
2. Theorem 1.7.15 is just a restatement in terms of linear morphisms of a fact that you might have
come across before: every m × n matrix can be row-reduced to reduced echelon form using row
operations. Moreover, if we allow ‘column operations’, then any m×n matrix can be row/column-
reduced to a matrix of the form appearing in Theorem 1.7.15.

This requires the use of elementary (row-operation) matrices and we will investigate this result
during discussion.

3. Corollary 1.7.17 allows us to provide a classification of m×n matrices based on their rank: namely,
we can say that A and B are equivalent if there exists Q ∈ GLm(K), P ∈ GLn(K) such that

B = Q−1AP.

Then, this notion of equivalence defines an equivalence relation on Matm,n(K). Hence, we can
partition Matm,n(K) into dictinct equivalence classes. Corollary 1.7.17 says that the equivalence
classes can be labelled by the rank of the matrices that each class contains.

1.8 Dual Spaces (non-examinable)

In this section we are going to try and understand a ‘coordinate-free’ approach to solving systems of
linear equations and to prove some basic results on row-reduction; in particularm we will prove that
‘row-reduction works’. This uses the notion of the dual space of a K-vector space V . We will also
see the dual space appear when we are discussing bilinear forms and the adjoint of a linear morphism
(Chapter 3).

Definition 1.8.1. Let V be a K-vector space. We define the dual space of V , denoted V ∗, to be the
K-vector space

V ∗
def
= HomK(V ,K).

Therefore, vectors in V ∗ are K-linear morphisms from V to K; we will call such a linear morphism a
linear form on V .

Notice that dimK V ∗ = dimK V .

Example 1.8.2. Let V be a K-vector space, B = (b1, ... , bn) an ordered basis of V . Then, for each
i = 1, ... , n, we define b∗i ∈ V ∗ to be the linear morphism defined as follows: since B is a basis we know
that for every v ∈ V we can write a unique expression

v = c1b1 + ... + cnbn.

Then, define
b∗i (v) = ci ,

so that b∗i is the function that ‘picks out’ the i th entry in the B-coordinate vector [v ]B of v .

Proposition 1.8.3. Let V be a K-vector space, B = (b1, ... , bn) an ordered basis of V . Then, the
function

θB : V → V ∗ ; v = c1b1 + ... + cnbn 7→ c1b∗1 + ... + cnb∗n ,

is a bijective K-linear morphism. Moreover, B∗ = (b∗1 , ... , b∗n) is a basis of V ∗ called the dual basis of
B.

Proof: Linearity is left as an exercise to the reader.

To show that θB is bijective it suffices to show that θB is injective, by Theorem 1.7.4. Hence, we will
show that ker θB = {0V }: let v ∈ ker θB and suppose that

v = c1b1 + ... + cnbn.

Then,
0V ∗ = θB(v) = c1b∗1 + ... + cnb∗n ∈ V ∗.
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Hence, since this is an equality of morphisms, we see that evaluating both sides of this equality at bi ,
and using the defintion of b∗k , we have

0 = 0V ∗(bi ) = (c1b∗1 + ... + cnb∗n)(bi ) = c1b∗1 (bi ) + ... + cnb∗n(bi ) = ci , for every i ,

so that c1 = ... = cn = 0 ∈ K. Hence, v = 0 and the result follows.

Definition 1.8.4. Let f ∈ HomK(V , W ) be a linear morphism between K-vector spaces V , W . Then,
we define the dual of f , denoted f ∗, to be the function

f ∗ : W ∗ → V ∗ ; α 7→ f ∗(α) = α ◦ f .

Remark 1.8.5. 1. Let’s clarify just exactly what f ∗ is, for a given f ∈ HomK(V , W ): we have
defined f ∗ as a function whose inputs are linear morphisms α : W → K and whose output is the
linear morphism

f ∗(α) = α ◦ f : V →W → K ; v 7→ α(f (v)).

Since the composition of linear morphisms is again a linear morphism we see that f ∗ is a well-
defined function

f ∗ : W ∗ → V ∗.

