
Proof: This is an exercise in row-reduction and one which you should already be familiar with.

Recall that for any linear morphism f : Kn → Km, there is a matrix Af called the standard matrix
associated to f such that

for every x ∈ Kn, f (x) = Af x .

Af is defined to be the m × n matrix whose i th column is the column vector f (ei ), where ei is the i th

standard basis vector of Kn (Example 1.2.6).
Then, it will be an exercise to show the following:

- f is injective if and only if Af has a pivot in every column, and

- f is surjective if and only if Af has a pivot in every row.

Therefore, since we are assuming that f is an isomorphism it must, by definition, be a bijective morphism.
Hence, it is both injective and surjective. By the preceding comments we must therefore have a pivot
in every column and every row. The only way that this can happen is if n = m.

We will see later, after the introduction of bases for vector spaces, that the converse if also true: namely,
if n = m then Kn and Km are isomorphic.

Proposition 1.4.12. Let V , W be K-vector spaces, E ⊂ V a subset of V . Let f : V → W be an
isomorphism from V to W and denote f (E ) = {f (e) | e ∈ E}, the image set of E .24 Then,

- E is linearly independent if and only if f (E ) is linearly independent.

- E spans V if and only if f (E ) spans W .

Proof: Left to the reader.

1.5 Bases, Dimension

In this section we will introduce the notion a basis of a K-vector space. We will provide several equivalent
approaches to the definition of a basis and see that the size of a basis is an invariant25 of a K-vector
space which we will call its dimension. You should have already seen the words basis and dimension in
your previous linear algebra course so do not abandon what you already know! We are just simply going
to provide some interesting(?) ways we can think about a basis; in particular, these new formulations
will allow us to extend our results to infinite dimensional vector spaces.

First, we must introduce a (somewhat annoying) idea to keep us on the straight and narrow when we
are considering bases, that of an ordered set.

Definition 1.5.1 (Ordered Set). An ordered set is a nonempty set S for which we have provided a
‘predetermined ordering’ on S .

Remark 1.5.2. 1. This definition might seem slightly confusing (and absurd); indeed, it is both of these
things as I have not rigorously defined what a ‘predetermined ordering’ is. Please don’t dwell too much
on this as we will only concern ourselves with orderings of finite sets (for which it is easy to provide an
ordering) or the standard ordering of N. An ordered set is literally just a nonempty set S whose elements
have been (strictly) ordered in some way.

For example, suppose that S = [3] = {1, 2, 3}. We usually think of S has having its natural ordering
(1, 2, 3). However, when we consider this ordering we are actually considering the ordered set (1, 2, 3)
and not the set S ... Confused? I thought so. We could also give the objects in S the ordering (2, 1, 3)
and when we do this we have a defined a different ordered set to (1, 2, 3).

24This is not necessarily the same as the image of f , imf , introduced before.
25In mathematics, when we talk of an invariant we usually mean an atrribute or property of an object that remains

unchanged whenever that object is transformed to another via an isomorphism (in an appropriate sense). For example,
you may have heard of the genus of a (closed) geometric surface: this is an invariant of a surface that counts the number
of ‘holes’ that exist within a (closed) surface. Perhaps you have heard or read the phrase that a mathematician thinks a
coffee mug and a donut are indistuingishable. This is because we can continuously deform a donut into a coffee mug, and
vice versa. This continuous deformation can be regarded as an ‘isomorphism’ in the world of (closed) geometric surfaces.
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If you are still confused, do not worry. Here is another example: consider the set

S = {Evans Hall, Doe Library, Etcheverry Hall}.

Now, there is no predetermined way that we can order this set: I might choose the ordering

(Evans Hall, Etcheverry Hall, Doe Library),

whereas you might think it better to choose an ordering

(Doe Library, Etcheverry Hall, Evans Hall).

Of course, neither of these choices of orderings is ‘right’ and we are both entitled to our different choices.
However, these ordered sets are different.

The reason we require this silly idea is when we come to consider coordinates (with respect to a given
ordered basis). Then, it will be extremely important that we declare an ordering of a basis and that we
are consistent with this choice.

