2 Jordan Canonical Form

In this chapter we are going to classify all \mathbb{C} -linear endomorphisms of a *n*-dimensional \mathbb{C} -vector space V. This means that we are going to be primarily studying $\operatorname{End}_{\mathbb{C}}(V)$, the \mathbb{C} -vector space of \mathbb{C} -endomorphisms of V (up to conjugation). For those of you that know about such things, we are going to identify the orbits of the group $\operatorname{GL}_{\mathbb{C}}(V)$ acting on the set $\operatorname{End}_{\mathbb{C}}(V)$ by conjugation. Since there exists an isomorphism

$$\operatorname{End}_{\mathbb{C}}(V) o Mat_n(\mathbb{C}) \ ; \ f \mapsto [f]_{\mathcal{B}},$$

(once we choose an ordered basis \mathcal{B} of V) this is the same thing as trying to classify all $n \times n$ matrices with \mathbb{C} -entries up to similarity.

You may recall that given any square matrix A with \mathbb{C} -entries we can ask whether A is *diagonalisable* and that there exists matrices that are not diagonalisable. For example, the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
,

is not diagonalisable.³⁶

In fact, this example is typical, in the following sense: let $A \in Mat_2(\mathbb{C})$. Then, A is similar to one of the following types of matrices

$$egin{bmatrix} a & 0 \ 0 & b \end{bmatrix}$$
, a, $b\in\mathbb{C}$, or $egin{bmatrix} c & 1 \ 0 & c \end{bmatrix}$, $c\in\mathbb{C}$.

In general, we have the following

Theorem (Jordan Canonical Form). Let $A \in Mat_n(\mathbb{C})$. Then, there exists $P \in GL_n(\mathbb{C})$ such that

$$P^{-1}AP = egin{bmatrix} J_1 & 0 & \cdots & 0 \ 0 & J_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & \cdots & \cdots & J_k \end{bmatrix},$$

where, for each i = 1, ..., k, we have an $n_i \times n_i$ matrix

$$J_{i} = \begin{bmatrix} \lambda_{i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{i} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_{i} & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_{i} \end{bmatrix}, \quad \lambda_{i} \in \mathbb{C}.$$

Hence, every $n \times n$ matrix with \mathbb{C} -entries is similar to an *almost-diagonal* matrix.

We assume throughout this chapter that we are working with \mathbb{C} -vector spaces and \mathbb{C} -linear morphisms. Furthermore, we assume that all matrices have \mathbb{C} -entries.

2.1 Eigenthings

([1], p.108-113)

This section should be a refresher on the notions of *eigenvectors, eigenvalues* and *eigenspaces* of an $n \times n$ matrix A (equivalently, of a \mathbb{C} -linear morphism $f \in \text{End}_{\mathbb{C}}(V)$).

Definition 2.1.1. Let $f \in \text{End}_{\mathbb{C}}(V)$ be a \mathbb{C} -linear endomorphism of the \mathbb{C} -vector space V. Let $\lambda \in \mathbb{C}$.

³⁶Try and recall why this was true.

- The λ -eigenspace of f is the set

$$E_{\lambda} \stackrel{\text{def}}{=} \{ v \in V \mid f(v) = \lambda v \}.$$

This is a vector subspace of V (possibly the zero subspace).

If $E_{\lambda} \neq \{0_V\}$ and $v \in E_{\lambda}$ is a <u>nonzero</u> vector, then we say that v is an *eigenvector of f with* associated eigenvalue λ .

- If A is an $n \times n$ matrix with \mathbb{C} -entries then we define the λ -eigenspace of A to be the λ -eigenspace of the linear morphism T_A . Similarly, we say that $v \in \mathbb{C}^n$ is an eigenvector of A with associated eigenvalue λ if v is an eigenvector of T_A with associated eigenvalue λ .

Lemma 2.1.2. Let $f \in \text{End}_{\mathbb{C}}(V)$, $v_1, ..., v_k \in V$ be eigenvectors of f with associated eigenvalues $\lambda_1, ..., \lambda_k \in \mathbb{C}$. Assume that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Then, $\{v_1, ..., v_k\}$ is linearly independent.

