2 Jordan Canonical Form

In this chapter we are going to classify all \mathbb{C}-linear endomorphisms of a n-dimensional \mathbb{C}-vector space V. This means that we are going to be primarily studying $\operatorname{End}_{\mathbb{C}}(V)$, the \mathbb{C}-vector space of \mathbb{C}-endomorphisms of V (up to conjugation). For those of you that know about such things, we are going to identify the orbits of the group $\mathrm{GL}_{\mathbb{C}}(V)$ acting on the set $E^{(} d_{\mathbb{C}}(V)$ by conjugation. Since there exists an isomorphism

$$
\operatorname{End}_{\mathbb{C}}(V) \rightarrow \operatorname{Mat}_{n}(\mathbb{C}) ; f \mapsto[f]_{\mathcal{B}}
$$

(once we choose an ordered basis \mathcal{B} of V) this is the same thing as trying to classify all $n \times n$ matrices with \mathbb{C}-entries up to similarity.

You may recall that given any square matrix A with \mathbb{C}-entries we can ask whether A is diagonalisable and that there exists matrices that are not diagonalisable. For example, the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

is not diagonalisable ${ }^{36}$
In fact, this example is typical, in the following sense: let $A \in \operatorname{Mat}_{2}(\mathbb{C})$. Then, A is similar to one of the following types of matrices

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right], a, b \in \mathbb{C}, \quad \text { or } \quad\left[\begin{array}{ll}
c & 1 \\
0 & c
\end{array}\right], c \in \mathbb{C}
$$

In general, we have the following
Theorem (Jordan Canonical Form). Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$. Then, there exists $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that

$$
P^{-1} A P=\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & J_{k}
\end{array}\right]
$$

where, for each $i=1, \ldots, k$, we have an $n_{i} \times n_{i}$ matrix

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{i} & 1 \\
0 & \cdots & \cdots & 0 & \lambda_{i}
\end{array}\right], \quad \lambda_{i} \in \mathbb{C}
$$

Hence, every $n \times n$ matrix with \mathbb{C}-entries is similar to an almost-diagonal matrix.
We assume throughout this chapter that we are working with \mathbb{C}-vector spaces and \mathbb{C}-linear morphisms. Furthermore, we assume that all matrices have \mathbb{C}-entries.

2.1 Eigenthings

([1], p.108-113)
This section should be a refresher on the notions of eigenvectors, eigenvalues and eigenspaces of an $n \times n$ matrix A (equivalently, of a \mathbb{C}-linear morphism $f \in \operatorname{End}_{\mathbb{C}}(V)$).

Definition 2.1.1. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be a \mathbb{C}-linear endomorphism of the \mathbb{C}-vector space V. Let $\lambda \in \mathbb{C}$.

[^0]- The λ-eigenspace of f is the set

$$
E_{\lambda} \stackrel{\text { def }}{=}\{v \in V \mid f(v)=\lambda v\}
$$

This is a vector subspace of V (possibly the zero subspace).
If $E_{\lambda} \neq\left\{0_{v}\right\}$ and $v \in E_{\lambda}$ is a nonzero vector, then we say that v is an eigenvector of f with associated eigenvalue λ.

- If A is an $n \times n$ matrix with \mathbb{C}-entries then we define the λ-eigenspace of A to be the λ-eigenspace of the linear morphism T_{A}. Similarly, we say that $v \in \mathbb{C}^{n}$ is an eigenvector of A with associated eigenvalue λ if v is an eigenvector of T_{A} with associated eigenvalue λ.

