is a block diagonal matrix, with $A_{i} \in \operatorname{Mat}_{\operatorname{dim}} U_{i}(\mathbb{C})$. In fact, we can assume that $\mathcal{B}=\mathcal{B}_{1} \cup \ldots \cup \mathcal{B}_{k}$, with \mathcal{B}_{i} an ordered basis of U_{i}, and that

$$
A_{i}=\left[f_{U_{i}}\right]_{\mathcal{B}_{i}},
$$

where $f_{U_{i}}: U_{i} \rightarrow U_{i}$ is the restriction of f to $U_{i}{ }^{40}$

2.3 Nilpotent endomorphisms

([1], p.133-136)
In this section we will consider those linear endomorphisms $f \in \operatorname{End}_{\mathbb{C}}(V)$ whose only eigenvalue is 0 . This necessarily implies that

$$
\chi_{f}(\lambda)=\lambda^{n} .
$$

We will see that for such endomorphisms there is a (ordered) basis \mathcal{B} of V such that $[f]_{\mathcal{B}}$ is 'nearly diagonal'.

Definition 2.3.1. An endomorphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ is called nilpotent if there exists $r \in \mathbb{N}$ such that $f^{r}=0_{\text {Endc }(V)}$, so that $f^{r}(v)=0_{V}$, for every $v \in V$.
A matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$ is called nilpotent if the endomorphism $T_{A} \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$ is nilpotent.
Lemma 2.3.2. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be a nilpotent endomorphism. Then, the only eigenvalue of f is $\lambda=0$ so that $\chi_{f}(\lambda)=\lambda^{\operatorname{dim} V}$.

Proof: Suppose that $v \in V$ is an eigenvector of f with associated eigenvalue λ. Therefore, we have $v \neq 0$ and $f(v)=\lambda v$. Suppose that $f^{r}=0$. Then,

$$
0=f^{r}(v)=f \circ \cdots \circ f(v)=f \circ \cdots \circ f(\lambda v)=\lambda^{r} v .
$$

Thus, as $v \neq 0$ we must have $\lambda^{r}=0$ (Proposition 1.2.5) implying that $\lambda=0$.
For a nilpotent endomorphism f (resp. matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$) we define the exponent of f (resp. of A), denoted $\eta(f)$ (resp. $\eta(A)$), to be the smallest $r \in \mathbb{N}$ such that $f^{r}=0$ (resp. $A^{r}=0$). Therefore, if $\eta(f)=r$ then there exists $v \in V$ such that $f^{r-1}(v) \neq 0 v$.
For $v \in V$ we define the height of v (with respect to f), denoted $\mathrm{ht}(v)$, to be the smallest integer m such that $f^{m}(v)=0_{V}$, while $f^{m-1}(v) \neq 0_{V}$. Hence, for every $v \in V$ we have ht $(v) \leq \eta(f)$.
Define $H_{k}=\{v \in V \mid h t(v) \leq k\}$, the set of vectors that have height no greater than k; this is a subspace of $V \sqrt{41}$

Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be a nilpotent endomorphism. Then, we obviously have $H_{\eta(f)}=V, H_{0}=\left\{0_{V}\right\}$ and a sequence of subspaces

$$
\left\{0_{V}\right\}=H_{0} \subset H_{1} \subset \cdots \subset H_{\eta(f)-1} \subset H_{\eta(f)}=V .
$$

Let us denote

$$
\operatorname{dim} H_{i}=m_{i},
$$

so that we have

$$
0=m_{0} \leq m_{1} \leq \ldots \leq m_{\eta(f)-1} \leq m_{\eta(f)}=\operatorname{dim} V .
$$

We are going to construct a basis of V : for ease of notation we let $\eta(f)=k$. Assume that $k \neq 1$, so that f is not the zero endomorphism of V.