2. Other examples of ordered sets include N,Z,Q and R with their usual orderings. We can also order
C in an ordering called a lexicographic ordering : here we say that z = a1 + b1

√
−1 < w = a2 + b2

√
−1

if and only if either, a1 < a2, or, a1 = a2 and b1 < b2. Think of this as being similar to the way that
words are ordered in the dictionary, except now we consider only ‘words’ consisting of two ‘letters’, each
of which is a real number.

3. What about some really bizarre set that might be infinite; for example, RR, the set of all functions
R→ R. How can we order this set? In short, I have no idea! However, there are some very deep results
from mathematical logic that say that, if we assume a certain axiom of mathematics (the so-called
Axiom of Choice), then every set can be ordered in some manner. In fact, it has been shown that the
Axiom of Choice of logically equivalent to this ordering property of sets! If you want to learn more then
you should consult Wikipedia and take Math 125A in the Fall Semester.26

Therefore, no matter how weird or massively infinite a set is, if you are assuming the Axiom of Choice
(which we are) then you can put an ordering on that set, even though you will (a priori) have no idea
what that ordering is! All that matters is that such an ordering exists.

Definition 1.5.3 (Basis; Ordered Basis). Let V be a K-vector space. A nonempty subset B ⊂ V is
called a (K)-basis of V if

- B is linearly independent (over K), and

- if B ⊂ B′ and B′ is linearly independent (over K), then B′ = B.

In this case, we say that B is maximal linearly independent.

An ordered (K)-basis of V is a (K)-basis of V that is an ordered set.

Remark 1.5.4. 1. You may have seen a basis of a K-vector space V defined as a subset B ⊂ V such
that B is linearly independent (over K) and such that spanK B = V . The definition given above is
equivalent to this and it has been used as the definition of a basis to encapsulate the intuition behind
a basis: namely, if K = R, we can think of a basis of an R-vector space as a choice of ‘independent
directions’ that allows us to consider well-defined coordinates. This idea of ‘independent directions’ is
embodied in the fact that a basis must be a linearly independent set; and the assumption of maximal
linear independence is what allows us to obtain well-defined coordinates.

However, just to keep our minds at ease our next result will show the equivalence between Definition
1.5.3 and the definition you have probably seen before.

26I have to admit that I do not know any mathematical logic but have come across these ideas during my own excursions
in mathematics. There are lots of many interesting results that can be obtained if one assumes the Axiom of Choice: one
is called the Banach-Tarski Paradox; another, which is directly related to our studies, is the existence of a basis for any
K-vector space. In fact, the Axiom of Choice is logically equivalent to the existence of a basis for any K-vector space.
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2. We will also see in the homework that we can consider a basis to be a minimal spanning set (in an
appropriate sense to be defined later); this is recorded in Proposition 1.5.9.

3. It is important to remember that a basis is a subset of V and not a subspace of V .

4. We will usually not call a basis of a K-vector space a ‘K-basis’, it being implicitly assumed that we
are considering only K-bases when we are talking about K-vector spaces. As such, we will only use the
terminology ‘basis’ from now on.

Proposition 1.5.5. Let V be a K-vector space and B ⊂ V a basis of V . Then, spanK B = V .
Conversely, if B ⊂ V is a linearly independent spanning set of V , then B is a basis of V

Proof: Let us denote W = spanK B. Then, because B ⊂ V we have W ⊂ V . To show that W = V
we are going to assume otherwise and obtain a contradiction. So, suppose that W 6= V . This means
that there exists v0 ∈ V such that v0 /∈ W . In particular, v0 /∈ B ⊂ W . Now, consider the subset
B′ = B ∪ {v0} ⊂ V .

Then, by Corollary 1.3.5, B′ is linearly independent.

Now, we use the maximal linear independence property of B: since B ⊂ B′ and B′ is linearly independent
we must have B′ = B, because B is a basis. Hence, v0 ∈ B. But this contradicts that fact that v0 /∈ B.
Therefore, our intial assumption, that W 6= V , must be false and we must necessarily have W = V .

Conversely, suppose that B is a linearly independent subset of V such that spanK B = V . We want to
show that B is a basis, so we must show that B satisfies the maximal linearly independent property of
Definition 1.5.3.