Proof: Let $S = \{v_1, ..., v_k\}$. Let $T \subset S$ denote a maximal linearly independent subset (we know that a linearly independent subset exists, just take $\{v_1\}$; then choose a linearly independent subset of largest size). We want to show that T = S. Suppose that $T \neq S$, we aim to provide a contradiction. As $T \neq S$, then we can assume, without loss of generality, that $v_k \notin T$.

We are going to show that $v_k \notin \text{span}_{\mathbb{C}} T$, and then use Corollary 1.3.5 to deduce that $T \cup \{v_k\}$ is linearly independent, contradicting the maximality of T.

Suppose that $v_k \in \operatorname{span}_{\mathbb{C}} T$, we aim to provide a contradiction. So, as $v_k \in \operatorname{span}_{\mathbb{C}} T$ then

$$v_k = c_1 v_{i_1} + \ldots + c_s v_{i_s}$$

where $c_1, \ldots, c_s \in \mathbb{C}$, $v_{i_1}, \ldots, v_{i_s} \in T$. Apply f to both sides of this equation to obtain

$$\lambda_k v_k = c_1 \lambda_{i_1} v_{i_1} + \ldots + c_s \lambda_{i_s} v_{i_s}.$$

Taking this equation away from λ_k times the previous equation gives

$$0_V = c_1(\lambda_{i_1} - \lambda_k)v_{i_1} + \ldots + c_s(\lambda_{i_s} - \lambda_k)v_{i_s}$$

This is a linear relation among vectors in T so must be the trivial linear relation since T is linearly independent. Hence, we have, for each j = 1, ..., s,

$$c_i(\lambda_{i_i}-\lambda_k)=0,$$

and as $v_k \notin T$ (by assumption) we have $\lambda_{i_j} \neq \lambda_k$. Hence, we must have that $c_j = 0$, for every j. Then, we have $v_k = 0_V$, which is absurd as v_k is an eigenvector, hence nonzero by definition.

Therefore, our initial assumption that $v_k \in \operatorname{span}_{\mathbb{C}} T$ must be false, so that $v_k \notin \operatorname{span}_{\mathbb{C}} T$. As indicated above, this implies that $T \cup \{v_k\}$ is linearly independent, which contradicts the maximality of T. Therefore, T must be equal to S (otherwise $T \neq S$ and we run into the previous 'maximality' contradiction) so that S is linearly independent.

Corollary 2.1.3. Let $\lambda_1, ..., \lambda_k$ denote all eigenvalues of $f \in End_{\mathbb{C}}(V)$. Then,

$$E_{\lambda_1} + \ldots + E_{\lambda_k} = E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_k},$$

that is, the sum of all eigenspaces is a direct sum.

Proof: Left to the reader.

Consider the case when

$$E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_k} = V$$

what does this tell us? In this case, we can find a basis of V consisting of eigenvectors of f (each λ_i -eigenspace E_{λ_i} is a subspace we can find a basis of it \mathcal{B}_i say. Then, since we have in this case

$$\dim V = \dim E_{\lambda_1} + \ldots + \dim E_{\lambda_k},$$

we see that

$$\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_k,$$

is a basis of V.³⁷) If we write $\mathcal{B} = (b_1, ..., b_n)$ (where $n = \dim V$) then we see that

$$[f]_{\mathcal{B}} = [[f(b_1)]_{\mathcal{B}} \cdots [f(b_n)]_{\mathcal{B}}]$$

and since $f(b_i)$ is a scalar multiple of b_i we see that $[f]_{\mathcal{B}}$ is a diagonal matrix.

Theorem 2.1.4. Let $f \in End_{\mathbb{C}}(V)$ be such that

$$E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_k} = V.$$

Then, there exists a basis of V such that $[f]_{\mathcal{B}}$ is a diagonal matrix.

Corollary 2.1.5 (Diagonalisation). Let $A \in Mat_n(\mathbb{C})$ be such that there exists a basis of \mathbb{C}^n consisting of eigenvectors of A. Then, there exists a matrix $P \in GL_n(\mathbb{C})$ such that

$$P^{-1}AP = D$$
,

where D is a diagonal matrix. In fact, the entries on the diagonal of D are the eigenvalues of A.

Proof: Let $\mathcal{B} = (b_1, ..., b_n)$ be an ordered basis of \mathbb{C}^n consisting of eigenvectors of A. Then, if $P = P_{\mathcal{S}^{(n)} \leftarrow \mathcal{B}}$ we have

$$P^{-1}AP = D$$
,

by applying Corollary 1.7.7 to the morphism $T_A \in \text{End}_{\mathbb{C}}(\mathbb{C}^n)$. Here we note that $[T_A]_{\mathcal{B}} = D$ is a diagonal matrix by Theorem 2.1.4.