1. Let G_{k} be a complementary subspace of H_{k-1} so that

$$
H_{k}=H_{k-1} \oplus G_{k},
$$

and let $\left(z_{1}, \ldots, z_{p_{1}}\right)$ be an ordered basis of G_{k}. Then, since $z_{j} \in H_{k} \backslash H_{k-1}$ we have that $f^{k-1}\left(z_{j}\right) \neq$ 0_{v}, for each j.

[^0]2. Consider the vectors $f\left(z_{1}\right), f\left(z_{2}\right), \ldots, f\left(z_{p_{1}}\right)$. We have, for each j,
$$
f^{k-1}\left(f\left(z_{j}\right)\right)=f^{k}\left(z_{j}\right)=0 v, \quad \text { since } z_{j} \in H_{k}
$$
so that $f\left(z_{j}\right) \in H_{k-1}$, for each j. In addition, we can't have $f\left(z_{j}\right) \in H_{k-2}$, else
$$
0_{v}=f^{k-2}\left(f\left(z_{j}\right)\right)=f^{k-1}\left(z_{j}\right)
$$
implying that $z_{j} \in H_{k-1}$.
Moreover, the set $S_{1}=\left\{f\left(z_{1}\right), f\left(z_{2}\right), \ldots, f\left(z_{p_{1}}\right)\right\} \subset H_{k-1} \backslash H_{k-2}$ is linearly independent: indeed, suppose that there is a linear relation
$$
c_{1} f\left(z_{1}\right)+\ldots+c_{p_{1}} f\left(z_{p_{1}}\right)=0 v .
$$
with $c_{1}, \ldots, c_{p_{1}} \in \mathbb{C}$. Then, since f is a linear morphism we obtain
$$
f\left(c_{1} z_{1}+\ldots+c_{p_{1}} z_{p_{1}}\right)=0_{v}
$$
so that $c_{1} z_{1}+\ldots+c_{p_{1}} z_{p_{1}} \in H_{1} \subset H_{k-1}$.
Hence, we have $c_{1} z_{1}+\ldots+c_{p_{1}} z_{p_{1}} \in H_{k-1} \cap G_{k}=\left\{0_{v}\right\}$, so that $c_{1} z_{1}+\ldots+c_{p_{1}} z_{p_{1}}=0_{v}$. Hence, because $\left\{z_{1}, \ldots, z_{p_{1}}\right\}$ is linearly independent we must have $c_{1}=\ldots=c_{p_{1}}=0 \in \mathbb{C}$. Thus, S_{1} is linearly independent.
3. $\operatorname{span}_{\mathbb{C}} S_{1} \cap H_{k-2}=\left\{0_{V}\right\}$: otherwise, we could find a linear combination
$$
c_{1} f\left(z_{1}\right)+\ldots+c_{p_{1}} f\left(z_{p_{1}}\right) \in H_{k-2}
$$
with some $c_{i} \neq 0$. Then, we would have
$$
0_{V}=f^{k-2}\left(c_{1} f\left(z_{1}\right)+\ldots+c_{p_{1}} f\left(z_{p_{1}}\right)\right)=f^{k-1}\left(c_{1} z_{1}+\ldots+c_{p_{1}} z_{p_{1}}\right)
$$
so that $c_{1} z_{1}+\ldots+c_{p_{1}} z_{p_{1}} \in H_{k-1} \cap G_{k}=\left\{0_{v}\right\}$ which gives all $c_{j}=0$, by linear independence of the z_{j} 's. But this contradicts that some c_{i} is nonzero so that our initial assumption that $\operatorname{span}_{\mathbb{C}} S_{1} \cap H_{k-2} \neq\left\{0_{v}\right\}$ is false.