Therefore, suppose that B ⊂ B′ and that B′ is linearly independent; we must show that B′ = B. Now,
since B ⊂ B′ we have V = spanK B ⊂ spanK B′ ⊂ V , using Lemma 1.3.9. Hence, spanK B′ = V =
spanK B. Assume that B 6= B′; we aim to provide a contradiction. Then, for each w ∈ B′ \ B we have
w ∈ spanK B′ = spanK B, so that there exists an expression

w = λ1b1 + ... + λnbn,

where b1, ... , bn ∈ B. But this means that we have a nontrivial27 linear relation among vectors in B′
(recall that, as B ⊂ B′, we have b1, ... , bn ∈ B′). However, B′ is linearly independent so that no such
nontrivial linear relation can exist. Hence, our initial assumption of the existence of w ∈ B′ \ B is false,
so that B′ = B. The result follows.

Corollary 1.5.6. Let V be a K-vector space, B ⊂ V a basis of V . Then, for every v ∈ V there exists
a unique expression

v = λ1b1 + ... + λnbn,

where b1, ... , bn ∈ B, λ1, ... ,λn ∈ K, n ∈ N.

Proof: By Proposition 1.5.5, we have that spanK B = V so that, for every v ∈ V , we can write v as
a linear combination of vectors in B

v = λ1b1 + ... + λnbn, b1, ... , bn ∈ B,

where we can further assume that none of λ1, ... ,λn is equal to zero.

We need to show that this expression is unique: so, suppose that we can write v as a different linear
combination

v = µ1b′1 + ... + µkb′k , b′1, ... , b′k ∈ B,

again assuming that none of the µ1, ... ,µk are equal to zero.

Therefore, we have
λ1b1 + ... + λnbn = v = µ1b′1 + ... + µkb′k ,

giving a linear relation
λ1b1 + ... + λnbn − (µ1b′1 + ... + µkb′k) = 0V .

27Why is this linear relation nontrivial?
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Thus, since B is linearly independent this linear relation must be trivial and, furthermore, since we have
assumed that none of the λ’s or µ’s are zero, the only way that this can happen is if n = k and, without
loss of generality, bi = b′i and λi = µi . Hence, the linear combination given above is unique.

Corollary 1.5.7. Let V be a K-vector space, B = (b1, ... , bn) ⊂ V an ordered basis containing finitely
many vectors. Then, V is isomorphic to Kn.

Proof: This is just a simple restatement of Corollary 1.5.6: we define a function

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

where
v = λ1b1 + ... + λnbn,

is the unique expression for v coming from Corollary 1.5.6. Uniqueness shows that [−]B is indeed a
well-defined function.

It will be left to the reader to show that [−]B is a bijective K-linear morphism, thereby showing that it
is an isomorphism.

Definition 1.5.8. Let V be a K-vector space, B = {b1, ... , bn} ⊂ V an ordered basis containing finitely
many vectors. Then, the linear morphism

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

introduced above is called the B-coordinate map or B-coordinate morphism.

The following Proposition provides yet another viewpoint of the idea of a basis: it says that a basis is a
spanning set that satisfies a certain minimality condition.

Proposition 1.5.9. Let V be a K-vector space, B ⊂ V a basis of V . Then, B is a minimal spanning
set - namely,

- spanK B = V , and

- if B′ ⊂ B is such that spanK B′ = V then B′ = B.

A proof of this Proposition will appear as a homework exercise.

Despite all of these results on bases of vector spaces we have still yet to give the most important fact
concerning a basis: that a basis exists in an arbitrary K-vector space.

The proof of the general case requires the use of a particularly subtle lemma, called Zorn’s Lemma. You
can read about Zorn’s Lemma on Wikipedia and there you will see that Zorn’s Lemma is equivalent to
the Axiom of Choice (although the proof of this fact is quite difficult). You will also read on Wikipedia
that Zorn’s Lemma is logically equivalent to the existence of a basis for an arbitrary K-vector space.

Theorem 1.5.10. Let V be a K-vector space. Then, there exists a basis B ⊂ V of V .

Proof: Case 1: There exists a finite subset E ⊂ V such that spanK E = V .

