
2.4 Algebra of polynomials

([1], p.136-142)

In this section we will give a brief introduction to the algebraic properties of the polynomial algebra
C[t]. In particular, we will see that C[t] admits many similarities to the algebraic properties of the set
of integers Z.

Remark 2.4.1. Let us first recall some of the algebraic properties of the set of integers Z.

- division algorithm: given two integers w , z ∈ Z, with |w | ≤ |z |, there exist a, r ∈ Z, with
0 ≤ r < |w | such that

z = aw + r .

Moreover, the ‘long division’ process allows us to determine a, r . Here r is the ‘remainder’.

- prime factorisation: for any z ∈ Z we can write

z = ±pa1
1 pa2

2 · · · p
as
s ,

where pi are prime numbers. Moreover, this expression is essentially unique - it is unique up to
ordering of the primes appearing.

- Euclidean algorithm: given integers w , z ∈ Z there exists a, b ∈ Z such that

aw + bz = gcd(w , z),

where gcd(w , z) is the ‘greatest common divisor’ of w and z . In particular, if w , z share no
common prime factors then we can write

aw + bz = 1.

The Euclidean algorithm is a process by which we can determine a, b.

We will now introduce the polynomial algebra in one variable. This is simply the set of all polynomials
with complex coefficients and where we make explicit the C-vector space structure and the multiplicative
structure that this set naturally exhibits.

Definition 2.4.2. - The C-algebra of polynomials in one variable, is the quadruple (C[t],α,σ,µ)43

where (C[t],α,σ) is the C-vector space of polynomials in t with C-coefficients defined in Example
1.2.6, and

µ : C[t]× C[t]→ C[t] ; (f , g) 7→ µ(f , g),

is the ‘multiplication’ function.

So, if
f = a0 + a1t + ... + antn, g = b0 + b1 + ... + bmtm ∈ C[t],

with m ≤ n say, then
µ(f , g) = c0 + c1t + ... + cm+ntm+n,

where
ci =

∑
j+k=i ,
0≤j≤n,
0≤k≤m

ajbk .

43This is a particular example of a more general algebraic object called a C-algebra: a C-algebra is a set A that is a
C-vector space and for which there is a well-defined commutative multiplication map that interacts with addition in a
nice way - for example, distributivity, associativity hold. One usually also requires that a C-algebra A has a multiplicative
identity, namely an element e such that f · e = e · f = f , for every f ∈ A. It is common to denote this element by 1.
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We write
µ(f , g) = f · g , or simply fg .

µ is nothing more than the function defining the ‘usual’ multiplication of polynomials with
C-coefficients. In particular, for every f , g ∈ C[t] we have fg = gf .

We will write C[t] instead of the quadruple above when discussing C[t] as a C-algebra. Note that
the polynomial 1 ∈ C[t] satisfies the property that 1 · f = f · 1 = f , for every f ∈ C[t].

- A representation of C[t] is a C-linear morphism

ρ : C[t]→ EndC(V ),

for some finite dimensional C-vector space V , such that

(∗) ρ(fg) = ρ(f ) ◦ ρ(g), and ρ(1) = idV ,

where we are considering composition of linear endomorphisms of V on the RHS of the first
equality.44

Remark 2.4.3. Suppose that
ρ : C[t]→ EndC(V ),

is a representation of C[t]. Then, for any f = a0 + a1t + a2t2 + ... + antn ∈ C[t], we have

ρ(f ) = ρ(a0 + a1t + ... + antn) = a0ρ(1) + a1ρ(t) + ... + anρ(tn), as ρ is C-linear,

= a0idV + a1ρ(t) + a2ρ(t)2 + ... + anρ(t)n, by (∗),

where we have written ρ(t)k = ρ(t) ◦ · · · ◦ ρ(t), the k-fold composition of ρ(t).

Hence, a represention of C[t] is the same thing as specifying a C-linear endomorphism ρ(t) ∈
EndC(V ): the multiplicative property of ρ then implies that ρ(f ) only depends on ρ(t), for any
f ∈ C[t].

Conversely, given a C-linear endomorphism of V , L ∈ EndC(V ) say, then we can define a representation
ρL of C[t] as follows: define

ρL : C[t]→ EndC(V ) ; a0 + a1t + ... + antn 7→ a0idv + a1L + ... + anLn ∈ EndC(V ),

where Lk = L ◦ · · · ◦ L and the addition and scalar multiplication on the RHS is occuring in EndC(V ).