Hence, we have

$$
\operatorname{span}_{\mathbb{C}} S_{1}+H_{k-2}=\operatorname{span}_{\mathbb{C}} S_{1} \oplus H_{k-2} \subset H_{k-1}
$$

In particular, we see that $m_{k}-m_{k-1} \leq m_{k-1}-m_{k-2}$.
4. Let G_{k-1} be a complementary subspace of $H_{k-2} \oplus \operatorname{span}_{\mathbb{C}} S_{1}$ in H_{k-1}, so that

$$
H_{k-1}=H_{k-2} \oplus \operatorname{span}_{\mathbb{C}} S_{1} \oplus G_{k-1}
$$

and let $\left(z_{p_{1}+1}, \ldots, z_{p_{2}}\right)$ be an ordered basis of G_{k-1}.
5. Consider the subset $S_{2}=\left\{f^{2}\left(z_{1}\right), \ldots, f^{2}\left(z_{p_{1}}\right), f\left(z_{p_{1}+1}\right), \ldots, f\left(z_{p_{2}}\right)\right\}$. Then, as in $2,3,4$ above we have that

$$
S_{2} \subset H_{k-2} \backslash H_{k-3}
$$

S_{2} is linearly independent and $\operatorname{span}_{\mathbb{C}} S_{2} \cap H_{k-3}=\left\{0_{v}\right\}$. Therefore, we have

$$
\operatorname{span}_{\mathbb{C}} S_{2}+H_{k-3}=\operatorname{span}_{\mathbb{C}} S_{2} \oplus H_{k-3} \subset H_{k-2}
$$

so that $m_{k-1}-m_{k-2} \leq m_{k-2}-m_{k-3}$.
6. Let G_{k-2} be a complementary subspace of $\operatorname{span}_{\mathbb{C}} S_{2} \oplus H_{k-3}$ in H_{k-2}, so that

$$
H_{k-2}=H_{k-3} \oplus \operatorname{span}_{\mathbb{C}} S_{2} \oplus G_{k-2}
$$

and $\left(z_{p_{2}+1}, \ldots, z_{p_{3}}\right)$ be an ordered basis of G_{k-2}.
7. Consider the subset $S_{3}=\left\{f^{3}\left(z_{1}\right), \ldots, f^{3}\left(z_{p_{1}}\right), f^{2}\left(z_{p_{1}+1}\right), \ldots, f^{2}\left(z_{p_{2}}\right), f\left(z_{p_{2}+1}\right), \ldots, f\left(z_{p_{3}}\right)\right\}$. Again, it can be shown that

$$
S_{3} \subset H_{k-3} \backslash H_{k-4}
$$

S_{3} is linearly independent and $\operatorname{span}_{\mathbb{C}} S_{3} \cap H_{k-4}=\left\{0_{V}\right\}$. We obtain $m_{k-2}-m_{k-3} \leq m_{k-3}-m_{k-4}$.
8. Proceed in this fashion to obtain a basis of V. We denote the vectors we have obtained in a table

$$
\begin{array}{cccccccc}
z_{1}, & \ldots & z_{p_{1}}, & & & & & \tag{2.3.1}\\
f\left(z_{1}\right), & \ldots & f\left(z_{p_{1}}\right), & z_{p_{1}+1}, & \ldots & z_{p_{2}}, & & \\
& \vdots & & & \vdots & & & \\
f^{k-1}\left(z_{1}\right), & \ldots & f^{k-1}\left(z_{p_{1}}\right), & f^{k-2}\left(z_{p_{1}+1}\right), & \ldots & f^{k-2}\left(z_{p_{2}}\right), & \ldots & z_{p_{k-1}+1},
\end{array} \ldots \quad z_{p_{k}},
$$

where the vectors in the $i^{\text {th }}$ row have height $k-i+1$, so that vectors in the last row have height 1.

Also, note that each column determines an f-invariant subspace of V, namely the span of the vectors in the column.