In this case we will use the Elimination Lemma (Lemma 1.3.10) to remove vectors from E until we obtain
a linearly independent set. Now, if E is linearly independent then E is a linearly independent spanning
set of V and so, by Proposition 1.5.5, E is a basis of V . Therefore, assume that E is linearly dependent.
Then, if we write E as an ordered set E = {e1, ... , en}, we can use Lemma 1.3.10 to remove a vector
from E so that the resulting set is also a spanning set of V ; WLOG, we can assume that the vector we
remove is en. Then, define E (n−1) = E \ {en} so that we have spanK E (n−1) = V . If E (n−1) is linearly
independent then it must be a basis (as it is also a spanning set). If E (n−1) is linearly dependent then
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we can again use Lemma 1.3.10 to remove a vector from E (n−1) so that the resulting set is a spanning
set of V ; WLOG, we can assume that the vector we remove is en−1. Then, define E (n−2) = E \ {en−2}
so that we have spanK E (n−2) = V . Proceeding in a similar fashion as before we will either have that
E (n−2) is linearly independent (in which case it is a basis) or it will be linearly dependent and we can
proceed as before, removing a vector to obtain a new set E (n−3) etc.

Since E is a finite set this procedure must terminate after finitely many steps. The stage at which it
terminates will have a produced a linearly independent spanning set of V , that is, a basis of V (by
Proposition 1.5.5).

Case 2: There does not exist a finite spanning set of V .

In this case we must appeal to Zorn’s Lemma: basically, the idea is that we will find a basis by considering
a maximal linearly independent subset of V . Zorn’s Lemma is a technical result that allows us to show
that such a subset always exists and therefore, by definition, must be a basis of V .

Theorem 1.5.11 (Basis Theorem). Let V be a K-vector space and B ⊂ V a basis such that B has only
finitely many vectors. Then, if B′ is another basis of V then B′ has the same number of vectors as B.

Proof: Let B = {b1, ... , bn} and B′ = {b′1, ... , b′m} be two distinct bases of V . Then, by Corollary
1.5.7, we have isomorphisms

[−]B : V → Kn, and [−]B′ : V → Km.

Hence, we obtain an isomorphism (since the composition of two isomorphisms is again an isomorphism,
by Lemma 0.2.4)

[−]B′ ◦ [−]−1
B : Kn → Km,

where [−]−1
B′ : Km → V is the inverse morphism of [−]B′ . Thus, using Theorem 1.4.11, we must have

n = m, so that B and B′ have the same size.

Theorem 1.5.11 states that if V is a K-vector space admitting a finite basis B, then every other basis
of V must have the same size as the set B.

Definition 1.5.12. Let V be a K-vector space, B ⊂ V a basis of V containing finitely many vectors.
Then, the size of B, |B|, is called the dimension of V (over K) and is denoted dimK V , or simply dim V
when no confusion can arise. In this case we will also say that V is finite dimensional. If V is a K-vector
space that does not admit a finite basis then we will say that V is infinite dimensional.

The Basis Theorem (Theorem 1.5.11) ensures that the dimension of a K-vector space is a well-defined
number (ie, it doesn’t change when we choose a different basis of V ).

Now that we have introduced the notion of dimension of a K-vector space we can give one of the
fundamental results of finite dimensional linear algebra.

Theorem 1.5.13. Let V and W be K-vector spaces such that dimK V = dimK W <∞ is finite. Then,
V is isomorphic to W .

This result, in essence, classifies all finite dimensional K-vector spaces by their dimension. It tells us
that any linear algebra question we can ask in a K-vector space V (for example, a question concerning
linear independence or spans) can be translated to another K-vector space W which we know has the
same dimension as V . This follows from Proposition 1.4.12.

This principle underlies our entire approach to finite dimensional linear algebra: given a K-vector space
V such that dimK V = n, Theorem 1.5.13 states that V is isomorphic to Kn and Corollary 1.5.7 states
that, once we have a basis B of V , we can use the B-coordinate morphism as an isomorphism from V
to Kn. Of course, we still need to find a basis! We will provide an approach to this problem after we
have provided the (simple) proof of Theorem 1.5.13.

Proof: The statement that V and W have the same dimension is just saying that any basis of these
vector spaces have the same number of elements. Let B ⊂ V be a basis of V , C ⊂ W a basis of W .
Then, we have the coordinate morphisms

[−]B : V → Kn and [−]C : W → Kn,

33



both of which are isomorphisms. Then, the morphism

[−]−1
C ◦ [−]B : V →W ,

is an isomorphism between V and W .

Example 1.5.14. 1. The ordered set B = (e1, ... , en) ⊂ Kn is an ordered basis of Kn, where ei is
the column vector with a 1 in the i th entry and 0 elsewhere.

