Ui with respect to the nilpotent endomorphism
(L|Ui

− ci idUi ) ∈ EndC(Ui ).52 Hence,

(L− ci idV )(w) = (L− ci idV )r (v) = 0V ,

so that w is eigenvector of L with associated eigenvalue ci . In particular, ci is an eigenvalue of L.

Conversely, suppose that c ∈ C is an eigenvalue of L and that v is an eigenvector such that L(v) = cv ;
in particular, v 6= 0V . Then, since

V = U1 ⊕ · · · ⊕ Uk ,

we have a unique expression
v = u1 + ... + uk , ui ∈ Ui .

Then,
L(u1) + ... + L(uk ) = L(v) = cv = cu1 + ... + cuk ,

and since L(ui ) ∈ Ui (each Ui is L-invariant) we must have L(ui ) = cui , for each i : this follows because
every z ∈ V can be written as a unique linear combination of vectors in U1, ... , Uk .

Let Γ1 = {i ∈ {1, ... , k} | ui = 0V } and Γ2 = {1, ... , k} \ Γ1: as v 6= 0V we must have Γ2 6= ∅. Thus,
for every i ∈ Γ2 we have that ui ∈ Ui is also an eigenvector of L with associated eigenvalue c . As

Ui = ker(L− ci idV )ni ,

we have, for each i ∈ Γ2,

0V = (L− ci idV )ni (ui ) =

(
ni∑

p=0

(
ni

p

)
(−ci )

pLn−p

)
(ui ) =

ni∑
p=0

(
ni

p

)
(−ci )

pcn−pui = (c − ci )
ni ui .

Hence, we see that c = ci , for each i ∈ Γ2. Since ci 6= cj , if i 6= j , then we must have that c = cj , for
some j , so that any eigenvalue of L is equal to some cj .

We have just shown that the set of eigenvalues of L is precisely {c1, ... , ck}. Moreover, the set of roots
of µL is also equal to this set and the result follows.

Corollary 2.5.8. Let L ∈ EndC(V ) and µL ∈ C[t] the minimal polynomial of L. Suppose that

V = U1 ⊕ · · · ⊕ Uk ,

is the direct sum decomposition from Corollary 2.5.3. Then, if c is an eigenvalue of L we must have
that the c-eigenspace of L satisfies

E L
c ⊂ Uj ,

for some j. Furthermore, if c , c ′ are eigenvalues of L and E L
c , E L

c′ ⊂ Uj , then c = c ′.

52This is an endomorphism of Ui since Ui is L-invariant.
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Proof: This follows from the latter part of the the previous proof of Corollary 2.5.7: if v ∈ E L
c is

nonzero, so that L(v) = cv , then we have

v = u1 + ... + uk , ui ∈ Ui ,

as above. Moreover, if we define Γ2 as before, then the latter part of the previous proof shows that
Γ2 = {j}, for some j . Thus,

v = uj ∈ Uj .

Hence, E L
c ⊂ Uj , for some j . The last statement follow from the proof of Corollary 2.5.7.

Corollary 2.5.9 (Cayley-Hamilton Theorem). Let L ∈ EndC(V ) and χL ∈ C[t] the characteristic poly-
nomial of L. Then,

χL(L) = ρL(χL) = 0EndC(V ) ∈ EndC(V ).

Proof: This is a consequence of Corollary 2.5.7. The roots of the minimal polynomial of L, µL, are
precisely the eigenvalues of L. The roots of χL are also the eigenvalues of L. Therefore, we see that

µL = (t − λ1)m1 · · · (t − λk )mk , and χL = (t − λ1)n1 · · · (t − λk )nk .

We are going to show that mi ≤ ni , for each i . First we need the following Lemma (which can be easily
proved by induction on k and expanding the determinant across the top row)

Lemma 2.5.10. Let A ∈ Matn(C) and suppose that

A =

[
A1 0
0 A2

]
,

with Ai ∈ Matk (C), A2 ∈ Matn−k (C). Then, χA(λ) = χA1 (λ)χA2 (λ)

If B = B1 ∪ ... ∪ Bk is a basis of V , with each Bi ⊂ Ui , then the matrix [L]B is block diagonal

[L]B =


A1

A2

. . .

Ak

 .

As a consequence of Lemma 2.5.10 we have that

χL = χA1χA2 · · ·χAk
.

Moreover, it follows from the proof of Corollary 2.5.7 and Corollary 2.5.8 that the only eigenvalue of Ai

is λi . Hence, using Lemma 2.5.10 we must have that

χAi = (t − λi )
ni .