Lemma 2.3.3. Let W_{i} denote the span of the $i^{\text {th }}$ column of vectors in the table above. Set $p_{0}=1$. Then,

$$
\operatorname{dim} W_{i}=k-j, \quad \text { if } p_{j}+1 \leq i \leq p_{j+1}
$$

Proof: Suppose that $p_{j}+1 \leq i \leq p_{j+1}$. Then, we have

$$
W_{i}=\operatorname{span}_{\mathbb{C}}\left\{z_{i}, f\left(z_{i}\right), \ldots, f^{k-j-1}\left(z_{i}\right)\right\}
$$

Suppose that there exists a linear relation

$$
c_{0} z_{i}+c_{1} f\left(z_{i}\right)+\ldots+c_{k-j-1} f^{k-j-1}\left(z_{i}\right)=0_{v}
$$

Then, applying f^{k-j-1} to both sides of this equation gives

$$
c_{0} f^{k-j-1}\left(z_{i}\right)+c_{1} f^{k-j}\left(z_{i}\right)+\ldots+c_{k-j-1} f^{2 k-2 j-2}\left(z_{i}\right)=0_{V}
$$

Now, as z_{i} has height $k-j$ (this follows because the vector at the top of the $i^{t h}$ column is in the $(k-j)^{t h}$ row, therefore as height $(k-j)$) the previous equation gives

$$
c_{0} f^{k-j-1}\left(z_{i}\right)+0_{V}+\ldots+0_{v}=0_{V}
$$

so that $c_{0}=0$, since $f^{k-j-1}\left(z_{i}\right) \neq 0_{V}$. Thus, we are left with a linear relation

$$
c_{1} f\left(z_{i}\right)+\ldots+c_{k-j-1} f^{k-j-1}\left(z_{i}\right)=0 v
$$

and applying f^{j-k-2} to this equation will give $c_{1}=0$, since $f\left(z_{i}\right)$ has height $k-j-1$. Proceeding in this manner we find that $c_{0}=c_{1}=\ldots c_{j-k-1}=0$ and the result follows.

Thus, the information recorded in (2.3.1) and Lemma 2.3.3 proves the following
Theorem 2.3.4. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be a nilpotent endomorphism with exponent $\eta(f)=k$. Then, there exists integers $d_{1}, \ldots, d_{k} \in \mathbb{Z}_{\geq 0}$ so that

$$
k d_{1}+(k-1) d_{2}+\ldots+2 d_{k-1}+1 d_{k}=\operatorname{dim} V
$$

and f-invariant subspaces

$$
W_{1}^{(k)}, \ldots, W_{d_{1}}^{(k)}, W_{1}^{(k-1)}, \ldots, W_{d_{2}}^{(k-1)}, \ldots, W_{1}^{(1)}, \ldots, W_{d_{k}}^{(1)} \subset V
$$

with $\operatorname{dim}_{\mathbb{C}} W_{i}^{(j)}=j$, such that

$$
V=W_{1}^{(k)} \oplus \cdots \oplus W_{d_{1}}^{(k)} \oplus W_{1}^{(k-1)} \oplus \cdots \oplus W_{d_{2}}^{(k-1)} \oplus \cdots \oplus W_{1}^{(1)} \oplus \cdots \oplus W_{d_{k}}^{(1)}
$$

Moreover, there is an ordered basis $\mathcal{B}_{i}^{(j)}$ of $W_{i}^{(j)}$ such that

$$
\left[f_{\mid W_{i}^{(j)}}\right]_{\mathcal{B}_{i}^{(j)}}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & 0 & 0
\end{array}\right]
$$

We call such matrices 0-Jordan blocks. Hence, we can write the matrix of f relative to $\mathcal{B}=\bigcup_{i, j} \mathcal{B}_{i}^{(j)}$ as a block diagonal matrix for which all of the blocks are 0-Jordan blocks and are of nonincreasing size as we move from left to right.

Moreover, the geometric multiplicity of 0 as an eigenvalue of f is equal to the number of blocks of the matrix $[f]_{\mathcal{B}}$ and this number equals the sum

$$
d_{1}+d_{2}+\ldots+d_{k}=\operatorname{dim} E_{0}
$$

Proof: Everything except for the final statement follows from the construction of the basis \mathcal{B} made prior to the Theorem.