Lemma 2.1.2. Let $f \in \operatorname{End}_{\mathbb{C}}(V), v_{1}, \ldots, v_{k} \in V$ be eigenvectors of f with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$. Assume that $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$. Then, $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Proof: Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$. Let $T \subset S$ denote a maximal linearly independent subset (we know that a linearly independent subset exists, just take $\left\{v_{1}\right\}$; then choose a linearly independent subset of largest size). We want to show that $T=S$. Suppose that $T \neq S$, we aim to provide a contradiction. As $T \neq S$, then we can assume, without loss of generality, that $v_{k} \notin T$.
We are going to show that $v_{k} \notin \operatorname{span}_{\mathbb{C}} T$, and then use Corollary 1.3 .5 to deduce that $T \cup\left\{v_{k}\right\}$ is linearly independent, contradicting the maximality of T.
Suppose that $v_{k} \in \operatorname{span}_{\mathbb{C}} T$, we aim to provide a contradiction. So, as $v_{k} \in \operatorname{span}_{\mathbb{C}} T$ then

$$
v_{k}=c_{1} v_{i_{1}}+\ldots+c_{s} v_{i_{s}}
$$

where $c_{1}, \ldots, c_{s} \in \mathbb{C}, v_{i_{1}}, \ldots, v_{i_{s}} \in T$. Apply f to both sides of this equation to obtain

$$
\lambda_{k} v_{k}=c_{1} \lambda_{i_{1}} v_{i_{1}}+\ldots+c_{s} \lambda_{i_{s}} v_{i_{s}} .
$$

Taking this equation away from λ_{k} times the previous equation gives

$$
0_{V}=c_{1}\left(\lambda_{i_{1}}-\lambda_{k}\right) v_{i_{1}}+\ldots+c_{s}\left(\lambda_{i_{s}}-\lambda_{k}\right) v_{i_{s}}
$$

This is a linear relation among vectors in T so must be the trivial linear relation since T is linearly independent. Hence, we have, for each $j=1, \ldots, s$,

$$
c_{j}\left(\lambda_{i_{j}}-\lambda_{k}\right)=0
$$

and as $v_{k} \notin T$ (by assumption) we have $\lambda_{i_{j}} \neq \lambda_{k}$. Hence, we must have that $c_{j}=0$, for every j. Then, we have $v_{k}=0_{V}$, which is absurd as v_{k} is an eigenvector, hence nonzero by definition.
Therefore, our initial assumption that $v_{k} \in \operatorname{span}_{\mathbb{C}} T$ must be false, so that $v_{k} \notin \operatorname{span}_{\mathbb{C}} T$. As indicated above, this implies that $T \cup\left\{v_{k}\right\}$ is linearly independent, which contradicts the maximality of T. Therefore, T must be equal to S (otherwise $T \neq S$ and we run into the previous 'maximality' contradiction) so that S is linearly independent.

Corollary 2.1.3. Let $\lambda_{1}, \ldots, \lambda_{k}$ denote all eigenvalues of $f \in \operatorname{End}_{\mathbb{C}}(V)$. Then,

$$
E_{\lambda_{1}}+\ldots+E_{\lambda_{k}}=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}
$$

that is, the sum of all eigenspaces is a direct sum.
Proof: Left to the reader.
Consider the case when

$$
E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}=V
$$

what does this tell us? In this case, we can find a basis of V consisting of eigenvectors of f (each λ_{i}-eigenspace $E_{\lambda_{i}}$ is a subspace we can find a basis of it \mathcal{B}_{i} say. Then, since we have in this case

$$
\operatorname{dim} V=\operatorname{dim} E_{\lambda_{1}}+\ldots+\operatorname{dim} E_{\lambda_{k}}
$$

we see that

$$
\mathcal{B}=\mathcal{B}_{1} \cup \ldots \cup \mathcal{B}_{k}
$$

is a basis of $V{ }^{37}$) If we write $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ (where $n=\operatorname{dim} V$) then we see that

$$
[f]_{\mathcal{B}}=\left[\left[f\left(b_{1}\right)\right]_{\mathcal{B}} \cdots\left[f\left(b_{n}\right)\right]_{\mathcal{B}}\right],
$$

and since $f\left(b_{i}\right)$ is a scalar multiple of b_{i} we see that $[f]_{\mathcal{B}}$ is a diagonal matrix.
Theorem 2.1.4. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be such that

