2.4 Algebra of polynomials

([1], p.136-142)
In this section we will give a brief introduction to the algebraic properties of the polynomial algebra $\mathbb{C}[t]$. In particular, we will see that $\mathbb{C}[t]$ admits many similarities to the algebraic properties of the set of integers \mathbb{Z}.

Remark 2.4.1. Let us first recall some of the algebraic properties of the set of integers \mathbb{Z}.

- division algorithm: given two integers $w, z \in \mathbb{Z}$, with $|w| \leq|z|$, there exist $a, r \in \mathbb{Z}$, with $0 \leq r<|w|$ such that

$$
z=a w+r .
$$

Moreover, the 'long division' process allows us to determine a, r. Here r is the 'remainder'.

- prime factorisation: for any $z \in \mathbb{Z}$ we can write

$$
z= \pm p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}
$$

where p_{i} are prime numbers. Moreover, this expression is essentially unique - it is unique up to ordering of the primes appearing.

- Euclidean algorithm: given integers $w, z \in \mathbb{Z}$ there exists $a, b \in \mathbb{Z}$ such that

$$
a w+b z=\operatorname{gcd}(w, z)
$$

where $\operatorname{gcd}(w, z)$ is the 'greatest common divisor' of w and z. In particular, if w, z share no common prime factors then we can write

$$
a w+b z=1
$$

The Euclidean algorithm is a process by which we can determine a, b.

We will now introduce the polynomial algebra in one variable. This is simply the set of all polynomials with complex coefficients and where we make explicit the \mathbb{C}-vector space structure and the multiplicative structure that this set naturally exhibits.
Definition 2.4.2. - The \mathbb{C}-algebra of polynomials in one variable, is the quadruple $(\mathbb{C}[t], \alpha, \sigma, \mu) 4^{43}$ where $(\mathbb{C}[t], \alpha, \sigma)$ is the \mathbb{C}-vector space of polynomials in t with \mathbb{C}-coefficients defined in Example 1.2.6 and

$$
\mu: \mathbb{C}[t] \times \mathbb{C}[t] \rightarrow \mathbb{C}[t] ;(f, g) \mapsto \mu(f, g)
$$

is the 'multiplication' function.
So, if

$$
f=a_{0}+a_{1} t+\ldots+a_{n} t^{n}, g=b_{0}+b_{1}+\ldots+b_{m} t^{m} \in \mathbb{C}[t]
$$

with $m \leq n$ say, then

$$
\mu(f, g)=c_{0}+c_{1} t+\ldots+c_{m+n} t^{m+n}
$$

where

$$
c_{i}=\sum_{\substack{j+k=i, 0 \leq j \leq n, 0 \leq k \leq m}} a_{j} b_{k} .
$$

[^0]We write

$$
\mu(f, g)=f \cdot g, \text { or simply } f g .
$$

μ is nothing more than the function defining the 'usual' multiplication of polynomials with \mathbb{C}-coefficients. In particular, for every $f, g \in \mathbb{C}[t]$ we have $f g=g f$.

We will write $\mathbb{C}[t]$ instead of the quadruple above when discussing $\mathbb{C}[t]$ as a \mathbb{C}-algebra. Note that the polynomial $1 \in \mathbb{C}[t]$ satisfies the property that $1 \cdot f=f \cdot 1=f$, for every $f \in \mathbb{C}[t]$.

- A representation of $\mathbb{C}[t]$ is a \mathbb{C}-linear morphism

$$
\rho: \mathbb{C}[t] \rightarrow \operatorname{End}_{\mathbb{C}}(V),
$$

for some finite dimensional \mathbb{C}-vector space V, such that

$$
(*) \quad \rho(f g)=\rho(f) \circ \rho(g), \quad \text { and } \rho(1)=\mathrm{id}_{V} \text {, }
$$

where we are considering composition of linear endomorphisms of V on the RHS of the first equality ${ }^{44}$

