2 Jordan Canonical Form

In this chapter we are going to classify all C-linear endomorphisms of a n-dimensional C-vector space V.
This means that we are going to be primarily studying End¢( V), the C-vector space of C-endomorphisms
of V (up to conjugation). For those of you that know about such things, we are going to identify the
orbits of the group GL¢ (V) acting on the set Endc (V') by conjugation. Since there exists an isomorphism

Endc(V) — Mat,(C) ; f — [f]s,

(once we choose an ordered basis B of V) this is the same thing as trying to classify all n x n matrices
with C-entries up to similarity.

You may recall that given any square matrix A with C-entries we can ask whether A is diagonalisable
and that there exists matrices that are not diagonalisable. For example, the matrix

11
A= [O 1} '
is not diagonalisable]

In fact, this example is typical, in the following sense: let A € Maty(C). Then, A is similar to one of
the following types of matrices

[g 2},a,b€(c, or [C 1],C€(C.

In general, we have the following

Theorem (Jordan Canonical Form). Let A € Mat,(C). Then, there exists P € GL,(C) such that

s 0 - 0
0 b - 0
P7lAP = , |,
0 - - Jy
where, for each i = 1, ..., k, we have an n; X n; matrix
A1 0 0
0 X 1 0
=1 = .. .. |, XNeC.
o --- 0 A1
0 - - 0 N

Hence, every n x n matrix with C-entries is similar to an almost-diagonal matrix.

We assume throughout this chapter that we are working with C-vector spaces and C-linear
morphisms. Furthermore, we assume that all matrices have C-entries.

2.1 Eigenthings

([, p.108-113)

This section should be a refresher on the notions of eigenvectors, eigenvalues and eigenspaces of an
n x n matrix A (equivalently, of a C-linear morphism f € Endc(V)).

Definition 2.1.1. Let f € Endc(V) be a C-linear endomorphism of the C-vector space V. Let A € C.

36Try and recall why this was true.
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- The A-eigenspace of f is the set

Ex® {veV|f(v)=Av}

This is a vector subspace of V' (possibly the zero subspace).

If Ex # {Ov} and v € E) is a nonzero vector, then we say that v is an eigenvector of f with
associated eigenvalue \.

- If Ais an nx n matrix with C-entries then we define the \-eigenspace of A to be the A-eigenspace
of the linear morphism T4. Similarly, we say that v € C" is an eigenvector of A with associated
eigenvalue \ if v is an eigenvector of T, with associated eigenvalue \.

Lemma 2.1.2. Let f € Endc(V), vi,..., vk € V be eigenvectors of f with associated eigenvalues
A1, ..., A € C. Assume that \j # \j whenever i # j. Then, {v1, ..., v} is linearly independent.

Proof: Let S = {wv1,...,vw}. Let T C S denote a maximal linearly independent subset (we know
that a linearly independent subset exists, just take {v;}; then choose a linearly independent subset of
largest size). We want to show that T = S. Suppose that T # S, we aim to provide a contradiction.
As T # S, then we can assume, without loss of generality, that v, ¢ T.

We are going to show that v, ¢ spangs T, and then use Corollary to deduce that T U {v,} is
linearly independent, contradicting the maximality of T.

Suppose that v, € spang T, we aim to provide a contradiction. So, as vy € spang T then
Vk = vy, + ...+ GV,
where ¢y, ..., 6 € C, vi, ..., vi, € T. Apply f to both sides of this equation to obtain
AV = CLAL Vi + oo+ Cs ALV,
Taking this equation away from A, times the previous equation gives
Ov = c1( Ay — Ak)viy + o+ Gs(Ai, = M)V,

This is a linear relation among vectors in T so must be the trivial linear relation since T is linearly
independent. Hence, we have, for each j =1, ..., s,

ci(Xj — k) =0,
and as v ¢ T (by assumption) we have \; # A. Hence, we must have that ¢; = 0, for every j. Then,
we have v, = Oy, which is absurd as vk is an eigenvector, hence nonzero by definition.