$$
E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}=V .
$$

Then, there exists a basis of V such that $[f]_{\mathcal{B}}$ is a diagonal matrix.
Corollary 2.1.5 (Diagonalisation). Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$ be such that there exists a basis of \mathbb{C}^{n} consisting of eigenvectors of A. Then, there exists a matrix $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that

$$
P^{-1} A P=D
$$

where D is a diagonal matrix. In fact, the entries on the diagonal of D are the eigenvalues of A.
Proof: Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ be an ordered basis of \mathbb{C}^{n} consisting of eigenvectors of A. Then, if $P=P_{\mathcal{S}^{(n) \leftarrow \mathcal{B}}}$ we have

$$
P^{-1} A P=D
$$

by applying Corollary 1.7 .7 to the morphism $T_{A} \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$. Here we note that $\left[T_{A}\right]_{\mathcal{B}}=D$ is a diagonal matrix by Theorem 2.1.4

Definition 2.1.6. We say that an endomorphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ is diagonalisable if there exists a basis $\mathcal{B} \subset V$ of V such that $[f]_{\mathcal{B}}$ is a diagonal matrix

We say that an $n \times n$ matrix $A \in \operatorname{Mat}(\mathbb{C})$ is diagonalisable if T_{A} is diagonalisable. This is equivalent to: A is diagonalisable if and only if A is similar to a diagonal matrix (this is discussed in the following Remark).

Remark 2.1.7. Corollary 2.1.5 implies that if there exists a basis of \mathbb{C}^{n} consisting of eigenvectors of A then A is diagonalisable. In fact, the converse is true: if A is diagonalisable and $P^{-1} A P=D$ then there is a basis of \mathbb{C}^{n} consisting of eigenvectors of A. Indeed, if we let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ where b_{i} is the $i^{\text {th }}$ column of P, then b_{i} is an eigenvector of A. Why does this hold? Since we have

$$
P^{-1} A P=D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)
$$

where $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ denotes the diagonal $n \times n$ matrix with d_{1}, \ldots, d_{n} on the diagonal, then we have

$$
A P=P D
$$

Then, the $i^{t h}$ column of the matrix $A P$ is $A b_{i}$, so that $A P=P D$ implies that $A b_{i}=d_{i} b_{i}$ (equate the columns of $A P$ and $P D$). Therefore, each column of P is an eigenvector of A.

2.1.1 Characteristic polynomial, diagonalising matrices

Corollary 2.1 .5 tells us conditions concerning when we can we can diagonalise a given matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$ - we must find a basis of \mathbb{C}^{n} consisting of eigenvectors of A. In order to this we need to determine how we can find any eigenvectors, let alone a basis consisting of eigenvectors.

Suppose that $v \in \mathbb{C}^{n}$ is an eigenvector of A with associated eigenvalue $\lambda \in \mathbb{C}$. This means we have

$$
A v=\lambda v \Longrightarrow\left(A-\lambda I_{n}\right) v=0_{\mathbb{C}^{n}},
$$

[^1]that is, $v \in \operatorname{ker} T_{A-\lambda l_{n}}$. Conversely, any nonzero $v \in \operatorname{ker} T_{A-\lambda l_{n}}$ is an eigenvector of A with associated eigenvalue λ. Note that
$$
E_{\lambda}=\operatorname{ker} T_{A-\lambda l_{n}} .
$$

Since $T_{A-\lambda l_{n}} \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$ we know, by Proposition 1.7.4 that injectivity of $T_{A-\lambda_{n}}$ is the same thing as bijectivity. Now, bijectivity of $T_{A-\lambda I_{n}}$ is the same thing as determining whether the matrix $A-\lambda I_{n}$ is invertible (using Theorem 1.7.4). Hence,

$$
\text { ker } T_{A-\lambda l_{n}} \neq\left\{0_{\mathbb{C}^{n}}\right\} \Leftrightarrow T_{A-\lambda l_{n}} \text { not bijective } \Leftrightarrow \operatorname{det}\left(A-\lambda I_{n}\right)=0 \text {. }
$$