Remark 2.4.3. Suppose that

$$
\rho: \mathbb{C}[t] \rightarrow \operatorname{End}_{\mathbb{C}}(V),
$$

is a representation of $\mathbb{C}[t]$. Then, for any $f=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n} \in \mathbb{C}[t]$, we have

$$
\begin{aligned}
\rho(f)=\rho\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right) & =a_{0} \rho(1)+a_{1} \rho(t)+\ldots+a_{n} \rho\left(t^{n}\right), \text { as } \rho \text { is } \mathbb{C} \text {-linear, } \\
& =a_{0} \operatorname{id} v+a_{1} \rho(t)+a_{2} \rho(t)^{2}+\ldots+a_{n} \rho(t)^{n}, \text { by }(*),
\end{aligned}
$$

where we have written $\rho(t)^{k}=\rho(t) \circ \cdots \circ \rho(t)$, the k-fold composition of $\rho(t)$.
Hence, a represention of $\mathbb{C}[t]$ is the same thing as specifying a \mathbb{C}-linear endomorphism $\rho(t) \in$ $\operatorname{End}_{\mathbb{C}}(V)$: the multiplicative property of ρ then implies that $\rho(f)$ only depends on $\rho(t)$, for any $f \in \mathbb{C}[t]$.

Conversely, given a \mathbb{C}-linear endomorphism of $V, L \in \operatorname{End}_{\mathbb{C}}(V)$ say, then we can define a representation ρ_{L} of $\mathbb{C}[t]$ as follows: define

$$
\rho_{L}: \mathbb{C}[t] \rightarrow \operatorname{End}_{\mathbb{C}}(V) ; a_{0}+a_{1} t+\ldots+a_{n} t^{n} \mapsto a_{0} \operatorname{id}_{v}+a_{1} L+\ldots+a_{n} L^{n} \in \operatorname{End}_{\mathbb{C}}(V),
$$

where $L^{k}=L \circ \cdots \circ L$ and the addition and scalar multiplication on the RHS is occuring in End $\mathbb{C}(V)$.
We are going to study an endomorphism $L \in \operatorname{End}_{\mathbb{C}}(V)$ by studying the representation ρ_{L} of $\mathbb{C}[t]$ it defines. If $A \in \operatorname{Mat}_{n}(\mathbb{C})$ then we define ρ_{A} to be the representation defined by the endomorphism T_{A} of \mathbb{C}^{n}.

Suppose we are given a representation of $\mathbb{C}[t]$

$$
\rho: \mathbb{C}[t] \rightarrow \operatorname{End}_{\mathbb{C}}(V),
$$

and denote $n=\operatorname{dim}_{\mathbb{C}} V, L=\rho(t) \in \operatorname{End}_{\mathbb{C}}(V)$ (so that $\rho=\rho_{L}$) and suppose that $L \neq \operatorname{id}_{V}{ }_{4}^{45}$
We know that $\operatorname{End}_{\mathbb{C}}(V)$ is n^{2}-dimensional (since we know that $\operatorname{End}_{\mathbb{C}}(V)$ is isomorphic to $\operatorname{Mat}_{n}(\mathbb{C})$). Therefore, there must exist a nontrivial linear relation

$$
\lambda_{0} \operatorname{id}_{V}+\lambda_{1} L+\lambda_{2} L^{2}+\ldots+\lambda_{n^{2}} L^{n^{2}}=0_{\operatorname{End}(V)},
$$

[^1]with $\lambda_{i} \in \mathbb{C}$, since the set $\left\{\operatorname{id}_{V}, L, L^{2}, \ldots, L^{n^{2}}\right\}$ contains $n^{2}+1$ vectors. Thus, we have
\[

$$
\begin{aligned}
0_{\mathrm{End}_{\mathbb{C}}(V)} & =\lambda_{0} \mathrm{id}_{V}+\lambda_{1} L+\lambda_{2} L^{2}+\ldots+\lambda_{n^{2}} L^{n^{2}} \\
& =\lambda_{0} \rho(1)+\lambda_{1} \rho(t)+\ldots+\lambda_{n^{2}} \rho(t)^{n^{2}} \\
& =\rho\left(\lambda_{0}+\lambda_{1} t+\ldots+\lambda_{n^{2}} t^{n^{2}}\right),
\end{aligned}
$$
\]

so that the polynomial

$$
f=\lambda_{0}+\lambda_{1} t+\ldots+\lambda_{n^{2}} t^{n^{2}} \in \operatorname{ker} \rho .
$$