Definition 2.1.6. We say that an endomorphism $f \in End_{\mathbb{C}}(V)$ is *diagonalisable* if there exists a basis $\mathcal{B} \subset V$ of V such that $[f]_{\mathcal{B}}$ is a diagonal matrix

We say that an $n \times n$ matrix $A \in Mat_n(\mathbb{C})$ is *diagonalisable* if T_A is diagonalisable. This is equivalent to: A is diagonalisable if and only if A is similar to a diagonal matrix (this is discussed in the following Remark).

Remark 2.1.7. Corollary 2.1.5 implies that if there exists a basis of \mathbb{C}^n consisting of eigenvectors of A then A is diagonalisable. In fact, the converse is true: if A is diagonalisable and $P^{-1}AP = D$ then there is a basis of \mathbb{C}^n consisting of eigenvectors of A. Indeed, if we let $\mathcal{B} = (b_1, ..., b_n)$ where b_i is the i^{th} column of P, then b_i is an eigenvector of A. Why does this hold? Since we have

$$P^{-1}AP = D = \operatorname{diag}(d_1, \dots, d_n),$$

where diag (d_1, \ldots, d_n) denotes the diagonal $n \times n$ matrix with d_1, \ldots, d_n on the diagonal, then we have

$$AP = PD.$$

Then, the *i*th column of the matrix *AP* is *Ab_i*, so that AP = PD implies that $Ab_i = d_ib_i$ (equate the columns of *AP* and *PD*). Therefore, each column of *P* is an eigenvector of *A*.

2.1.1 Characteristic polynomial, diagonalising matrices

Corollary 2.1.5 tells us conditions concerning when we can we can diagonalise a given matrix $A \in Mat_n(\mathbb{C})$ - we must find a basis of \mathbb{C}^n consisting of eigenvectors of A. In order to this we need to determine how we can find *any* eigenvectors, let alone a basis consisting of eigenvectors.

Suppose that $v \in \mathbb{C}^n$ is an eigenvector of A with associated eigenvalue $\lambda \in \mathbb{C}$. This means we have

$$A\mathbf{v} = \lambda\mathbf{v} \implies (A - \lambda I_n)\mathbf{v} = \mathbf{0}_{\mathbb{C}^n},$$

³⁷Why must this be a basis?

that is, $v \in \ker T_{A-\lambda I_n}$. Conversely, any nonzero $v \in \ker T_{A-\lambda I_n}$ is an eigenvector of A with associated eigenvalue λ . Note that

$$E_{\lambda} = \ker T_{A-\lambda I_n}$$
.

Since $T_{A-\lambda I_n} \in \text{End}_{\mathbb{C}}(\mathbb{C}^n)$ we know, by Proposition 1.7.4, that injectivity of $T_{A-\lambda I_n}$ is the same thing as bijectivity. Now, bijectivity of $T_{A-\lambda I_n}$ is the same thing as determining whether the matrix $A - \lambda I_n$ is invertible (using Theorem 1.7.4). Hence,

ker
$$T_{A-\lambda I_n} \neq \{0_{\mathbb{C}^n}\} \Leftrightarrow T_{A-\lambda I_n}$$
 not bijective $\Leftrightarrow \det(A-\lambda I_n)=0$.

Therefore, if v is an eigenvector of A with associated eigenvalue λ then we must have that det $(A - \lambda I_n) = 0$ and $v \in \ker T_{A-\lambda I_n}$. Moreover, if $\lambda \in \mathbb{C}$ is such that det $(A - \lambda I_n) = 0$ then ker $T_{A-\lambda I_n} \neq \{0_{\mathbb{C}^n}\}$ and any nonzero $v \in \ker T_{A-\lambda I_n}$ is an eigenvector of A with associated eigenvalue λ .