Therefore, if v is an eigenvector of A with associated eigenvalue λ then we must have that $\operatorname{det}\left(A-\lambda I_{n}\right)=$ 0 and $v \in \operatorname{ker} T_{A-\lambda I_{n}}$. Moreover, if $\lambda \in \mathbb{C}$ is such that $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ then $\operatorname{ker} T_{A-\lambda l_{n}} \neq\left\{0_{\mathbb{C}}\right\}$ and any nonzero $v \in \operatorname{ker} T_{A-\lambda \lambda_{n}}$ is an eigenvector of A with associated eigenvalue λ.

Definition 2.1.8 (Characteristic polynomial). Let $f \in \operatorname{End}_{\mathbb{C}}(V)$. Define the characteristic polynomial of f, denoted $\chi_{f}(\lambda)$, to be the polynomial in λ with complex coefficients

$$
\chi_{f}(\lambda)=\operatorname{det}\left(\left[f-\lambda i d_{V}\right]_{\mathcal{B}}\right),
$$

where \mathcal{B} is any ordered basis of V
If $A \in \operatorname{Mat}_{n}(\mathbb{C})$ then we define the characteristic polynomial of A, denoted $\chi_{A}(\lambda)$, to be $\chi_{T_{A}}(\lambda)$. In this case, we have (using the standard basis $\mathcal{S}^{(n)}$ of \mathbb{C}^{n})

$$
\chi_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right) .
$$

Note that we are only considering λ as a 'variable' in the determinants, not an actual number. Also, note that the degree of $\chi_{f}(\lambda)=\operatorname{dim} V^{39}$ and the degree of $\chi_{A}(\lambda)=n$.
The characteristic equation of f (resp. A) is the equation

$$
\chi_{f}(\lambda)=0, \quad\left(\text { resp. } \chi_{A}(\lambda)=0 .\right)
$$

Example 2.1.9. Let

$$
A=\left[\begin{array}{ll}
1 & -3 \\
2 & -1
\end{array}\right] .
$$

Then,

$$
A-\lambda /_{2}=\left[\begin{array}{cc}
1-\lambda & -3 \\
2 & -1-\lambda
\end{array}\right] .
$$

Hence, we have

$$
\chi_{A}(\lambda)=(1-\lambda)(-1-\lambda)-2 .(-3)=\lambda^{2}+5 .
$$

Remark 2.1.10. 1. It should be apparent from the discussion above that the eigenvalues of a given linear morphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ (or matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$) are precisely the zeros of the characteristic equation $\chi_{f}(\lambda)=0\left(\right.$ or $\left.\chi_{A}(\lambda)=0\right)$.
2. Example 2.1.9 highlights an issue that can arise when we are trying to find eigenvalues of a linear morphism (or matrix). You'll notice that in this example there are no \mathbb{R}-eigenvalues: the eigenvalues are $\pm \sqrt{-5} \in \mathbb{C} \backslash \mathbb{R}$. Hence, we have complex eigenvalues that are not real. In general, given a matrix A with \mathbb{C}-entries (or a \mathbb{C}-linear morphism $f \in \operatorname{End}_{\mathbb{C}}(V)$) we will always be able to find eigenvalues - this follows from the Fundamental Theorem of Algebra:

[^2]Theorem (Fundamental Theorem of Algebra). Let $p(T)$ be a nonconstant polynomial with \mathbb{C} coefficients. Then, there exists $\lambda_{0} \in \mathbb{C}$ such that $p\left(\lambda_{0}\right)=0$. Hence, every such polynomial can be written as a product of linear factors

$$
p(T)=\left(T-\lambda_{1}\right)^{n_{1}}\left(T-\lambda_{2}\right)^{n_{2}} \cdots\left(T-\lambda_{k}\right)^{n_{k}}
$$

Note that this result is false if we wish to find a real root: for $p(T)=T^{2}+1$ there are no real roots (ie, no $\lambda_{0} \in \mathbb{R}$ such that $p\left(\lambda_{0}\right)=0$).