It is a further consequence of Lemma 2.5.10 that dim Ui = ni .

Since the endomorphism Ni = L|Ui
− λi idUi ∈ EndC(Ui ) is nilpotent (Corollary 2.5.3) the structure

theorem for nilpotent endomorphisms (Theorem 2.3.4) shows that η(Ni ) ≤ ni , where η(Ni ) is the
exponent of Ni .

By construction, we have that
Ui = ker(L− λi idV )mi ,

which implies that η(Ni ) ≤ mi . In fact, η(Ni ) = mi , for every i : otherwise, we must have η(Ni ) < mi ,
for some i , so that for every u ∈ Ui ,

(L− λidV )η(Ni )(u) = 0V .

Consider the polynomial

g = (t − λ1)m1 · · · (t − λi−1)mi−1 (t − λi )
η(Ni )(t − λi+1)mi+1 · · · (t − λk )mk ∈ C[t].
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We have that deg g < degµL as η(Ni ) < mi . Then, for any v ∈ V , if we write v = u1 + ... + uk , then
we see that

ρL(g)(v) = ρL(g)(u1 + ... + uk )

= ρL(g)(u1) + ... + ρL(g)(uk )

= 0V + ... + 0V = 0V ,

because
(L− λj idV )mj (uj ) = 0V , for j 6= i , and (L− λi idV )η(Ni )(ui ) = 0V .

But then this contradicts the definition of µL being a nonzero element of ker ρL of minimal degree.
Hence, our initial assumption the η(Ni ) < mi , for some i , cannot hold so that η(Ni ) = mi , for every i .

Therefore, mi ≤ ni , for every i , so that µL divides χL: there exists f ∈ C[t] such that

χL = µLf ∈ C[t].

Hence, we obtain
ρL(χL) = ρL(µLf ) = ρL(µL)ρL(f ) = 0EndC(V ) ∈ EndC(V ),

where we use that µL ∈ ker ρL.

Remark 2.5.11. The Cayley-Hamilton theorem is important as it gives us an upper bound on the
degree of the minimal polynomial: we know that the minimal polynomial of L must have degree at
most n2 (because the set {idv , L, ... , Ln2} ⊂ EndC(V ) must be linearly dependent), so that degµL ≤ n2.
However, the Cayley-Hamilton theorem says that we actually have deg µL ≤ n thereby limiting the
possibilities for µL.

2.5.1 The Jordan canonical form

Let us denote
Ni = L|Ui

− λi idUi ∈ EndC(Ui ).

Since each Ui is L-invariant it is also Ni -invariant (Lemma 2.2.3). Moreover, Corollary 2.5.3 implies that
the restriction of Ni to Ui is a nilpotent endomorphism of Ui . Hence, by Theorem 2.3.4, we can find a
basis Bi ⊂ Ui of Ui such that the matrix of the restriction of Ni with respect to Bi has the canonical
form 

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 · · · · · · Jpi

 ,

with each Ja a 0-Jordan block and such that the size of Ji is at least as large as the size of Ji+1. Let
B = B1 ∪ ... ∪ Bk be the subsequent ordered basis of V we obtain.

As we have
V = U1 ⊕ · · · ⊕ Uk ,

then for each v ∈ V , we have
v = u1 + ... + uk , ui ∈ Ui .

Thus, applying L to v gives

L(v) = L(u1) + ... + L(uk ) = λ1u1 + N1(u1) + ... + λk uk + Nk (uk ).

Hence, the matrix of L with respect to the basis B takes the form

[L]B =


A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
. . .

...
...

0 · · · · · · · · · Ak

 ,
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where, for each i = 1, ... , k , we have

Ai = λi Idim Ui +


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 · · · · · · Jpi



=



λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . .

. . .
...

0 · · · · · · λi 1
0 · · · · · · 0 λi

. . .

λi 1 · · · 0
0 λi · · · 0
...

...
...

...
0 · · · · · · 1
0 · · · 0 λi

. . .

λi



(2.5.1)

Theorem 2.5.12 (Jordan Canonical Form). Let L ∈ EndC(V ), V a finite dimensional C-vector space.
Then, there exists an ordered basis B ⊂ V such that [L]B is a matrix of the form 2.5.1 above. We call
B a Jordan basis of L.

Proof: Since the minimal polynomial µL of L is an annihilating polynomial of L we can use Primary
Decomposition (Corollary 2.5.3) to obtain a direct sum decomposition of V ,

V = U1 ⊕ ...⊕ Uk .