Definition 2.1.8 (Characteristic polynomial). Let $f \in \text{End}_{\mathbb{C}}(V)$. Define the *characteristic polynomial* of f, denoted $\chi_f(\lambda)$, to be the polynomial in λ with complex coefficients

$$\chi_f(\lambda) = \det([f - \lambda \mathrm{id}_V]_{\mathcal{B}}),$$

where \mathcal{B} is any ordered basis of V.³⁸

If $A \in Mat_n(\mathbb{C})$ then we define the *characteristic polynomial of A*, denoted $\chi_A(\lambda)$, to be $\chi_{T_A}(\lambda)$. In this case, we have (using the standard basis $S^{(n)}$ of \mathbb{C}^n)

$$\chi_A(\lambda) = \det(A - \lambda I_n).$$

Note that we are only considering λ as a 'variable' in the determinants, not an actual number. Also, note that the degree of $\chi_f(\lambda) = \dim V^{39}$ and the degree of $\chi_A(\lambda) = n$.

The characteristic equation of f (resp. A) is the equation

$$\chi_f(\lambda) = 0$$
, (resp. $\chi_A(\lambda) = 0$.)

Example 2.1.9. Let

$$egin{array}{ccc} A = egin{bmatrix} 1 & -3 \ 2 & -1 \end{bmatrix}.$$

Then,

$$A - \lambda I_2 = \begin{bmatrix} 1 - \lambda & -3 \\ 2 & -1 - \lambda \end{bmatrix}.$$

Hence, we have

$$\chi_A(\lambda) = (1 - \lambda)(-1 - \lambda) - 2.(-3) = \lambda^2 + 5.$$

- **Remark 2.1.10.** 1. It should be apparent from the discussion above that the eigenvalues of a given linear morphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ (or matrix $A \in Mat_n(\mathbb{C})$) are precisely the zeros of the characteristic equation $\chi_f(\lambda) = 0$ (or $\chi_A(\lambda) = 0$).
 - 2. Example 2.1.9 highlights an issue that can arise when we are trying to find eigenvalues of a linear morphism (or matrix). You'll notice that in this example there are no ℝ-eigenvalues: the eigenvalues are ±√-5 ∈ ℂ \ ℝ. Hence, we have complex eigenvalues that are not real. In general, given a matrix A with ℂ-entries (or a ℂ-linear morphism f ∈ End_ℂ(V)) we will always be able to find eigenvalues this follows from the Fundamental Theorem of Algebra:

$$[f - \lambda \mathrm{id}_V]_{\mathcal{C}} = P^{-1}[f - \lambda \mathrm{id}_V]_{\mathcal{B}}P.$$

Then, since det(AB) = det A det B, for any matrices A, B, we see that det($[f - \lambda id_V]_C$) = det($[f - \lambda id_V]_B$) (where we have also used det $P^{-1} = (\det P)^{-1}$).

³⁹This will be shown in homework.

 $^{^{38}}$ If ${\cal C}$ is any other basis of V then there is an invertible matrix P such that

Theorem (Fundamental Theorem of Algebra). Let p(T) be a nonconstant polynomial with \mathbb{C} coefficients. Then, there exists $\lambda_0 \in \mathbb{C}$ such that $p(\lambda_0) = 0$. Hence, every such polynomial can
be written as a product of linear factors

$$p(T) = (T - \lambda_1)^{n_1} (T - \lambda_2)^{n_2} \cdots (T - \lambda_k)^{n_k}.$$

Note that this result is <u>false</u> if we wish to find a real root: for $p(T) = T^2 + 1$ there are no real roots (ie, no $\lambda_0 \in \mathbb{R}$ such that $p(\lambda_0) = 0$).

It is a consequence of this Theorem that we are considering in this section only $\mathbb{K} = \mathbb{C}$ as this guarantees that eigenvalues exist.

We are now in a position to find eigenvectors/eigenvalues of a given linear morphism $f \in \text{End}_{\mathbb{C}}(V)$ (or matrix $A \in Mat_n(\mathbb{C})$):