It is a consequence of this Theorem that we are considering in this section only $\mathbb{K}=\mathbb{C}$ as this guarantees that eigenvalues exist.

We are now in a position to find eigenvectors/eigenvalues of a given linear morphism $f \in \operatorname{End}_{\mathbb{C}}(V)$ (or matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$):

0 . Find an ordered basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of V to obtain $[f]_{\mathcal{B}}$. Let $A=[f]_{\mathcal{B}}$. This step is not required if you are asked to find eigenthings for a given $A \in M a t_{n}(\mathbb{C})$.

1. Determine the characteristic polynomial $\chi_{A}(\lambda)$ and solve the equation $\chi_{A}(\lambda)=0$. The roots of this equation are the eigenvalues of A (and f), denote them $\lambda_{1}, \ldots, \lambda_{k}$.
2. $v \in V$ is an eigenvector with associated eigenvalue λ_{i} if and only if $v \in \operatorname{ker}\left(f-\lambda_{i} \mathrm{id} v\right)$ if and only if $[v]_{\mathcal{B}}$ is a solution to the matrix equation

$$
\left(A-\lambda_{i} I_{n}\right) \underline{x}=\underline{0} .
$$

Example 2.1.11. This follows on from Example 2.1.9 and we have already determined Step 1. above, we have

$$
\lambda_{1}=\sqrt{-5}, \lambda_{2}=-\sqrt{-5}
$$

If we wish to find eigenvectors with associated eigenvalue λ_{1} then we consider the matrix

$$
A-\lambda_{1} I_{2}=\left[\begin{array}{cc}
1-\sqrt{-5} & -3 \\
2 & -1-\sqrt{-5}
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]
$$

and so obtain that

$$
\operatorname{ker} T_{A-\lambda_{1} 1_{2}}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \in \mathbb{C}^{2} \right\rvert\, x_{1}-3 x_{2}=0\right\}=\left\{\left.\left[\begin{array}{c}
3 x \\
x
\end{array}\right] \right\rvert\, x \in \mathbb{C}\right\}
$$

In particular, if we choose $x=1$, we see that $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is an eigenvector of A with associated eigenvalue $\sqrt{-5}$. Any eigenvector of A with associated eigenvalue $\sqrt{-5}$ is a nonzero vector in $\operatorname{ker} T_{A-\sqrt{-5} 1_{2}}$.
Definition 2.1.12. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ (or $A \in M a t_{n}(\mathbb{C})$). Supoose that

$$
\chi_{f}(\lambda)=\left(\lambda-\lambda_{1}\right)^{n_{1}}\left(\lambda-\lambda_{2}\right)^{n_{2}} \cdots\left(\lambda-\lambda_{k}\right)^{n_{k}}
$$

so that $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of f.

- define the algebraic multplicity of λ_{i} to be n_{i},
- define the geometric multiplicity of λ_{i} to be $\operatorname{dim} E_{\lambda_{i}}$.

Lemma 2.1.13. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ and λ be an eigenvalue of f. Then,
'alg. multplicity of $\lambda^{\prime} \geq$ 'geom. multiplicity of λ^{\prime}
Proof: This will be proved later after we have introduced the polynomial algebra $\mathbb{C}[t]$ and the notion of a representation of $\mathbb{C}[t]$ (Definition 2.4.2)

Proposition 2.1.14. Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$. Denote the eigenvalues of A by $\lambda_{1}, \ldots, \lambda_{k}$. Then, A is diagonalisable if and only if, for every i, the algebraic multplicity of λ_{i} is equal to the geometric multiplicity of λ_{i}.