We will denote this basis S(n).

It is easy to show that S(n) is linearly independent and that spanK S(n) = Kn. Hence, we have
that dimK Kn = n.

2. Let S be a finite set and denote S = {s1, ... , sk}. Then, B = (es1 , ... , esk ) is an ordered basis of
KS , where esi is the elementary functions defined in Example 1.2.6.

We have that B is linearly independent: for, if there is a linear relation

c1es1 + ... + ckesk = 0KS ,

then, in particular, evaluating both sides of this equation (of functions) at si gives

ci = c1es1 (si ) + ... + ckesk (si ) = (c1es1 + ... + ckesk ) (si ) = 0KS (si ) = 0.

Hence, ci = 0, for every i , and B is linearly independent.

Furthermore, B is a spanning set of KS : let f ∈ KS . Then, we have an equality of functions

f = f (s1)es1 + f (s2)es2 + ... + f (sn)esn ,

which can be easily checked by showing that

f (t) = (f (s1)es1 + f (s2)es2 + ... + f (sn)esn) (t), ∀t ∈ S .

Hence, f ∈ spanK B so that, since f was arbitrary, we find spanK B = KS .

Hence, we see that dimK KS = |S |.

3. It is not true that if S is an infinite set then B = {es | s ∈ S} is a basis of KS , even though B is
a linearly independent set. This is discussed in a worksheet.

4. As a particular example of 2 above, we see that Matm,n(K) has as a basis the elementary matrices
B = {eij | (i , j) ∈ {1, ... , m} × {1, ... , n}}. These are those matrices that have 0s for all entries
except for a 1 in the ij-entry.

Hence, we see that dimK Matm,n(K) = mn.

1.5.1 Finding a basis

In this section we will provide criteria for determining when a subset E of a finite dimensional K-vector
space V is a basis. Hopefully, this is just a recollection of results that you have seen before in your first
linear algebra course.

Throughout this section we will fix a finite dimensional K-vector space V such that dimK V = n and an
ordered basis B = (b1, ... , bn) (which we know exists by Theorem 1.5.10).

Proposition 1.5.15. Let E ⊂ V be a nonempty subset of V .

a) If E is linearly independent, then |E | ≤ n.
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b) If spanK E = V , then |E | ≥ n,

c) If E ⊂ V is linearly independent and F ⊂ V is a spanning set, so that spanK F = V , then either
k = n and E is a basis of V ; or, E can be extended to a basis of V by adding to E vectors from F .
This means, if E = {e1, ... , ek} then we can find fk+1, ... , fn ∈ F such that {e1, ... , ek , fk+1, ... , fn}
is a basis of V .

Proof: a) Suppose that E is linearly independent, finite and nonempty and that |E | > n, say
|E | = k > n and denote E = {e1, ... , ek}; we aim to provide a contradiction.

In this case, E can’t be a basis of V , for otherwise we would contradict the Basis Theorem (Theorem
1.5.11), as E does not have n vectors. Hence, since E is linearly independent we must have that
spanK E 6= V (otherwise E would be a basis, by Proposition 1.5.5). Moreover, we can’t have B ⊂
spanK E as then we would have V = spanK B ⊂ spanK E implying that V = spanK E (because we
would have spanK E ⊂ V and V ⊂ spanK E ). Therefore, we can assume, without loss of generality,
that b1 /∈ spanK E so that, by the Elimination Lemma (Lemma 1.3.10), we have that E1 = E ∪ {b1} is
a linearly independent set. Then, we can’t have that spanK E1 = V , else we would contradict the Basis
Theorem. Thus, spanK E1 6= V . Now, without loss of generality, we can assume that b2 /∈ spanK E1;
otherwise, b2, ... , bn ∈ spanK E1 and b1 ∈ spanK E1, so that B ⊂ spanK E1 giving V = spanK E1. Denote
E2 = E1 ∪ {b2}. Then, again by the Elimination Lemma, we have that E2 is a linearly independent
set such that spanK E2 6= V (else we would contradict the Basis Theorem). Proceeding in this way we
obtain subsets

Ei = Ei−1 ∪ {bi}, i = 1, ... , n, with E0
def
= E ,

that are linearly independent. In particular, we obtain the subset En = E ∪B that is linearly independent
and strictly contains B, contradicting the maximal linearly independent property of a basis. Therefore,
our initial assumption that |E | > n must be false, so that |E | ≤ n.