The last statement is shown as follows: we have that $E_{0}=H_{1}$, so that the 0 -eigenspace of f consists of the set of all height 1 vectors in $V{ }^{42}$ Moreover, the construction of the basis \mathcal{B} shows that a basis of H_{1} is given by the bottom row of the table (2.3.1) and that this basis has the size specified.
Corollary 2.3.5. Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$ be a nilpotent matrix. Then, A is similar to a block diagonal matrix for which all of the blocks are 0-Jordan blocks.

Proof: Consider the endomorphism $T_{A} \in$ End $_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$ and apply Theorem 2.3.4. Then, we have a basis \mathcal{B} such that $\left[T_{A}\right]_{\mathcal{B}}$ takes the desired form. Now, use Corollary 1.7 .7 and $\left[T_{A}\right]_{\mathcal{S}^{(n)}}=A$ to deduce the result.

Definition 2.3.6. Let $n \in \mathbb{N}$. A partition of n is a decomposition of n into a sum of positive integers. If we have a partition of n

$$
n=n_{1}+\ldots+n_{l}, \text { with } n_{1}, \ldots, n_{l} \in \mathbb{N}, \quad n_{1} \leq n_{2} \leq \ldots \leq n_{l}
$$

then we denote this partition

$$
1^{r_{1}} 2^{r_{2}} \cdots n_{l}^{r_{n_{1}}}
$$

where we are assuming that 1 appears r_{1} times in the partition of $n, 2$ appears r_{2} times etc.
For example, consider the partition of 13

$$
13=1+1+1+2+4+4
$$

then we denote this partition

$$
1^{3} 2^{1} 4^{2}
$$

[^1]For a nilpotent endomorphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ we define its nilpotent class to be the set of all nilpotent endomorphisms g of V for which there is some ordered basis $\mathcal{C} \subset V$ with

$$
[f]_{\mathcal{B}}=[g]_{\mathcal{C}},
$$

where \mathcal{B} is the basis described in Theorem 2.3.4
We define the partition associated to the nilpotent class of f, denoted $\pi(A)$, to be the partition $1^{d_{k}} 2^{d_{k-1}} \cdots k^{d_{1}}$ obtained in Theorem 2.3.4 We will also call this partition the partition associated to f.

For a matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$ we define its nilpotent class (or similarity class) to be the nilpotent class of the endomorphism T_{A}. We define the partition associated to A to be the partition associated to T_{A}.

Theorem 2.3.7 (Classification of nilpotent endomorphisms). Let $f, g \in \operatorname{End}_{\mathbb{C}}(V)$ be nilpotent endomorphisms of V. Then, f and g lie in the same nilpotent class if and only if the partitions associated to f and g coincide.

Corollary 2.3.8. Let $A, B \in \operatorname{Mat}_{n}(\mathbb{C})$ be nilpotent matrices. Then, f and g are similar if and only if the partitions associated to A and B coincide.

Proof: We simply note that if T_{A} and T_{B} are in the same nilpotent class then there are bases $\mathcal{B}, \mathcal{C} \subset \mathbb{C}^{n}$ such that

$$
\left[T_{A}\right]_{\mathcal{B}}=\left[T_{B}\right]_{C} .
$$

Hence, if $P_{1}=P_{\mathcal{S}^{(n) \leftarrow \mathcal{B}}}, P_{2}=P_{\mathcal{S}^{(n)} \leftarrow \mathcal{C}}$ then we must have

$$
P_{1}^{-1} A P_{1}=P_{2}^{-1} B P_{2}
$$

so that

$$
P_{2} P_{1}^{-1} A P_{1} P_{2}^{-1}=B
$$

Now, since $P_{2} P_{1}^{-1}=\left(P_{1} P_{2}^{-1}\right)^{-1}$ we have that A and B are similar precisely when T_{A} and T_{B} are in the same nilpotent class. The result follows.