We say that f ∗ pulls back forms on W to forms on V . Moreover, the function f ∗ is actually
a linear morphism, so that f ∗ ∈ HomK(W ∗, V ∗).33

2. Dual spaces/morphisms can be very confusing at first. It might help you to remember the following
diagram

V
f- W

K

α

?f ∗(α)
-

It now becomes clear why we say that f ∗ pulls back forms on W to forms on V .

3. The (−)∗ operation satisfies the following properties, which can be easily checked:

- for f , g ∈ HomK(V , W ) we have (f + g)∗ = f ∗ + g∗ ∈ HomK(W ∗, V ∗); for λ ∈ K we have
(λf )∗ = λf ∗ ∈ HomK(W ∗, V ∗),

- if f ∈ HomK(V , W ), g ∈ HomK(W , X ), then (g ◦ f )∗ = f ∗ ◦ g∗ ∈ HomK(X ∗, V ∗); id∗V =
idV ∗ ∈ EndK(V ∗).

4. Let B = (b1, ... , bn) ⊂ V , C = (c1, ... , cm) ⊂ W be ordered bases and f ∈ HomK(V , W ). Let
B∗, C∗ be the dual bases of B and C. Then, we have that the matrix of f ∗ with respect to C∗,B∗
is

[f ∗]B
∗

C∗ = [[f ∗(c∗1 )]B∗ · · · [f ∗(c∗m)]B∗ ],

an n ×m matrix.

Now, for each i , we have
f ∗(c∗i ) = λ1ib

∗
1 + ... + λnib

∗
n ,

so that

[f ∗(c∗i )]B∗ =

λ1i

...
λni

 , and λki = f ∗(c∗i )(bk) = c∗i (f (bk)).

As c∗i (f (bk)) is the i th entry in the C-coordinate vector of f (bk), we see that the ik th entry of
[f ]CB is λki , which is the ki th entry of [f ∗]B

∗

C∗ . Hence, we have, if A = [f ]CB, then

[f ∗]B
∗

C∗ = At .

33Check this.

50



Lemma 1.8.6. Let V , W be finite dimensional K-vector spaces, f ∈ HomK(V , W ). Then,

- f is injective if and only if f ∗ is surjective.

- f is surjective if and only if f ∗ is injective.

- f is bijective if and only if f ∗ is bijective.

Proof: The last statement is a consequence of the first two.

(⇒) Suppose that f is injective, so that ker f = {0V }. Then, let β ∈ V ∗ be a linear form on V , we
want to find a linear form α on W such that f ∗(β) = α. Let B = (b1, ... , bn) be an ordered basis of V ,
B∗ the dual basis of V ∗. Then, since f is injective, we must have that f (B) = (f (b1), ... , f (bn)) is a
linearly independent subset of W 34. Extend this to a basis C = (f (b1, ... , f (bn), cn+1, ... , cm) of W and
consider the dual basis C∗ of W ∗.

In terms of the dual basis B∗ we have

β = λ1b∗1 + ... + λnb∗n ∈ V ∗.

Consider
α = λ1f (b1)∗ + ...λnf (bn)∗ + 0c∗n+1 + ... + 0c∗m ∈W ∗.

Then, we claim that f ∗(α) = β. To show this we must show that f ∗(α)(v) = β(v), for every v ∈ V
(since f ∗(β),α are both functions with domain V ). We use the result (proved in Short Homework 4):
if f (bi ) = g(bi ), for each i , with f , g linear morphisms with domain V , then f = g . So, we see that

f ∗(α)(bi ) = λ1f ∗(f (b1)∗)(bi ) + ... + λnf ∗(f (bn)∗)(bi ) + 0V , using linearity of f ∗,

= λ1f (b1)∗(f (bi )) + ... + λnf (bn)∗(f (bi )) = λi , since f ∗ pulls back forms.

Then, it is easy to see that β(bi ) = λi , for each i . Hence, we must have f ∗(α) = β.

The remaining properties are left to the reader. In each case you will necessarily have to use some bases
of V and W and their dual bases.