In particular, we have that $\operatorname{ker} \rho \neq\left\{0_{\mathbb{C}[t]}\right\}$. We will now make a detailed study of the kernel of representations of $\mathbb{C}[t]$.
Keep the same notation as above. We have just seen that ker ρ is nonzero. Let $m_{L} \in \operatorname{ker} \rho$ be a nonzero polynomial for which $\rho\left(m_{L}\right)=0_{E_{\text {nd }_{C}}(V)}$ and such that m_{L} has minimal degree ${ }^{46}$ We must have $\operatorname{deg} m_{L} \neq 0$, otherwise m_{L} is a constant polynomial, say $m_{L}=c \cdot 1$ with $c \in \mathbb{C}, c \neq 0$, and $\rho(c \cdot 1)=c \rho(1)=\operatorname{cid}_{V} \neq 0_{\operatorname{End}_{\mathbb{C}}(V)}$, contradicting that $m_{L} \in \operatorname{ker} \rho$. Hence, we can assume that $\operatorname{deg} m_{L}=m>0$.

Now, let $f \in \operatorname{ker} \rho$ be any other polynomial in the kernel of ρ. Denote $\operatorname{deg} f=p$. Thus, by our choice of m_{L} (it must have minimal degree) we see that $p \geq m$. Now use the division algorithm for polynomials 4^{47} to find polynomials $g, h \in \mathbb{C}[t]$ such that

$$
f=g m_{L}+h
$$

where $\operatorname{deg} h<m$.
Then, as $f \in \operatorname{ker} \rho$, we must have

$$
0_{\operatorname{End}_{\mathbb{C}}(V)}=\rho(f)=\rho\left(g m_{L}+h\right)=\rho(g) \rho\left(m_{L}\right)+\rho(h)=0_{\operatorname{End}_{\mathbb{C}}(V)}+\rho(h)
$$

so that $h \in \operatorname{ker} \rho$. If h were a nonzero polynomial then we have obtained an element in $\operatorname{ker} \rho$ that has strictly smaller degree that m_{L}, contradicting our choice of m_{L}. Hence, we must have that $h=0$ and $f=g m_{L}$. We say that m_{L} divides f.
We have just shown the following
Proposition 2.4.4. Suppose that

$$
\rho: \mathbb{C}[t] \rightarrow \operatorname{End}_{\mathbb{C}}(V)
$$

is a representation of $\mathbb{C}[t]$. Denote $L=\rho(t) \in \operatorname{End}_{\mathbb{C}}(V)$ and suppose that $m_{L} \in \operatorname{ker} \rho$ is nonzero and has minimal degree. Then, for any $f \in \operatorname{ker} \rho$ there exists $g \in \mathbb{C}[t]$ such that

$$
f=g m_{L} .
$$

Remark 2.4.5. Proposition 2.4.4 is stating the fact that the \mathbb{C}-algebra $\mathbb{C}[t]$ is a principal ideal domain, namely, every ideal in $\mathbb{C}[t]$ is generated by a single polynomial (ie, 'principal').

Definition 2.4.6. Let $L \in \operatorname{End}_{\mathbb{C}}(V)$ and consider the representation

$$
\rho_{L}: \mathbb{C}[t] \rightarrow \operatorname{End}_{\mathbb{C}}(V)
$$

defined above. We define the minimal polynomial of L, denoted $\mu_{L} \in \mathbb{C}[t]$, to be the unique nonzero polynomial $\mu_{L} \in \operatorname{ker} \rho$ that has minimal degree and has leading coefficient 1 : this means that

$$
\mu_{L}=a_{0}+a_{1} t+\ldots+a_{m-1} t^{m-1}+t^{m}
$$

[^2]This polynomial is well-defined (ie, it's unique) by Proposition 2.4.4. if $m_{L} \in \operatorname{ker} \rho$ has minimal degree and leading coefficient $a \in \mathbb{C}$, then we have $\mu_{L}=a^{-1} m_{L}$. If $f \in \operatorname{ker} \rho$ is any other polynomial of minimal degree and with leading coefficient 1 , then we must have $\operatorname{deg} f=\operatorname{deg} \mu_{L}$ and, by Proposition 2.4.4, we know that there exists $g \in \mathbb{C}[t]$ such that

$$
f=g \mu_{L} .
$$

Since $\operatorname{deg} f=\operatorname{deg}\left(g \mu_{L}\right)=\operatorname{deg} g+\operatorname{deg} \mu_{L}$ we must have that $\operatorname{deg} g=0$, so that $g=c \cdot 1 \in \mathbb{C}[t]$. As both f and μ_{L} have leading coefficient 1 , the only way this can hold is if $c=1$, so that $f=\mu_{L}$.