Therefore, our initial assumption that vx € spans T must be false, so that v ¢ spanc T. As indicated
above, this implies that TU{v} is linearly independent, which contradicts the maximality of T. There-
fore, T must be equal to S (otherwise T # S and we run into the previous ‘maximality’ contradiction)
so that S is linearly independent. O

Corollary 2.1.3. Let Ay, ..., A denote all eigenvalues of f € Endc(V). Then,
E,\1 + ...+ E)\k = E)\l D...D EM!

that is, the sum of all eigenspaces is a direct sum.
Proof: Left to the reader. O

Consider the case when
Ex®..8E\, =V,

what does this tell us? In this case, we can find a basis of V consisting of eigenvectors of f (each
Ai-eigenspace E), is a subspace we can find a basis of it B; say. Then, since we have in this case

dimV =dimEy, + ... + dim E,,,
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we see that
B=DB1U..UB;,

is a basis of VEI) If we write B = (b, ..., b,) (where n = dim V) then we see that
[fls = [[f(b)]s --- [F(a)ls],
and since f(b;) is a scalar multiple of b; we see that [f]s is a diagonal matrix.
Theorem 2.1.4. Let f € Endc(V) be such that
E)\l D...D E,\k =V.

Then, there exists a basis of V' such that [f]|g is a diagonal matrix.

Corollary 2.1.5 (Diagonalisation). Let A € Mat,(C) be such that there exists a basis of C" consisting
of eigenvectors of A. Then, there exists a matrix P € GL,(C) such that

P~'AP =D,

where D is a diagonal matrix. In fact, the entries on the diagonal of D are the eigenvalues of A.

Proof: Let B = (b, ..., b,) be an ordered basis of C" consisting of eigenvectors of A. Then, if
P = Pg 5 we have

P~1AP = D,
by applying Corollary to the morphism T4 € Endc(C"). Here we note that [Ta]s = D is a diagonal
matrix by Theorem [2.1.4 O

Definition 2.1.6. We say that an endomorphism f € End¢(V) is diagonalisable if there exists a basis
B C V of V such that [f]3 is a diagonal matrix

We say that an n x n matrix A € Mat,(C) is diagonalisable if T is diagonalisable. This is equivalent
to: A is diagonalisable if and only if A is similar to a diagonal matrix (this is discussed in the following
Remark).

Remark 2.1.7. Corollary implies that if there exists a basis of C" consisting of eigenvectors of A
then A is diagonalisable. In fact, the converse is true: if A is diagonalisable and P~1AP = D then there
is a basis of C" consisting of eigenvectors of A. Indeed, if we let B = (by, ..., b,) where b; is the it
column of P, then b; is an eigenvector of A. Why does this hold? Since we have

P~AP = D = diag(d,, ..., dy),
where diag(di, ..., d,) denotes the diagonal n x n matrix with di, ..., d, on the diagonal, then we have
AP = PD.

Then, the it column of the matrix AP is Ab;, so that AP = PD implies that Ab; = d;b; (equate the
columns of AP and PD). Therefore, each column of P is an eigenvector of A.

2.1.1 Characteristic polynomial, diagonalising matrices

Corollary|2.1.5|tells us conditions concerning when we can we can diagonalise a given matrix A € Mat,(C)
- we must find a basis of C" consisting of eigenvectors of A. In order to this we need to determine how
we can find any eigenvectors, let alone a basis consisting of eigenvectors.

Suppose that v € C" is an eigenvector of A with associated eigenvalue A € C. This means we have

Av=Av = (A—Al,)v =0c¢n,

3TWhy must this be a basis?
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that is, v € ker Ta_y;,. Conversely, any nonzero v € ker Ta_y,, is an eigenvector of A with associated
eigenvalue A. Note that
E)\ = ker TA_)\In'

Since Ta—xs, € Endc(C™) we know, by Proposition [1.7.4} that injectivity of Ta_y,, is the same thing
as bijectivity. Now, bijectivity of Ta_», is the same thing as determining whether the matrix A — A/, is
invertible (using Theorem [1.7.4)). Hence,

ker Ta_xi, # {Ocn} < Ta_x;, not bijective < det(A— Al,) =0.