Proof: (\Rightarrow) Suppose that A is diagonalisable and that

$$
\chi_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{n_{1}}\left(\lambda-\lambda_{2}\right)^{n_{2}} \cdots\left(\lambda-\lambda_{k}\right)^{n_{k}} .
$$

Then, by Remark 2.1.7, we can find a basis of eigenvectors of \mathbb{C}^{n}. Hence, we must have

$$
\mathbb{C}^{n}=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}}
$$

Then, by Lemma 2.1.13 and Corollary 1.5.19 we have

$$
n=\operatorname{dim} E_{\lambda_{1}}+\ldots+\operatorname{dim} E_{\lambda_{k}} \leq n_{1}+\ldots+n_{k}=n
$$

where we have used that the degree of the characteristic polynomial is n.
This implies that we must have $\operatorname{dim} E_{\lambda_{i}}=n_{i}$, for every i : indeed, we have

$$
\operatorname{dim} E_{\lambda_{1}}+\ldots \operatorname{dim} E_{\lambda_{k}}=n_{1}+\ldots+n_{k}
$$

with $\operatorname{dim} E_{\lambda_{i}} \leq n_{i}$, for each i. If $\operatorname{dim} E_{\lambda_{i}}<n_{i}$, for some i, then we would coontradict this previous equality. The result follows.
(\Leftarrow) Assume that $\operatorname{dim} E_{\lambda_{i}}=n_{i}$, for every i. Then, we know that

$$
V \supset E_{\lambda_{1}}+\ldots+E_{\lambda_{k}}=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}
$$

Then, since

$$
\operatorname{dim}\left(E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}\right)=\operatorname{dim} E_{\lambda_{1}}+\ldots+\operatorname{dim} E_{\lambda_{k}}=n_{1}+\ldots+n_{k}=n
$$

we see that $V=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}$, by Corollary 1.5.17. Hence, there is a basis of V consisting of eigenvectors of A so that A is diagonalisable.
As a consequence of Proposition 2.1.14 we are now in a position to determine (in practice) when a matrix A is diagonalisable. Following on from the above list to find eigenvectors we have
3. For each eigenvalue λ_{i} determine a basis of ker $T_{A-\lambda_{i} I_{n}}$ (by row-reducing the matrix $A-\lambda_{i} I_{n}$ to reduced echelon form, for example). Denote this basis $\mathcal{B}_{i}=\left(b_{1}^{(i)}, \ldots, b_{m_{i}}^{(i)}\right)$.
4. If $\left|\mathcal{B}_{i}\right|=m_{i}=n_{i}$, for every i, then A is diagonalisable. Otherwise, A is not diagonalisable. Recall that in Step 1. above you will have determined $\chi_{A}(\lambda)$, and therefore n_{i}.
5. If A is diagonalisable then define the matrix P to be the $n \times n$ matrix

$$
P=\left[b_{1}^{(1)} \cdots b_{n_{1}}^{(1)} b_{1}^{(2)} \cdots b_{n_{2}}^{(2)} \cdots b_{1}^{(k)} \cdots b_{n_{k}}^{(k)}\right]
$$

Then, Remark 2.1.7 implies that

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{k}, \ldots, \lambda_{k}\right)
$$

with each eigenvalue λ_{i} appearing n_{i} times on the diagonal.
Note that the order of the eigenvalues appearing on the diagonal depends on the ordering we put on \mathcal{B}.

Corollary 2.1.15. Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$. Then, if A has n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then A is diagonalisable.

Proof: Saying that A has n distinct eigenvalues is equivalent to saying that

$$
\chi_{A}(\lambda)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

so that the algebraic multiplicity n_{i} of each eigenvalue is 1 . Furthermore, λ_{i} is an eigenvalue if and only if there exists a nonzero $v \in \mathbb{C}^{n}$ such that $A v=\lambda_{i} v$. Hence, we have

$$
1 \leq \operatorname{dim} E_{\lambda_{i}} \leq n_{i}=1
$$

by Lemma 2.1.13 so that $\operatorname{dim} E_{\lambda_{i}}=1=n_{i}$, for every i. Hence, A is diagonalisable by the previous Proposition.