If E is infinite, then every subset of E is linearly independent. Hence, we can find arbitrarily large
linearly independent finite subsets of E . Choose a subset E ′ such that |E ′| > n. Then we are back in
the previous situation, which we have just cannot hold. Hence, we can’t have that E is infinite.

b) This is consequence of the method of proof for Case 1 of Theorem 1.5.10. Indeed, either E is an
infinite set and there is nothing to prove, or E is a finite set. Then, as in the proof of Theorem 1.5.10,
we can find a basis E ′ ⊂ E contained in E . Hence, by the Basis Theorem, we see that n = |E ′| ≤ |E |.

c) Let E ⊂ V be a linearly independent subset of V . Then, by a) we know that |E | ≤ n. Let us write
E = {e1, ... , ek}, so that k ≤ n.

Case 1: k = n : In this case we have that E is a basis itself. This follows by the maximal linear
independence property defining a basis as follows: by a) we know that every linearly independent set
must have at most n vectors in it. Thus, if E ⊂ E ′ and E ′ is linearly independent, then we must
necessarily have E ′ = E , since E ′ cannot have any more than n vectors. This is just the maximal linear
independence property defining a basis. Hence, E is a basis of V .

Case 2: k < n: Now, by b), we know that any spanning set of V must have at least n vectors in it.
Hence, since k < n we have spanK E ⊂ V while spanK E 6= V . We claim that there exists fk+1 ∈ F
such that fk+1 /∈ spanK E . For, if not, then we would have F ⊂ spanK E , so that V = spanK F ⊂
spanK E ⊂ V , which is absurd as spanK E 6= V . Then, F1 = E ∪ {fk+1} is a linearly independent
set, by the Elimination Lemma. If spanK F1 = V then we have that F1 is a basis and we are done.
Otherwise, spanK F1 6= V . As before, we can find fk+2 ∈ F such that fk+2 /∈ spanK F1 and obtain linearly
independent set F2 = F1 ∪ {fk+2}. Then, either spanK F2 = V and we are done, or spanK F2 6= V and
we can define a linearly independent set F3. Proceeding in this manner we either obtain a basis Fi , for
some i < n − k , or we obtain a linearly independent set Fn−k and we are back in Case 1, so that Fn−k
must be a basis. In either case, we find a basis of the required form.

Corollary 1.5.16. Let V be a K-vector space such that dimK V = n and E ⊂ V .

- If E is linearly independent and |E | = n, then E is a basis of V .

- If spanK E = V and |E | = n, then E is a basis of V .
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Proof: The first statement was shown in c). The second statement is left to the reader.

Corollary 1.5.17. Let V be a K-vector space such that dimK V = n, U ⊂ V a subspace. Then,
dimK U ≤ n. Moreover, if dimK U = n, then U = V .

Proof: Let B′ ⊂ V be a basis of U. Then, B′ is a linearly independent subset of U, therefore a
linearly independent subset of V . Hence, by Proposition 1.5.15, we have that B′ contains no more than
n vectors. By the definition of dimension the result follows.

Moreover, suppose that dimK U = n. Then, there is a subset B′ of U that is linearly independent and
contains exactly n vectors. Hence, by the previous Corollary, B′ is a basis of V . So, since spanK B′ = U
and spanK B′ = V we have U = V .

Corollary 1.5.18. Let V be a K-vector space, U ⊂ V a subspace. Then, any basis of U can be extended
to a basis of V .

Proof: Let B′ = {b′1, ... , b′r} be a basis of U and B = {b1, ... , bn} a basis of V ; in particular,
spanK B = V . Then, by Proposition 1.5.15, part c), we can extend B′ to a basis of V using vectors
from B.

Corollary 1.5.19. Let V be a K-vector space, U ⊂ V a subspace. Then, there exists a subspace W ⊂ V
such that V = U ⊕W . Moreover, in this case we have

dim V = dim U + dim W ,

and if B′ is any basis of U and B′′ is any basis of W then B = B′ ∪ B′′ is a basis of V .