Remark 1.8.7. 1. Lemma 1.8.6 allows us to try and show properties of a morphism by showing the
‘dual’ property of its dual morphism. You will notice in the proof that we had to make a choice
of a basis of V and W and that this choice was arbitrary: for a general K-vector space there is
no ‘canonical’ choice of a basis. In fact, every proof of Lemma 1.8.6 must make use of a basis
- there is no way that we can obtain these results without choosing a basis at some point. This
is slightly annoying as this means there is no ‘God-given’ way to prove these statements, all such
attempts must use some arbitrary choice of a basis.

2. Lemma 1.8.6 does NOT hold for infinite dimensional vector spaces. In fact, in the infinite dimen-
sional case it is not true that V is isomorphic to V ∗: the best we can do is show that there is an
injective morphism V → V ∗. This a subtle and often forgotten fact.

In light of these remarks you should start to think that the passage from a vector space to its dual can
cause problems because there is no ‘God-given’ way to choose a basis of V . However, these problems
disappear if we dualise twice.

Theorem 1.8.8. Let V be a finite dimensional K-vector space. Then, there is a ‘canonical isomorphism’

ev : V → (V ∗)∗ ; v 7→ (evv : α 7→ α(v))

Before we give the proof of this fact we will make clear what the function ev does: since V ∗ is a K-vector

space we can take its dual, to obtain (V ∗)∗
def
= V ∗∗. Therefore, evv must be a linear form on V ∗, so

must take ‘linear forms on V ’ as inputs, and give an output which is some value in K. Given the linear
form α ∈ V ∗, the output of evv (α) is α(v), so we are ‘evaluating α at v ’.

34You have already showed this in Short Homework 3.
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The reason we say that this isomorphism is ‘canonical’ is due to the fact that we did not need to use a
basis to define ev - the same function ev works for any vector space V , so can be thought of as being
‘God-given’ or ’canonical’ (there is no arbitrariness creeping in here).

Proof: ev is injective: suppose that evv = 0V ∗∗ , so that evv is the zero linear form on V ∗. If
v 6= 0V then we can extend the (linearly independent) set {v} to a basis of V (simply take a maximal
linearly independent subset of V that contains v). Then, v∗ ∈ V ∗ is the linear form that ‘picks out
the v -coefficient’ of an arbitrary vector u ∈ V when written as a linear combination using the basis
containing v . Then, we must have

0 = evv (v∗) = v∗(v) = 1,

which is absurd. Hence, we can’t have that v 6= 0V so that ev is injective.

Hence, since dim V = dim V ∗ = dim V ∗∗ we see that ev is an isomorphism.

1.8.1 Coordinate-free systems of equations or Why row-reduction works

We know that a system of m linear equations in n variables is the same thing as a matrix equation

Ax = b,

where A is the coefficent matrix of the system and x is the vector of variables. We are going to try and
consider systems of linear equations using linear forms.

Let S(n) = (e1 ... , en) be the standard basis of Kn, S(n),∗ the dual basis. Then, if α is a linear form on
Kn we see that

α = λ1e∗1 + ... + λne∗n .

Hence, if x = x1e1 + ... + xnen ∈ Kn then

α(x) = 0 ⇔ λ1x1 + ... + λnxn = 0.

Hence, kerα = {x ∈ Kn | λ1x1 + ... + λnxn = 0}.

Now, suppose that α1,α2, ... ,αm ∈ Kn ∗ are linear forms. Then,

m⋂
i=1

kerαi = {x ∈ Kn | αi (x) = 0, for every i} .

So, if αi = λi1e∗1 + ... + λine∗n , then

m⋂
i=1

kerαi =

x =

x1

...
xn

 ∈ Kn |
λ11x1 + ... + λ1nxn = 0

...
...

λm1x1 + ... + λmnxn = 0

 .

This is precisely the solution set of the matrix equation

Ax = 0,

where A = [λij ]. Hence, we have translated our ‘systems of linear equations’ problem into one involving
linear forms: namely, we want to try and understand

⋂
i kerαi , for some linear forms αi ∈ Kn ∗.