Example 2.1.16. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & -3 \\
2 & -1
\end{array}\right]
$$

from the previous examples. Then, we have $\chi_{A}(\lambda)=(\lambda-\sqrt{-5})(\lambda-(-\sqrt{-5}))$, so that Corollary 2.1.15 implies that A is diagonalisable.

In this section we have managed to obtain a useful criterion for when a given matrix A is diagonalisable. Moreover, this criterion is practically useful in that we have obtained a procedure that allows us to determine the diagonalisability of A by hand (or, at least, a criterion we could program a computer to undertake).

2.2 Invariant subspaces

([1], p.106-108)
In the proceeding sections we will be considering endomorphisms f of a \mathbb{C}-vector space V and some natural subspaces of V that we can associate to f. You may have seen some of these concepts before but perhaps not the terminology that we will adopt.

Definition 2.2.1 (Invariant subspace). Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ be a linear endomorphism of $V, U \subset V$ a vector subspace of V. We say that U is f-invariant or invariant with respect to f if, for every $u \in U$ we have $f(u) \in U$.
If $A \in \operatorname{Mat}_{n}(\mathbb{C}), U \subset \mathbb{C}^{n}$ a subspace, then we say that U is A-invariant or invariant with respect to A if U is T_{A}-invariant.

Example 2.2.2. 1 . Any subspace $U \subset V$ is invariant with respect to $\mathrm{id}_{V} \in \operatorname{End}_{\mathbb{C}}(V)$. In fact, any subspace $U \subset V$ is invariant with respect to the endomorphism $c \cdot \operatorname{id}_{V} \in \operatorname{End}_{\mathbb{C}}(V)$, where

$$
\left(c \cdot \mathrm{id}_{v}\right)(v)=c v, \quad \text { for every } v \in V
$$

In particular, every subspace is invariant with respect to the zero morphism of V.
2. Suppose that $V=U \oplus W$ and p_{U}, p_{W} are the projection morphisms introduced in Example 1.4.8. Then, U is p_{U}-invariant: let $u \in U$, we must show that $p_{U}(u) \in U$. Recall that if $v=u+w$ is the unique way of writing $v \in V$ as a linear combination of vectors in U and W (since $V=U \oplus W$), then

$$
p_{U}(v)=u, \quad p_{W}(v)=w .
$$

Hence, since $u \in V$ can be written as $u=u+0_{V}$, then $p_{U}(u)=u \in U$, so that U is p_{U}-invariant. Also, if $w \in W$ then $w=0_{V}+w$ (with $0_{v} \in U$), so that $p_{U}(w)=0_{v} \in W$. Hence, W is also p_{U}-invariant. Similarly, we have U and W are both p_{W}-invariant.
In general, if $V=U_{1} \oplus \cdots \oplus U_{k}$, with $U_{i} \subset V$ a subspace, then each U_{i} is $p_{U_{j}}$-invariant, for any i, j.
3. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ and suppose that λ is an eigenvalue of f. Then, E_{λ} is f-invariant: let $v \in E_{\lambda}$. Then, we have $f(v)=\lambda v \in E_{\lambda}$, since E_{λ} is a vector subspace of V.

Lemma 2.2.3. Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ and $U \subset V$ an f-invariant subspace of V.

- Denote $f^{k}=f \circ f \circ \cdots \circ f$ (the k-fold composition of f on V) then U is also f^{k}-invariant.
- If U is also g-invariant, for some $g \in \operatorname{End}_{\mathbb{C}}(V)$, then U is $(f+g)$-invariant.
- If $\lambda \in \mathbb{C}$ then U is a λf-invariant subspace.

Proof: Left to reader.
Remark 2.2.4. It is important to note that the converse of the above statements in Lemma 2.2 .3 do not hold.