Proof: Let B′ = {b′1, ... , b′r} be a basis of U and extend to a basis B = {b′1, ... , b′r , br+1, ... , bn} of
V , using the previous Corollary. Then, let W = spanK{br+1, ... , bn}. Then, since B is a basis we have
that V = U + W (as every vector in v can be expressed as a linear combination of vectors from B). We
need to show that U ∩W = {0V }. So, let x ∈ U ∩W . Then, we have

x = λ1b′1 + ... + λrb
′
r ∈ U,

and
x = µ1br+1 + ... + µn−rbn ∈W .

Hence,
µ1br+1 + ... + µn−rbn = x = λ1b′1 + ... + λrb

′
r ,

giving a linear relation

λ1b′1 + ... + λrb
′
r − (µ1br+1 + ... + µn−rbn) = 0V .

Thus, as B is linearly independent then this linear relation must be trivial so that

µ1 = ... = µn−r = λ1 = ... = λr = 0;

hence, x = 0V so that U ∩W = {0V }.

The statement concerning the dimension of V follows from the above proof.

The final statement follows from a dimension count and a simple argument showing that B = B′ ∪ B′′
is a linearly independent set. Now we can use Corollary 1.5.16 to deduce that B is a basis of V . The
details are left to the reader.

We end this section with an important formula relating the dimension of subspaces, the so-called di-
mension formula.

Proposition 1.5.20 (Dimension formula). Let V be a K-vector space, U, W ⊂ V two subspaces of V .
Then,

dim(U + W ) = dim U + dim W − dim U ∩W .

Note that here we are not assuming that V = U + W .
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Proof: Let X = U + W so that X ⊂ V is a subspace of V and can be considered as a K-vector
space in its own right. Moreover, we have that U, W , U ∩W ⊂ X are all subspaces of X and U ∩W is
a subspace of both U and W .

Now, if U ⊂W (resp. W ⊂ U) then we have U + W = W (resp. U + W = U) and U ∩W = U (resp.
U ∩W = W ). So, in this case the result follows easily.

Therefore, we will assume that U * W and W * U so that U ∩W ⊂ U and U ∩W ⊂ W while
U ∩W 6= U, W . Using the previous Corollary we have that there are subspaces U ′ ⊂ U and W ′ ⊂ W
such that

U = (U ∩W )⊕ U ′, and W = (U ∩W )⊕W ′.

Let B1 be a basis of U ∩W , B2 a basis of U ′ and B3 a basis of W ′. We claim that B = B1 ∪ B2 ∪ B3

is a basis of U + W . Indeed, since B1 ∪B2 is a basis of U and B1 ∪B3 is a basis of W (by the previous
Corollary), we certainly have that spanK B = U + W 28. Furthermore, it is straightforward to show that
B is linearly independent29 thereby giving that B is a basis of U + W . Thus,

dim(U + W ) = dim U ′ + dim U ∩W + dim W ′,

and
dim U = dim U ′ + dim U ∩W , and dim W = dim W ′ + dim U ∩W .

Comparing these equations gives the result.

Example 1.5.21. 1. The subset

E =


1

1
0

 ,

−1
0
1

 ,

3
1
1

 ⊂ Q3,

defines a basis of Q3. Since E has consists of 3 vectors and dimQ Q3 = 3, we need only show that
E is linearly independent (Corollary 1.5.16). So, by Example 1.3.6, this amounts to showing that
the homogeneous matrix equation

Ax = 0,

has only one solution, namely the zero solution, where A is the matrix whose columns are the
vectors in E . Now, since we can row-reduce1 −1 3

1 0 1
0 1 1

 ∼ I3,

we find that E is indeed linearly independent, so that it must be a basis, by Corollary 1.5.16.

2. Consider the subset

E =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

]}
⊂ Mat2(R).

Then, E is a basis of Mat2(Q). Again we use Corollary 1.5.16: since E has 4 vectors and
dimR Mat2(R) = 2.2 = 4 we need only show that E is linearly independent or that it spans
Mat2(R). We will show that spanR E = Mat2(R). So, let

A =

[
a11 a12

a21 a22

]
.

28The reader should check this.
29Again, this is an exercise left to the reader.
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Then, we have

A = a11

[
1 0
0 0

]
+ a22

[
0 0
0 1

]
+

(a12 + a21)

2

[
0 1
1 0

]
+

(a12 − a21)

2

[
0 1
−1 0

]
,

so that A ∈ spanR E . Since A was arbitrary we must have spanR E = Mat2(R).