Therefore, if v is an eigenvector of A with associated eigenvalue A then we must have that det(A—Al,) =
0 and v € ker Ta_yj,. Moreover, if A € C is such that det(A — Al,) = 0 then ker Ta_y;, # {Ocn} and
any nonzero v € ker Ta_y, is an eigenvector of A with associated eigenvalue .

Definition 2.1.8 (Characteristic polynomial). Let f € Endc(V). Define the characteristic polynomial
of f, denoted x¢()), to be the polynomial in A with complex coefficients

Xf()\) = det([f — )\id\/]g),

where B is any ordered basis of V[

If A € Mat,(C) then we define the characteristic polynomial of A, denoted xa()), to be x7,(A). In this
case, we have (using the standard basis S(") of C")

XA(A) = det(A = Aly).

Note that we are only considering A as a ‘variable’ in the determinants, not an actual number. Also,
note that the degree of y(\) = dim VfY| and the degree of x4(\) = n.

The characteristic equation of f (resp. A) is the equation

xr(A) =0, (resp. xa(A)=0.)
1 -3
A= {2 —1} '

1-A -3
A/\IQ:{2 _I_A}

Example 2.1.9. Let

Then,

Hence, we have
xa(A) = (1 =X (=1 —=X) —2.(=3) = A2 +5.

Remark 2.1.10. 1. It should be apparent from the discussion above that the eigenvalues of a given
linear morphism f € Endc (V) (or matrix A € Mat,(C)) are precisely the zeros of the characteristic

equation xr(A) =0 (or xa(A) = 0).

2. Example highlights an issue that can arise when we are trying to find eigenvalues of a
linear morphism (or matrix). You'll notice that in this example there are no R-eigenvalues: the
eigenvalues are +£1/—5 € C\ R. Hence, we have complex eigenvalues that are not real. In general,
given a matrix A with C-entries (or a C-linear morphism f € Endc(V)) we will always be able to
find eigenvalues - this follows from the Fundamental Theorem of Algebra:

381f C is any other basis of V then there is an invertible matrix P such that
[f — Aidy]e = P7L[f — Aidy]5P.

Then, since det(AB) = det Adet B, for any matrices A, B, we see that det([f — Aidy]¢) = det([f — Aidy]g) (where we
have also used det P! = (det P)~1).
39This will be shown in homework.
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Theorem (Fundamental Theorem of Algebra). Let p(T) be a nonconstant polynomial with C-
coefficients. Then, there exists Ao € C such that p(\g) = 0. Hence, every such polynomial can
be written as a product of linear factors

p(T) = (T = A)™(T = A2)™ - (T = Ae)™.
Note that this result is false if we wish to find a real root: for p(T) = T2 + 1 there are no real

roots (ie, no Ag € R such that p(A\g) = 0).

It is a consequence of this Theorem that we are considering in this section only K = C as this
guarantees that eigenvalues exist.

We are now in a position to find eigenvectors/eigenvalues of a given linear morphism f € End¢(V) (or
matrix A € Mat,(C)):

0. Find an ordered basis B = (by, ..., b,) of V to obtain [f]z. Let A = [f]g. This step is not
required if you are asked to find eigenthings for a given A € Mat,(C).

1. Determine the characteristic polynomial xa()\) and solve the equation xa(A) = 0. The roots of
this equation are the eigenvalues of A (and f), denote them Aq, ..., Ax.

2. v € V is an eigenvector with associated eigenvalue J; if and only if v € ker(f — );idy) if and only
if [v]p is a solution to the matrix equation

(A= Aih)x = 0.

Example 2.1.11. This follows on from Example 2.1.9 and we have already determined Step 1. above,

we have
A1 =V-b5, A= —v-5.

If we wish to find eigenvectors with associated eigenvalue \; then we consider the matrix

AA1/2:[1_2¢_75 _1__%}”[3 _03]'

keI’TA,\llz_{|:i;:| E(C2X1—3X2_0}_{|:3:(:| |X€C}.

In particular, if we choose x = 1, we see that [

and so obtain that

3| . . . . .
1| isan eigenvector of A with associated eigenvalue

v/ —b. Any eigenvector of A with associated eigenvalue v/—5 is a nonzero vector in ker T,_ /=5,
Definition 2.1.12. Let f € End¢(V) (or A € Mat,(C)). Supoose that

XF(A) = (A= A1) (A = A2)™ - (A — A)™
so that Aq, ..., Ak are the eigenvalues of f.