- 0. Find an ordered basis $\mathcal{B} = (b_1, ..., b_n)$ of V to obtain $[f]_{\mathcal{B}}$. Let $A = [f]_{\mathcal{B}}$. This step is not required if you are asked to find eigenthings for a given $A \in Mat_n(\mathbb{C})$.
- 1. Determine the characteristic polynomial $\chi_A(\lambda)$ and solve the equation $\chi_A(\lambda) = 0$. The roots of this equation are the eigenvalues of A (and f), denote them $\lambda_1, ..., \lambda_k$.
- 2. $v \in V$ is an eigenvector with associated eigenvalue λ_i if and only if $v \in \text{ker}(f \lambda_i \text{id}_V)$ if and only if $[v]_{\mathcal{B}}$ is a solution to the matrix equation

$$(A - \lambda_i I_n) \underline{x} = \underline{0}.$$

Example 2.1.11. This follows on from Example 2.1.9 and we have already determined Step 1. above, we have

$$\lambda_1 = \sqrt{-5}, \ \lambda_2 = -\sqrt{-5}.$$

If we wish to find eigenvectors with associated eigenvalue λ_1 then we consider the matrix

$$A - \lambda_1 I_2 = \begin{bmatrix} 1 - \sqrt{-5} & -3 \\ 2 & -1 - \sqrt{-5} \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}$$

and so obtain that

ker
$$T_{A-\lambda_1 I_2} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{C}^2 \mid x_1 - 3x_2 = 0 \right\} = \left\{ \begin{bmatrix} 3x \\ x \end{bmatrix} \mid x \in \mathbb{C} \right\}.$$

In particular, if we choose x = 1, we see that $\begin{bmatrix} 3\\1 \end{bmatrix}$ is an eigenvector of A with associated eigenvalue $\sqrt{-5}$. Any eigenvector of A with associated eigenvalue $\sqrt{-5}$ is a nonzero vector in ker $T_{A-\sqrt{-5}I_2}$.

Definition 2.1.12. Let $f \in \text{End}_{\mathbb{C}}(V)$ (or $A \in Mat_n(\mathbb{C})$). Suppose that

$$\chi_f(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_k)^{n_k}$$

so that $\lambda_1, \ldots, \lambda_k$ are the eigenvalues of f.

- define the algebraic multiplicity of λ_i to be n_i ,
- define the geometric multiplicity of λ_i to be dim E_{λ_i} .

Lemma 2.1.13. Let $f \in End_{\mathbb{C}}(V)$ and λ be an eigenvalue of f. Then,

'alg. multplicity of
$$\lambda' \geq$$
 'geom. multiplicity of λ'

Proof: This will be proved later after we have introduced the polynomial algebra $\mathbb{C}[t]$ and the notion of a representation of $\mathbb{C}[t]$ (Definition 2.4.2)

Proposition 2.1.14. Let $A \in Mat_n(\mathbb{C})$. Denote the eigenvalues of A by $\lambda_1, ..., \lambda_k$. Then, A is diagonalisable if and only if, for every i, the algebraic multiplicity of λ_i is equal to the geometric multiplicity of λ_i .

Proof: (\Rightarrow) Suppose that A is diagonalisable and that

$$\chi_A(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_k)^{n_k}$$

Then, by Remark 2.1.7, we can find a basis of eigenvectors of \mathbb{C}^n . Hence, we must have

$$\mathbb{C}^n = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$

Then, by Lemma 2.1.13 and Corollary 1.5.19, we have

$$n = \dim E_{\lambda_1} + \ldots + \dim E_{\lambda_k} \leq n_1 + \ldots + n_k = n,$$

where we have used that the degree of the characteristic polynomial is *n*. This implies that we must have dim $E_{\lambda_i} = n_i$, for every *i*: indeed, we have

$$\dim E_{\lambda_1} + \dots \dim E_{\lambda_k} = n_1 + \dots + n_k,$$

with dim $E_{\lambda_i} \leq n_i$, for each *i*. If dim $E_{\lambda_i} < n_i$, for some *i*, then we would coontradict this previous equality. The result follows.

(\Leftarrow) Assume that dim $E_{\lambda_i} = n_i$, for every *i*. Then, we know that

$$V \supset E_{\lambda_1} + \ldots + E_{\lambda_k} = E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_k}.$$

Then, since

$$\mathsf{m}(E_{\lambda_1} \oplus ... \oplus E_{\lambda_k}) = \dim E_{\lambda_1} + ... + \dim E_{\lambda_k} = n_1 + ... + n_k = n,$$

we see that $V = E_{\lambda_1} \oplus ... \oplus E_{\lambda_k}$, by Corollary 1.5.17. Hence, there is a basis of V consisting of eigenvectors of A so that A is diagonalisable.