We are going to study an endomorphism L ∈ EndC(V ) by studying the representation ρL of
C[t] it defines. If A ∈ Matn(C) then we define ρA to be the representation defined by the
endomorphism TA of Cn.

Suppose we are given a representation of C[t]

ρ : C[t]→ EndC(V ),

and denote n = dimC V , L = ρ(t) ∈ EndC(V ) (so that ρ = ρL) and suppose that L 6= idV .45

We know that EndC(V ) is n2-dimensional (since we know that EndC(V ) is isomorphic to Matn(C)).
Therefore, there must exist a nontrivial linear relation

λ0idV + λ1L + λ2L2 + ... + λn2 Ln2

= 0EndC(V ),

44This means that ρ is a morphism of (unital) C-algebras.
45If L = idV then we call the representation ρidV the trivial representation. In this case, we have that

imρ = {c · idV ∈ EndC(V ) | c ∈ C} ⊂ EndC(V ).
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with λi ∈ C, since the set {idV , L, L2, ... , Ln2} contains n2 + 1 vectors. Thus, we have

0EndC(V ) = λ0idV + λ1L + λ2L2 + ... + λn2 Ln2

= λ0ρ(1) + λ1ρ(t) + ... + λn2ρ(t)n
2

= ρ(λ0 + λ1t + ... + λn2 tn
2

),

so that the polynomial

f = λ0 + λ1t + ... + λn2 tn
2

∈ ker ρ.

In particular, we have that ker ρ 6= {0C[t]}. We will now make a detailed study of the kernel of
representations of C[t].

Keep the same notation as above. We have just seen that ker ρ is nonzero. Let mL ∈ ker ρ be
a nonzero polynomial for which ρ(mL) = 0EndC(V ) and such that mL has minimal degree.46 We must
have deg mL 6= 0, otherwise mL is a constant polynomial, say mL = c · 1 with c ∈ C, c 6= 0, and
ρ(c · 1) = cρ(1) = c idV 6= 0EndC(V ), contradicting that mL ∈ ker ρ. Hence, we can assume that
deg mL = m > 0.

Now, let f ∈ ker ρ be any other polynomial in the kernel of ρ. Denote deg f = p. Thus, by our choice of
mL (it must have minimal degree) we see that p ≥ m. Now use the division algorithm for polynomials47

to find polynomials g , h ∈ C[t] such that

f = gmL + h,

where deg h < m.

Then, as f ∈ ker ρ, we must have

0EndC(V ) = ρ(f ) = ρ(gmL + h) = ρ(g)ρ(mL) + ρ(h) = 0EndC(V ) + ρ(h),

so that h ∈ ker ρ. If h were a nonzero polynomial then we have obtained an element in ker ρ that has
strictly smaller degree that mL, contradicting our choice of mL. Hence, we must have that h = 0 and
f = gmL. We say that mL divides f .

We have just shown the following

Proposition 2.4.4. Suppose that
ρ : C[t]→ EndC(V ),

is a representation of C[t]. Denote L = ρ(t) ∈ EndC(V ) and suppose that mL ∈ ker ρ is nonzero and
has minimal degree. Then, for any f ∈ ker ρ there exists g ∈ C[t] such that

f = gmL.

Remark 2.4.5. Proposition 2.4.4 is stating the fact that the C-algebra C[t] is a principal ideal domain,
namely, every ideal in C[t] is generated by a single polynomial (ie, ‘principal’).

Definition 2.4.6. Let L ∈ EndC(V ) and consider the representation

ρL : C[t]→ EndC(V ),

defined above. We define the minimal polynomial of L, denoted µL ∈ C[t], to be the unique nonzero
polynomial µL ∈ ker ρ that has minimal degree and has leading coefficient 1: this means that

µL = a0 + a1t + ... + am−1tm−1 + tm.

46Recall that the degree, deg f , of a polynomial

f = a0 + a1t + ... + ak t
k ∈ C[t],

is defined to be deg f = k. We have the property that

deg fg = deg f + deg g .

47If you have not seen this before, don’t worry, as I will cover this in class.
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This polynomial is well-defined (ie, it’s unique) by Proposition 2.4.4: if mL ∈ ker ρ has minimal degree
and leading coefficient a ∈ C, then we have µL = a−1mL. If f ∈ ker ρ is any other polynomial of minimal
degree and with leading coefficient 1, then we must have deg f = degµL and, by Proposition 2.4.4, we
know that there exists g ∈ C[t] such that

f = gµL.

Since deg f = deg(gµL) = deg g + deg µL we must have that deg g = 0, so that g = c · 1 ∈ C[t]. As
both f and µL have leading coefficient 1, the only way this can hold is if c = 1, so that f = µL.