Now, the previous discussion implies the existence of B so that [L]B takes the desired form.

Corollary 2.5.13. Let A ∈ Matn(C). Then, A is similar to a matrix of the form 2.5.1 above.

Proof: Consider the endomorphism TA ∈ EndCn . Then, there is an ordered basis B of Cn such that
[TA]B takes the desired form, by Theorem 2.5.12. Since [TA]S(n) = A, we have that A and [TA]B are
similar (Corollary 1.7.7).

Remark 2.5.14. 1. The Jordan canonical form is a remarkable result. However, practically it is quite
difficult to determine the Jordan basis of L. The use of the Jordan canonical form is mostly in theoretical
applications where you are (perhaps) only concerned with knowing what the matrix of an endomorphism
looks like with respect to some basis of V . The fact that a Jordan basis exists allows us to consider only
‘almost diagonal’ matrices, for which it can be quite easy to show that certain properties hold true.

2. The Jordan canonical form allows us to classify similarity classes of matrices: a similarity class is the
set of all matrices which are similar to a particular matrix. Since similiarity is an equivalence relation
we can partition Matn(C) into disjoint similarity classes. Then, the Jordan canonical form tells us that
each similarity class is labelled by a set of eigenvalues (the entries on the diagonal of the Jordan form
lying in that similarity class) and the partitions of each block. Two matrices are similar if and only if
these pieces of data are equal.

3. In group-theoretic language, we see that the Jordan canonical form allows us to classify the orbits
of GLn(C) acting on the set Matn(C). Furthermore, this is actually the same thing as classifying the
Ad-orbits of the algebraic group GLn(C) acting on its Lie algebra gln(C) via the Adjoint representation.

Example 2.5.15. Consider the following matrix

A =

 2 1 1
2 3 3
−5 −1 −4

 .

81



Then, you can check that
χA(t) = −(t − 2)2(t + 3).

Since
A2 + A− 6I3 6= 03,

it is not possible for A to be diagonalisable as this is the only possibility for the minimal polynomial µA

with distinct linear factors.

Therfore, it must be the case that there exists P ∈ GL3(C) such that

P−1AP =

2 1 0
0 2 0
0 0 −3

 ,

as this is the only possibility for the Jordan canonical form of A. Let’s determine a basis B ⊂ C3 such
that

PB←S(3) [TA]S(3) PS(3)←B = [TA]B =

2 1 0
0 2 0
0 0 −3

 .

As
µA = (t − 2)2(t + 3),

is an annihilating polynomial of A and f1 = (t − 2)2, f2 = (t + 3) are relatively prime, then we can find
A-invariant subspaces U1, U2 ⊂ C3 such that

C3 = U1 ⊕ U2,

and where
U1 = ker T(A−2I3)2 , U2 = ker TA+3I3 .

You can check that

U2 = E−3 = spanC


 −5/28
−13/28

1

 ,

so that A defines an endomorphism T2 : U2 → U2 ; x 7→ Ax of U2 and if B2 =

 −5/28
−13/28

1

 ⊂ U2

then
[T2]B2 = [−3].

We also know that A defines and endomorphism T1 : U1 → U1 ; x 7→ Ax . Now, since

(A− 2I3)2 =

 0 1 1
2 1 3
−5 −1 −6

 ,

we find that

U1 = ker T(A−2I3)2 = spanC


 1

0
−1

 ,

0
1
0

 .

So, if we let

C1 =

 1
0
−1

 ,

0
1
0

 (= (c1, c2)),

then

[T2]C1 =

[
1 1
−1 3

]
.
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If we set

N1 = [T2]C1 − 2I2 =

[
−1 1
−1 1

]
,

then we see that N2
1 = 02, so that N1 is nilpotent. Moreover, using our results on nilpotent matrices, if

we set P = [N1e2 e2] then we have

P−1N1P =

[
0 1
0 0

]
.

Hence, we have

[T1]B = N1 + 2I2 =

[
2 1
0 2

]
.

Therefore, if we let

B1 = (c1 + c2, c2) =

 1
1
−1

 ,

0
1
0

 ,

and B = B1 ∪ B2 then we have

[TA]B =

2 1 0
0 2 0
0 0 −3

 .

In particular, if we set

P =

 1 0 −5/28
−1 1 −13/28
−1 0 1

 ,

then

P−1AP =

2 1 0
0 2 0
0 0 −3

 .
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