As a consequence of Proposition 2.1.14 we are now in a position to determine (in practice) when a matrix A is diagonalisable. Following on from the above list to find eigenvectors we have

- 3. For each eigenvalue λ_i determine a basis of ker $\mathcal{T}_{A-\lambda_i I_n}$ (by row-reducing the matrix $A \lambda_i I_n$ to reduced echelon form, for example). Denote this basis $\mathcal{B}_i = (b_1^{(i)}, \dots, b_m^{(i)})$.
- 4. If $|\mathcal{B}_i| = m_i = n_i$, for every *i*, then *A* is diagonalisable. Otherwise, *A* is not diagonalisable. Recall that in Step 1. above you will have determined $\chi_A(\lambda)$, and therefore n_i .
- 5. If A is diagonalisable then define the matrix P to be the $n \times n$ matrix

$$P = [b_1^{(1)} \cdots b_{n_1}^{(1)} b_1^{(2)} \cdots b_{n_2}^{(2)} \cdots b_1^{(k)} \cdots b_{n_k}^{(k)}].$$

Then, Remark 2.1.7 implies that

di

$$P^{-1}AP = diag(\lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_2, \dots, \lambda_k, \dots, \lambda_k),$$

with each eigenvalue λ_i appearing n_i times on the diagonal.

Note that the order of the eigenvalues appearing on the diagonal depends on the ordering we put on \mathcal{B} .

Corollary 2.1.15. Let $A \in Mat_n(\mathbb{C})$. Then, if A has n distinct eigenvalues $\lambda_1, ..., \lambda_n$, then A is diagonalisable.

Proof: Saying that A has n distinct eigenvalues is equivalent to saying that

$$\chi_{\mathcal{A}}(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n),$$

so that the algebraic multiplicity n_i of each eigenvalue is 1. Furthermore, λ_i is an eigenvalue if and only if there exists a nonzero $v \in \mathbb{C}^n$ such that $Av = \lambda_i v$. Hence, we have

$$1 \leq \dim E_{\lambda_i} \leq n_i = 1$$
,

by Lemma 2.1.13, so that dim $E_{\lambda_i} = 1 = n_i$, for every *i*. Hence, *A* is diagonalisable by the previous Proposition.

Example 2.1.16. Consider the matrix

$$A = egin{bmatrix} 1 & -3 \ 2 & -1 \end{bmatrix}$$
 ,

from the previous examples. Then, we have $\chi_A(\lambda) = (\lambda - \sqrt{-5})(\lambda - (-\sqrt{-5}))$, so that Corollary 2.1.15 implies that A is diagonalisable.

In this section we have managed to obtain a useful criterion for when a given matrix A is diagonalisable. Moreover, this criterion is practically useful in that we have obtained a procedure that allows us to determine the diagonalisability of A by hand (or, at least, a criterion we could program a computer to undertake).

2.2 Invariant subspaces

([1], p.106-108)

In the proceeding sections we will be considering endomorphisms f of a \mathbb{C} -vector space V and some natural subspaces of V that we can associate to f. You may have seen some of these concepts before but perhaps not the terminology that we will adopt.

Definition 2.2.1 (Invariant subspace). Let $f \in \text{End}_{\mathbb{C}}(V)$ be a linear endomorphism of V, $U \subset V$ a vector subspace of V. We say that U is *f*-invariant or invariant with respect to f if, for every $u \in U$ we have $f(u) \in U$.

If $A \in Mat_n(\mathbb{C})$, $U \subset \mathbb{C}^n$ a subspace, then we say that U is A-invariant or invariant with respect to A if U is T_A -invariant.

Example 2.2.2. 1. Any subspace $U \subset V$ is invariant with respect to $id_V \in End_{\mathbb{C}}(V)$. In fact, any subspace $U \subset V$ is invariant with respect to the endomorphism $c \cdot id_V \in End_{\mathbb{C}}(V)$, where

$$(c \cdot \mathrm{id}_V)(v) = cv$$
, for every $v \in V$.

In particular, every subspace is invariant with respect to the zero morphism of V.

2. Suppose that $V = U \oplus W$ and p_U , p_W are the projection morphisms introduced in Example 1.4.8. Then, U is p_U -invariant: let $u \in U$, we must show that $p_U(u) \in U$. Recall that if v = u + w is the unique way of writing $v \in V$ as a linear combination of vectors in U and W (since $V = U \oplus W$), then

$$p_U(v) = u$$
, $p_W(v) = w$.