For $A \in \operatorname{Mat} t_{n}(\mathbb{C})$ we write μ_{A} instead of $\mu_{T_{A}}$ and call it the minimal polynomial of A.
Corollary 2.4.7. Let $L \in \operatorname{End}_{\mathbb{C}}(V), \mu_{L}$ be the minimal polynomial of L. For $f=a_{0}+a_{1} t+\ldots+a_{k} t^{k} \in$ $\mathbb{C}[t]$ we denote

$$
f(L)=\rho_{L}(f)=a_{0} \operatorname{id}_{V}+a_{1} L+\ldots+a_{k} L^{k} \in \operatorname{End}_{\mathbb{C}}(V)
$$

If $f(L)=0_{\operatorname{End}_{\mathbb{C}}(V)}$ then $f=\mu_{L} g$, for some $g \in \mathbb{C}[t]$.
Proof: This is simply a restatement of Proposition 2.4.4.
Example 2.4.8. 1. Consider the endomorphism T_{A} of \mathbb{C}^{3} defined by the matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & -1 \\
0 & 2 & -1
\end{array}\right]
$$

Then, you can check that the following relation holds

$$
-A^{3}+2 A^{2}-A+2 I_{3}=0_{3} .
$$

Consider the representation ρ_{A} defined by A. Then, since the above relation holds we must have

$$
f=-\lambda^{3}+2 \lambda^{2}-\lambda+2 \in \operatorname{ker} \rho_{A} .
$$

You can check that we can decompose f as

$$
f=(2-\lambda)(\lambda-\sqrt{-1})(\lambda+\sqrt{-1}) .
$$

Hence, we must have that μ_{A} is one of the following polynomials ${ }^{48}$

$$
(\lambda-\sqrt{-1})(\lambda+\sqrt{-1}),(2-\lambda)(\lambda-\sqrt{-1}),(2-\lambda)(\lambda+\sqrt{-1}), f
$$

In fact, we have $\mu_{A}=f$.
You may have noticed that $f=\chi_{A}(\lambda)$ - this is the Cayley-Hamilton Theorem (to be proved later and in homework): if $A \in \operatorname{Mat} t_{n}(\mathbb{C})$ then $\chi_{A}(\lambda) \in \operatorname{ker} \rho_{A}$, so that $\chi_{A}(A)=0$ (using the above notation from Corollary 2.4.7).

- Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

You can check that we have the relation

$$
-A^{3}+3 A^{2}-3 A+I_{3}=0_{3}
$$

so that

$$
f=-\lambda^{3}+3 \lambda^{2}-3 \lambda+1=(1-\lambda)^{3} \in \operatorname{ker} \rho_{A} .
$$

[^3]Now, we see that we must have μ_{A} being one of the following polynomials 49

$$
(1-\lambda)^{2}, f
$$

It can be checked that

$$
A^{2}-2 A+I_{3}=0_{3}
$$

so that

$$
\mu_{A}=(1-\lambda)^{2}
$$

You will notice that

$$
\chi_{A}(\lambda)=(1-\lambda)^{3} .
$$

In both of these examples you can see that the roots of the minimal poynomial of A are precisely the eigenvalues of A (possibly with some repeated multiplicity). In fact, this is always true: for a matrix A the roots of μ_{A} are precisely the eigenvalues of A. This will be proved in the next section.

Recall that a polynomial $f \in \mathbb{C}[t]$ can be written as a product of linear factors

$$
f=a\left(t-c_{1}\right)^{n_{1}}\left(t-c_{2}\right)^{n_{2}} \cdots\left(t-c_{k}\right)^{n_{k}},
$$

where $a, c_{1}, \ldots, c_{k} \in \mathbb{C}, n_{1}, \ldots, n_{k} \in \mathbb{N}$.
This is the analogue in $\mathbb{C}[t]$ of the 'prime factorisation' property of \mathbb{Z} mentioned at the beginning of this section: the 'primes' of $\mathbb{C}[t]$ are degree 1 polynomials.