For example, consider the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and the associated endomorphism $T_{A} \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{2}\right)$. Then, $T_{A}^{2}=T_{A^{2}}=T_{l_{2}}=\operatorname{id}_{\mathbb{C}^{2}}$ (because $A^{2}=I_{2}$), so that every subspace of \mathbb{C}^{2} is A^{2}-invariant. However, the subspace $U=\operatorname{span}_{\mathbb{C}}\left(e_{1}\right)$ is not A-invariant since $A e_{1}=e_{2}$.
We can also see that $A+(-A)=0_{2}$ so that every subspace of \mathbb{C}^{2} is $(A+(-A))$-invariant, while $U=\operatorname{span}_{\mathbb{C}}\left(e_{1}\right)$ is neither A-invariant nor $(-A)$-invariant.

Let $f \in \operatorname{End}_{\mathbb{C}}(V)$ and U be an f-invariant subspace. Suppose that $\mathcal{B}^{\prime}=\left(b_{1}, \ldots, b_{k}\right)$ is an ordered basis of U and extend to an ordered basis $\mathcal{B}=\left(b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right)$ of V. Then, the matrix of f relative to \mathcal{B} is

$$
[f]_{\mathcal{B}}=\left[\left[f\left(b_{1}\right)\right]_{\mathcal{B}} \cdots\left[f\left(b_{k}\right)\right]_{\mathcal{B}} \cdots\left[f\left(b_{n}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{cc}
A & B \\
0_{n-k, k} & C
\end{array}\right]
$$

where $A \in \operatorname{Mat}_{k}(\mathbb{C}), B \in \operatorname{Mat}_{k, n-k}(\mathbb{C}), C \in \operatorname{Mat}_{n-k, n-k}(\mathbb{C})$. This follows because $f\left(b_{i}\right) \in \operatorname{span}_{\mathbb{C}}\left\{b_{1}, \ldots, b_{k}\right\}$, for each $i=1, \ldots, k$.
Moreover, we can see that if $V=U \oplus W$ with U and W both f-invariant, and if $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ is an ordered basis of V, where \mathcal{B}_{1} is an ordered basis of U, \mathcal{B}_{2} is an ordered basis of W, then the matrix of f relative to \mathcal{B} is

$$
[f]_{\mathcal{B}}=\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

where $A \in \operatorname{Mat}_{\operatorname{dim}} U(\mathbb{C}), B \in \operatorname{Mat}_{\operatorname{dim}} W(\mathbb{C})$.
Definition 2.2.5. Let $A \in \operatorname{Mat}_{n}(\mathbb{C})$. We say that A is block diagonal if there are matrices $A_{i} \in$ $\operatorname{Mat}_{n_{i}}(\mathbb{C}), i=1, \ldots, k$, such that

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & A_{k}
\end{array}\right]
$$

So, our previous discussion implies the following
Lemma 2.2.6. Let $f \in \operatorname{End}_{\mathbb{C}}(V), U_{1}, \ldots, U_{k} \subset V$ subspaces of V that are all f-invariant and suppose that

$$
V=U_{1} \oplus \cdots \oplus U_{k}
$$

Then, there exists an ordered basis \mathcal{B} of V such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & A_{k}
\end{array}\right]
$$

[^0]: ${ }^{36}$ Try and recall why this was true.

[^1]: ${ }^{37}$ Why must this be a basis?

[^2]: ${ }^{38}$ If \mathcal{C} is any other basis of V then there is an invertible matrix P such that

 $$
 \left[f-\lambda_{\mathrm{id}}^{v}\right]_{\mathcal{C}}=P^{-1}\left[f-\lambda_{\mathrm{id}}^{v}\right]_{\mathcal{B}} P .
 $$

 Then, since $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$, for any matrices A, B, we see that $\operatorname{det}\left(\left[f-\lambda i d_{V}\right]_{\mathcal{C}}\right)=\operatorname{det}\left(\left[f-\lambda i d_{V}\right]_{\mathcal{B}}\right)$ (where we have also used $\left.\operatorname{det} P^{-1}=(\operatorname{det} P)^{-1}\right)$.
 ${ }^{39}$ This will be shown in homework.