- define the algebraic multplicity of \; to be n;,

- define the geometric multiplicity of A\; to be dim Ej,.
Lemma 2.1.13. Let f € Endc(V) and A be an eigenvalue of f. Then,
‘alg. multplicity of A’ > ‘geom. multiplicity of \’

Proof: This will be proved later after we have introduced the polynomial algebra C[t] and the notion
of a representation of C[t] (Definition [2.4.2) O
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Proposition 2.1.14. Let A € Mat,(C). Denote the eigenvalues of A by A1, ..., . Then, A is diago-
nalisable if and only if, for every i, the algebraic multplicity of \; is equal to the geometric multiplicity
of )\,‘.

Proof: (=) Suppose that A is diagonalisable and that
XA()‘) = ()\ - )\1)"1()\ - )\2)"2 s ()\ - )\k)”k.
Then, by Remark we can find a basis of eigenvectors of C". Hence, we must have

Cn:E/\l@"'@E)\k'

Then, by Lemma [2.1.13| and Corollary [1.5.19] we have
n=dimEy, +..+dimEy, <nm+ ..+ nc=n,

where we have used that the degree of the characteristic polynomial is n.
This implies that we must have dim Ey, = n;, for every i: indeed, we have

dim E)\l + ...dim E)\k =m-+ ..+ ng,

with dim Ey, < nj, for each i. If dim Ey, < nj, for some /, then we would coontradict this previous
equality. The result follows.

(«<=) Assume that dim E), = n;, for every i. Then, we know that
VOE\,+...+E, =E\,®...0E,,.

Then, since
dim(E)\1 D...D E)\k) =dim EA1 + ... +dim EAk =n + ...+ ng =n,

we see that V = Ey, & ... @ E,,, by Corollary [L.5.17] Hence, there is a basis of V consisting of
eigenvectors of A so that A is diagonalisable. O

As a consequence of Proposition [2.1.14| we are now in a position to determine (in practice) when a
matrix A is diagonalisable. Following on from the above list to find eigenvectors we have

3. For each eigenvalue \; determine a basis of ker Ta_y,;, (by row-reducing the matrix A — Ail, to
reduced echelon form, for example). Denote this basis B; = (bg'), s bf,',?)

4. If |B;| = m; = n;, for every i, then A is diagonalisable. Otherwise, A is not diagonalisable. Recall
that in Step 1. above you will have determined xa()), and therefore n;.

5. If Ais diagonalisable then define the matrix P to be the n x n matrix

p=[bY .. pMpR ... p@)

m 2

k
b )~~~bf,’k‘)].

Then, Remark implies that

P_lAP = diag(/\l, . Al, AQ, ceey A2, vy )\k, ceey )\k),

with each eigenvalue \; appearing n; times on the diagonal.

Note that the order of the eigenvalues appearing on the diagonal depends on the ordering
we put on B.

Corollary 2.1.15. Let A € Mat,(C). Then, if A has n distinct eigenvalues A1, ..., \,, then A is diago-
nalisable.
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Proof: Saying that A has n distinct eigenvalues is equivalent to saying that
Xa(A) = (A= A1) - (A= An),

so that the algebraic multiplicity n; of each eigenvalue is 1. Furthermore, J; is an eigenvalue if and only
if there exists a nonzero v € C" such that Av = \;v. Hence, we have

1§dimE)\,.§n,-:1,

by Lemma 2.1.13] so that dim Ey, = 1 = n;, for every i. Hence, A is diagonalisable by the previous
Proposition. O

a=l; 3

from the previous examples. Then, we have xa(A) = (A—+/—5)(A—(—+/—5)), so that Corollary|2.1.15

implies that A is diagonalisable.

Example 2.1.16. Consider the matrix

In this section we have managed to obtain a useful criterion for when a given matrix A is diagonalisable.
Moreover, this criterion is practically useful in that we have obtained a procedure that allows us to
determine the diagonalisability of A by hand (or, at least, a criterion we could program a computer to
undertake).