Definition 2.4.9. We say that the (nonzero) polynomials $f_{1}, \ldots, f_{p} \in \mathbb{C}[t]$ are relatively prime if there is no common linear factor for all of the f_{i}.

Example 2.4.10. The polynomials $f=t^{2}+1$ and $g=t^{2}-1$ are relatively prime. Indeed, we have

$$
f=t^{2}+1=(t-\sqrt{-1})(t+\sqrt{-1}), g=(t-1)(t+1)
$$

so that there is no common linear factor of either.
However, the polynomials g and $h=t^{n}-1$ are not relatively prime as

$$
h=t^{n}-1=(t-1)(t-\omega)\left(t-\omega^{2}\right) \cdots\left(t-\omega^{n-1}\right)
$$

where $\omega=\cos (2 \pi / n)+\sqrt{-1} \sin (2 \pi / n) \in \mathbb{C}$. Hence, the linear factor $(t-1)$ appears in both g and h.
We now give another basic algebraic property of the \mathbb{C}-algebra $\mathbb{C}[t]$ whose proof you would usually see in Math 113. As such, we will not prove this result here although the proof is exactly the same as the corresponding result for \mathbb{Z} (with the appropriate modifications): it involves the $\mathbb{C}[t]$-analogue of the 'Euclidean algorithm' for \mathbb{Z}.
Lemma 2.4.11. Let $f_{1}, \ldots, f_{p} \in \mathbb{C}[t]$ be a collection of relatively prime polynomials. Then, there exists $g_{1}, \ldots, g_{p} \in \mathbb{C}[t]$ such that

$$
f_{1} g_{1}+\ldots+f_{p} g_{p}=1 \in \mathbb{C}[t]
$$

Example 2.4.12. 1. The polynomials $f=t^{2}+1, g=t^{2}-1$ are relatively prime and

$$
\frac{1}{2}\left(t^{2}+1\right)-\frac{1}{2}\left(t^{2}-1\right)=1
$$

2. The polynomials $f=t^{2}+1, g=t^{3}-1$ are relatively prime and

$$
\frac{1}{2}(t-1)\left(t^{3}-1\right)-\frac{1}{2}\left(t^{2}-t-1\right)\left(t^{2}+1\right)=1
$$

[^4]
[^0]: ${ }^{43}$ This is a particular example of a more general algebraic object called a \mathbb{C}-algebra: a \mathbb{C}-algebra is a set A that is a \mathbb{C}-vector space and for which there is a well-defined commutative multiplication map that interacts with addition in a nice way - for example, distributivity, associativity hold. One usually also requires that a \mathbb{C}-algebra A has a multiplicative identity, namely an element e such that $f \cdot e=e \cdot f=f$, for every $f \in A$. It is common to denote this element by 1 .

[^1]: ${ }^{44}$ This means that ρ is a morphism of (unital) \mathbb{C}-algebras.
 ${ }^{45}$ If $L=\mathrm{id} v$ then we call the representation ρ_{id}^{V} the trivial representation. In this case, we have that

 $$
 \operatorname{im} \rho=\left\{c \cdot \operatorname{id}_{V} \in \operatorname{End}_{\mathbb{C}}(V) \mid c \in \mathbb{C}\right\} \subset \operatorname{End}_{\mathbb{C}}(V)
 $$

[^2]: ${ }^{46}$ Recall that the degree, $\operatorname{deg} f$, of a polynomial

 $$
 f=a_{0}+a_{1} t+\ldots+a_{k} t^{k} \in \mathbb{C}[t]
 $$

 is defined to be $\operatorname{deg} f=k$. We have the property that

 $$
 \operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g
 $$

 ${ }^{47}$ If you have not seen this before, don't worry, as I will cover this in class.

[^3]: ${ }^{48}$ Why can't we have μ_{A} be one of $(2-\lambda),(\lambda-\sqrt{-1}),(\lambda+\sqrt{-1}) ?$

[^4]: ${ }^{49}$ Why can't we have $1-\lambda$?