Hence, since $u \in V$ can be written as $u = u + 0_V$, then $p_U(u) = u \in U$, so that U is p_U -invariant. Also, if $w \in W$ then $w = 0_V + w$ (with $0_V \in U$), so that $p_U(w) = 0_V \in W$. Hence, W is also p_U -invariant. Similarly, we have U and W are both p_W -invariant.

In general, if $V = U_1 \oplus \cdots \oplus U_k$, with $U_i \subset V$ a subspace, then each U_i is p_{U_j} -invariant, for any i, j.

3. Let $f \in \text{End}_{\mathbb{C}}(V)$ and suppose that λ is an eigenvalue of f. Then, E_{λ} is f-invariant: let $v \in E_{\lambda}$. Then, we have $f(v) = \lambda v \in E_{\lambda}$, since E_{λ} is a vector subspace of V. **Lemma 2.2.3.** Let $f \in End_{\mathbb{C}}(V)$ and $U \subset V$ an f-invariant subspace of V.

- Denote $f^k = f \circ f \circ \cdots \circ f$ (the k-fold composition of f on V) then U is also f^k -invariant.
- If U is also g-invariant, for some $g \in End_{\mathbb{C}}(V)$, then U is (f + g)-invariant.
- If $\lambda \in \mathbb{C}$ then U is a λf -invariant subspace.

Proof: Left to reader.

Remark 2.2.4. It is important to note that the converse of the above statements in Lemma 2.2.3 do not hold.

For example, consider the matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 ,

and the associated endomorphism $T_A \in \text{End}_{\mathbb{C}}(\mathbb{C}^2)$. Then, $T_A^2 = T_{A^2} = T_{I_2} = \text{id}_{\mathbb{C}^2}$ (because $A^2 = I_2$), so that every subspace of \mathbb{C}^2 is A^2 -invariant. However, the subspace $U = \text{span}_{\mathbb{C}}(e_1)$ is not A-invariant since $Ae_1 = e_2$.

We can also see that $A + (-A) = 0_2$ so that every subspace of \mathbb{C}^2 is (A + (-A))-invariant, while $U = \operatorname{span}_{\mathbb{C}}(e_1)$ is neither A-invariant nor (-A)-invariant.

Let $f \in \text{End}_{\mathbb{C}}(V)$ and U be an f-invariant subspace. Suppose that $\mathcal{B}' = (b_1, ..., b_k)$ is an ordered basis of U and extend to an ordered basis $\mathcal{B} = (b_1, ..., b_k, b_{k+1}, ..., b_n)$ of V. Then, the matrix of f relative to \mathcal{B} is

$$[f]_{\mathcal{B}} = [[f(b_1)]_{\mathcal{B}} \cdots [f(b_k)]_{\mathcal{B}} \cdots [f(b_n)]_{\mathcal{B}}] = \begin{bmatrix} A & B \\ 0_{n-k,k} & C \end{bmatrix}$$

where $A \in Mat_k(\mathbb{C})$, $B \in Mat_{k,n-k}(\mathbb{C})$, $C \in Mat_{n-k,n-k}(\mathbb{C})$. This follows because $f(b_i) \in \text{span}_{\mathbb{C}}\{b_1, \dots, b_k\}$, for each $i = 1, \dots, k$.

Moreover, we can see that if $V = U \oplus W$ with U and W both f-invariant, and if $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is an ordered basis of V, where \mathcal{B}_1 is an ordered basis of U, \mathcal{B}_2 is an ordered basis of W, then the matrix of f relative to \mathcal{B} is

$$[f]_{\mathcal{B}} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$
,

where $A \in Mat_{\dim U}(\mathbb{C})$, $B \in Mat_{\dim W}(\mathbb{C})$.

Definition 2.2.5. Let $A \in Mat_n(\mathbb{C})$. We say that A is *block diagonal* if there are matrices $A_i \in Mat_{n_i}(\mathbb{C})$, i = 1, ..., k, such that

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & A_k \end{bmatrix}$$

So, our previous discussion implies the following

Lemma 2.2.6. Let $f \in End_{\mathbb{C}}(V)$, $U_1, ..., U_k \subset V$ subspaces of V that are all f-invariant and suppose that

$$V = U_1 \oplus \cdots \oplus U_k.$$

Then, there exists an ordered basis \mathcal{B} of V such that

$$[f]_{\mathcal{B}} = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & A_k \end{bmatrix},$$