2.2 Invariant subspaces
([, p.106-108)

In the proceeding sections we will be considering endomorphisms f of a C-vector space V and some
natural subspaces of V that we can associate to f. You may have seen some of these concepts before
but perhaps not the terminology that we will adopt.

Definition 2.2.1 (Invariant subspace). Let f € Endc(V) be a linear endomorphism of V, U C V a
vector subspace of V. We say that U is f-invariant or invariant with respect to f if, for every u € U we
have f(u) € U.

If A€ Mat,(C), U C C" a subspace, then we say that U is A-invariant or invariant with respect to A
if U is Ta-invariant.

Example 2.2.2. 1. Any subspace U C V is invariant with respect to idy € Endc(V). In fact, any
subspace U C V is invariant with respect to the endomorphism ¢ -idy € Endc(V/), where

(c-idy)(v) = cv, forevery v e V.

In particular, every subspace is invariant with respect to the zero morphism of V.

2. Suppose that V = U® W and py, pw are the projection morphisms introduced in Example
Then, U is py-invariant: let v € U, we must show that py(u) € U. Recall that if v = u+ w is the
unique way of writing v € V as a linear combination of vectors in U and W (since V = U & W),
then

pu(v) =u, pw(v)=w.

Hence, since u € V can be written as u = u+ 0y, then py(u) = v € U, so that U is py-invariant.
Also, if w € W then w = 0y + w (with Oy € U), so that py(w) = 0y € W. Hence, W is also
py-invariant. Similarly, we have U and W are both py-invariant.

In general, if V =U; & --- P Uy, with U; C V a subspace, then each U; is pUj—invariant, for any
iJ.

3. Let f € Endc(V) and suppose that A is an eigenvalue of f. Then, Ej is f-invariant: let v € E,.
Then, we have f(v) = Av € E), since E) is a vector subspace of V.
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Lemma 2.2.3. Let f € Endc(V) and U C V an f-invariant subspace of V.
- Denote fk = fofo---of (the k-fold composition of f on V') then U is also f*-invariant.
- If U is also g-invariant, for some g € Endc(V), then U is (f + g)-invariant.
- If A € C then U is a Af-invariant subspace.
Proof: Left to reader. O

Remark 2.2.4. It is important to note that the converse of the above statements in Lemma
[2.2.3 do not hold.

For example, consider the matrix
01
Sl
and the associated endomorphism T4 € Endc(C?). Then, T2 = Tp. = T, = idc> (because A2 = b),
so that every subspace of C2 is A2-invariant. However, the subspace U = spanc(e;) is not A-invariant
since Ae; = e.

We can also see that A + (—A) = 0, so that every subspace of C? is (A + (—A))-invariant, while
U = spang(er) is neither A-invariant nor (—A)-invariant.

Let f € Endc(V) and U be an f-invariant subspace. Suppose that B’ = (by, ..., bk) is an ordered basis
of U and extend to an ordered basis B = (bs, ..., bk, bx+1, ..., by) of V. Then, the matrix of f relative
to B is

e = (bl -+ 7Bl [F(Ble] = [

where A € Mat(C), B € Maty n—k(C), C € Mat,_k n—«(C). This follows because f(b;) € spanc{b1, ..., b},
foreach i =1, ..., k.

A B
n—kk C|'

Moreover, we can see that if V = U ® W with U and W both f-invariant, and if B = B; U BB, is an
ordered basis of V/, where 31 is an ordered basis of U, B3, is an ordered basis of W, then the matrix of

f relative to B is A
0
[f]B - |:0 B:| 1

where A € Matgim U(C), B € Matyim W(C)

Definition 2.2.5. Let A € Mat,(C). We say that A is block diagonal if there are matrices A; €
Mat,,(C), i =1, ..., k, such that

A 0 0
0 A 0
A= : _
0 Ak

So, our previous discussion implies the following

Lemma 2.2.6. Let f € Endc(V), Ui, ..., Ux C V subspaces of V that are all f-invariant and suppose
that
V=U®- - U.

Then, there exists an ordered basis B of V such that

0 A -~ 0
[fls=1|. . . .|
0 Ay
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