Now, how can we interpret elementary row operations in this new framework? Of course, swapping rows
is the same as just reordering the forms αi . What happens if we scale a row by λ ∈ K? This is the same
as considering the linear form λα ∈ Kn ∗. Similarly, adding row i to row j is the same as adding αi to
αj to obtain the linear form αi + αj . In summary, performing elementary row operations is the same as
forming linear combinations of the linear forms αi .

The whole reason we row-reduce a matrix A to a reduced echelon form U is because the solution sets of
Ax = 0 and Ux = 0 are the same (a fact we will prove shortly), and it is easier to determine solutions for
the matrix equation defined by U. Since we obtain U by applying elementary row operations to A, this
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is the same as doing calculations in spanK{αi} ⊂ Kn ∗, by what we have discussed above. Moreover,
since U is in reduced echelon form this means that the rows of U are linearly independent (this is easy
to see, by the definition of reduced echelon form) and because elementary row operations correspond to
forming linear combinations of linear forms, we have that the linear forms that correspond to the rows
of U must form a basis of the subspace spanK{αi} ⊂ Kn ∗.

Definition 1.8.9. Let V be a finite dimensional K-vector space, V ∗ its dual space. Let U ⊂ V be a
subspace of V and X ⊂ V ∗ a subspace of V ∗. We define

annV ∗U = {α ∈ V ∗ | α(u) = 0, for every u ∈ U}, and

annV X = {v ∈ V | evv (α) = 0, for every α ∈ X},
the annihilators of U (resp. X ) in V ∗ (resp. V ). They are subspaces of V ∗ (resp. V ), for any U (resp.
X ).

Proposition 1.8.10. Let V be a K-vector space, U ⊂ V a subspace. Then,

dim V = dim U + dim annV ∗U.

Proof: Let A = (a1, ... , ak) be a basis of U and extend to a basis B = (a1, ... , ak , ak+1, ... , an) of V .
Then, it is easy to see that a∗k+1, ... , a∗n ∈ annV ∗U. Moreover, if α ∈ annV ∗U then

α = λ1a∗1 + ... + λna∗n ,

and we must have, for every i = 1, ... , k, that

0 = α(ai ) = λi .

Hence, α ∈ spanK{a∗k+1, ... , a∗n} implying that (a∗k+1, ... , a∗n) is a basis of annV ∗U. The result now
follows.

Corollary 1.8.11. Let f ∈ HomK(V , W ) be a linear morphism between finite dimensional vector spaces.
Suppose that A = [f ]CB = [aij ] is the matrix of f with respect to the bases B = (bi ) ⊂ V , C = (cj) ⊂W .
Then,

rank f = max. no. of linearly ind’t columns of A = max. no. of linearly ind’t rows of A.

Proof: The first equality was obtained in Lemma 1.7.14. The maximal number of linearly independent
rows is equal to dim spanK{αi}, where

αi = ai1b∗1 + ... + ainb∗n ∈ V ∗.

Now, we have that

annV spanK{αi} = {v ∈ V | evv (αi ) = 0, for every i} = {v ∈ V | αi (v) = 0, for every i},

and this last set is nothing other than ker f .35 Thus, by the Rank Theorem (Theorem 1.7.13) we have

dim V = dim imf + dim ker f = rank f + dim annV spanK{αi} = rank f + (dim V − dim spanK{αi}),

using Proposition 1.8.10 in the last equality. Hence, we find

rank f = dim spanK{αi},

which is what we wanted to show.

Proposition 1.8.12 (Row-reduction works). Let A ∈ Matm,n(K), U be its reduced echelon form. Then,
x satisfies Ux = 0 if and only if Ax = 0.

Proof: Let α1, ... ,αm ∈ Kn ∗ be the linear forms corresponding to the rows of A, β1, ... ,βr be the
linear forms corresponding to the (nonzero) rows of U (we have just seen that r = rank A). Then, by our
discussions above, we know (βj) is a basis of W = spanK{αi}mi=1 ⊂ Kn ∗. In particular, spanK{βj} = W .
Now, we have

annKnW = {x ∈ Kn | αi (x) = 0, for every i} = {x ∈ Kn | βj(x) = 0, for every j}.

The result follows from this equality of sets since this common set is the solution set of Ax = 0 and
Ux = 0.

35Think about this!
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