For A ∈ Matn(C) we write µA instead of µTA
and call it the minimal polynomial of A.

Corollary 2.4.7. Let L ∈ EndC(V ), µL be the minimal polynomial of L. For f = a0 + a1t + ... + aktk ∈
C[t] we denote

f (L) = ρL(f ) = a0idV + a1L + ... + akLk ∈ EndC(V ).

If f (L) = 0EndC(V ) then f = µLg, for some g ∈ C[t].

Proof: This is simply a restatement of Proposition 2.4.4.

Example 2.4.8. 1. Consider the endomorphism TA of C3 defined by the matrix

A =

2 0 0
0 1 −1
0 2 −1

 .

Then, you can check that the following relation holds

−A3 + 2A2 − A + 2I3 = 03.

Consider the representation ρA defined by A. Then, since the above relation holds we must have

f = −λ3 + 2λ2 − λ+ 2 ∈ ker ρA.

You can check that we can decompose f as

f = (2− λ)(λ−
√
−1)(λ+

√
−1).

Hence, we must have that µA is one of the following polynomials48

(λ−
√
−1)(λ+

√
−1), (2− λ)(λ−

√
−1), (2− λ)(λ+

√
−1), f .

In fact, we have µA = f .

You may have noticed that f = χA(λ) - this is the Cayley-Hamilton Theorem (to be proved later
and in homework): if A ∈ Matn(C) then χA(λ) ∈ ker ρA, so that χA(A) = 0 (using the above
notation from Corollary 2.4.7).

- Consider the matrix

A =

1 1 0
0 1 0
0 0 1

 .

You can check that we have the relation

−A3 + 3A2 − 3A + I3 = 03,

so that
f = −λ3 + 3λ2 − 3λ+ 1 = (1− λ)3 ∈ ker ρA.

48Why can’t we have µA be one of (2− λ), (λ−
√
−1), (λ+

√
−1)?
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Now, we see that we must have µA being one of the following polynomials49

(1− λ)2, f .

It can be checked that
A2 − 2A + I3 = 03,

so that
µA = (1− λ)2.

You will notice that
χA(λ) = (1− λ)3.

In both of these examples you can see that the roots of the minimal poynomial of A are precisely the
eigenvalues of A (possibly with some repeated multiplicity). In fact, this is always true: for a matrix A
the roots of µA are precisely the eigenvalues of A. This will be proved in the next section.

Recall that a polynomial f ∈ C[t] can be written as a product of linear factors

f = a(t − c1)n1 (t − c2)n2 · · · (t − ck)nk ,

where a, c1, ... , ck ∈ C, n1, ... , nk ∈ N.

This is the analogue in C[t] of the ‘prime factorisation’ property of Z mentioned at the beginning of
this section: the ‘primes’ of C[t] are degree 1 polynomials.

Definition 2.4.9. We say that the (nonzero) polynomials f1, ... , fp ∈ C[t] are relatively prime if there
is no common linear factor for all of the fi .

Example 2.4.10. The polynomials f = t2 + 1 and g = t2 − 1 are relatively prime. Indeed, we have

f = t2 + 1 = (t −
√
−1)(t +

√
−1), g = (t − 1)(t + 1),

so that there is no common linear factor of either.

However, the polynomials g and h = tn − 1 are not relatively prime as

h = tn − 1 = (t − 1)(t − ω)(t − ω2) · · · (t − ωn−1),

where ω = cos(2π/n) +
√
−1 sin(2π/n) ∈ C. Hence, the linear factor (t − 1) appears in both g and h.

We now give another basic algebraic property of the C-algebra C[t] whose proof you would usually see
in Math 113. As such, we will not prove this result here although the proof is exactly the same as the
corresponding result for Z (with the appropriate modifications): it involves the C[t]-analogue of the
‘Euclidean algorithm’ for Z.

Lemma 2.4.11. Let f1, ... , fp ∈ C[t] be a collection of relatively prime polynomials. Then, there exists
g1, ... , gp ∈ C[t] such that

f1g1 + ... + fpgp = 1 ∈ C[t].

Example 2.4.12. 1. The polynomials f = t2 + 1, g = t2 − 1 are relatively prime and

1

2
(t2 + 1)− 1

2
(t2 − 1) = 1.

2. The polynomials f = t2 + 1, g = t3 − 1 are relatively prime and

1

2
(t − 1)(t3 − 1)− 1

2
(t2 − t − 1)(t2 + 1) = 1.

49Why can’t we have 1− λ?
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