2.3.1 Determining partitions associated to nilpotent endomorphisms

Given a nilpotent endomorphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ (or nilpotent matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$) how can we determine the partition associated to f (resp. A)?
Once we have chosen an ordered basis \mathcal{B} of V we can consider the nilpotent matrix $[f]_{\mathcal{B}}$. Then, the problem of determining the partition associated to f reduces to determining the partition associated to $[f]_{\mathcal{B}}$. As such, we need only determine the partition associated to a nilpotent matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$.

1. Determine the exponent of $A, \eta(A)$, by considering the products A^{2}, A^{3}, etc. The first r such that $A^{r}=0$ is the exponent of A.
2. We can determine the subspaces H_{i} since

$$
H_{i}=\left\{\underline{x} \in \mathbb{C}^{n} \mid \operatorname{ht}(\underline{x}) \leq i\right\}=\operatorname{ker} T_{A^{i}} .
$$

In particular, we have that $\operatorname{dim} H_{i}$ is the number of non-pivot columns of A^{i}.
3. $d_{1}=\operatorname{dim} H_{\eta(A)}-\operatorname{dim} H_{\eta(A)-1}$.
4. $d_{2}=\operatorname{dim} H_{\eta(A)-1}-\operatorname{dim} H_{\eta(A)-2}-d_{1}$.
5. $d_{3}=\operatorname{dim} H_{\eta(A)-2}-\operatorname{dim} H_{\eta(A)-3}-d_{2}$.
6. Thus, we can see that $d_{i}=\operatorname{dim} H_{\eta(A)-(i-1)}-\operatorname{dim} H_{\eta(A)-i}-d_{i-1}$, for $1 \leq i \leq \eta(A)$.

Hence, the partition associated to A is

$$
\pi(A): 1^{d_{\eta(A)}} 2^{d_{\eta(A)-1}} \cdots \eta(A)^{d_{1}}
$$

Example 2.3.9. Consider the endomorphism

$$
f: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5} ;\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{2} \\
0 \\
x_{4} \\
0 \\
0
\end{array}\right] .
$$

Then, with respect to the standard basis $\mathcal{S}^{(5)}$ we have that

$$
A \stackrel{\text { def }}{=}[f]_{\mathcal{S}^{(5)}}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

You can check that $A^{2}=0$ so that $\eta(A)=2$. Then,

- $d_{1}=\operatorname{dim} H_{2}-\operatorname{dim} H_{1}=5-3=2$, since $H_{1}=\operatorname{ker} T_{A}$ has dimension 3 (there are 3 non-pivot columns of A).
- $d_{2}=\operatorname{dim} H_{1}-\operatorname{dim} H_{0}-d_{1}=3-0-2=1$, since $H_{0}=\{0\}$.

Hence, the partition associated to A is

$$
\pi(A): 12^{2} \leftrightarrow 1+2+2=5
$$

there are three 0-Jordan blocks - two of size 2 and one of size 1 .
You can check that the following matrix B is nilpotent

$$
B=\left[\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1
\end{array}\right]
$$

and that the partition associated to B is

$$
\pi(B): 1^{3} 2 \leftrightarrow 1+1+1+2=5
$$

- We have $B^{2}=0$ so that $\eta(B)=2$.
- $d_{1}=\operatorname{dim} H_{2}-\operatorname{dim} H_{1}=5-4=1$, since $H_{1}=\operatorname{ker} T_{B}$ has dimension 4 (there are 4 non-pivot columns of B).
- $d_{2}=\operatorname{dim} H_{1}-\operatorname{dim} H_{0}-d_{1}=4-0-1=3$, since $H_{0}=\{0\}$.

Thus, A and B are not similar, by Corollary 2.3.8. However, since the matrix

$$
C=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

has associated partition

$$
\pi(C): 1^{3} 2,
$$

then we see that B is similar to C, by Corollary 2.3.8
Moreover, there are four 0 -Jordan blocks of B (and C) - one of size 2 and three of size 1 .

[^0]: ${ }^{40}$ This is a well-defined function since U_{i} is f-invariant.
 ${ }^{41}$ Exercise: show this.

[^1]: ${ }^{42}$ Check this.