Furthermore, if we consider the ordered basis

B =

([
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

])
,

then the B-coordinate morphism is the linear morphism

[−]B : Mat2(R)→ R4 ; A =

[
a11 a12

a21 a22

]
7→


a11

(a12 + a21)/2
a22

(a12 − a21)/2


1.6 Coordinates

([1], Ch. 5)

Throughout this section we assume that all K-vector spaces are finite dimensional.

1.6.1 Solving problems

The results of the previous section form the theoretical underpinning of how we hope to solve linear
algebra problems in practice. The existence of an ordered basis B = (b1, ... , bn) of a K-vector space V
from Theorem 1.5.10, such that n = dim V , along with Corollary 1.5.6 and Corollary 1.5.7 allow us to
introduce the notion of B-coordinates on V : we have an isomorphism

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

where v = λ1b1 + ... + λnbn is the unique expression determined in Corollary 1.5.6. Then, using
Proposition 1.4.12, we know that questions concerning linear independence and spans of subsets in V
have the same answers if we translate them to questions in Kn via the B-coordinate map. Since we are
then talking about sets of column vectors we can use row-reduction methods to answer the question
that was originally posed concerning vectors in V .

So, we have the following approach to solving questions about linear independence/spans of subsets
E ⊂ V in finite dimensional K-vector spaces V (we suppose that n = dim V ):

0. If |E | > n then E is linearly dependent; if |E | < n then it is not possible that E spans V . This
follows from Proposition 1.5.15.

1. Determine an ordered basis B of V using, for example, Corollary 1.5.16.

2. Using the B-coordinate morphism [−]B : V → Kn, determine the set [E ]B = {[e]B | e ∈ E}.

3. Using row-reduction determine the linear independence/spanning properties of the set [E ]B.

4. By Proposition 1.4.12, linear independence/spanning properties of [E ]B are the same as those of
E ⊂ V .
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1.6.2 Change of basis/change of coordinates

We have just seen an approach to solving linear independence/spanning property problems for a (finite
dimensional) K-vector space V . However, it is not necessarily true that everyone will choose the same
ordered basis B of V : for example, we could choose a different ordering on the same set B, leading to
a different ordered basis; or, you could choose an ordered basis that is a completely distinct set from an
ordered basis I may choose.

Of course, this should not be a problem when we solve problems as the linear independence/spanning
properties of a subset E should not depend on how we want to ‘view’ that subset, ie, what coordinates
we choose. However, given two distinct ordered bases B1 and B2 of V , it will be the case in general that
[E ]B1 and [E ]B2 are different sets so that if we wanted to compare our work with another mathematician
we we would need to know how to translate between our two different ‘viewpoints’ we’ve adopted, ie,
we need to know how to change coordinates.

Proposition 1.6.1 (Change of coordinates). Let B = {b1, ... , bn} and C = {c1, ... , cn} be two ordered
bases of V . Let PC←B be the n × n matrix

PC←B = [[b1]C[b2]C · · · [bn]C] ,

so that the i th column is [bi ]C , the C-coordinates of bi . Then, for every v ∈ V , we have

[v ]C = PC←B[v ]B.

Moreover, if A ∈ Matn(K) is such that

[v ]C = A[v ]B, ∀v ∈ V ,

then A = PC←B.

We call PC←B the change of coordinates matrix from B to C. The formula just given tells us that, given
the B-coordinates of a vector v ∈ V , to obtain the C-coordinates of v we must multiply the B-coordinate
vector of v on the left by PC←B. Moreover, we see that the change of coordinate matrix from B to C
is uniquely characterised by this property.

Remark 1.6.2. 1. We can organise this data into a diagram

V

	

Kn

TPC←B

-

[−]B

�
Kn

[−]C

-

where
TPC←B : Kn → Kn ; x 7→ PC←Bx .

is the linear morphism defined by the matrix PC←B.

The symbol ‘	’ that appears is to be translated as

‘the composite morphism TPC←B ◦ [−]B : V → Kn equals the morphism [−]C : V → Kn.’

That is, if we start at (the domain) V and follow the arrows either to the left or right then we get the
same answer in (the codomain) Kn (at the bottom right of the diagram). In this case, we say that the
diagram commutes.

We could also write this diagram as

V
idV - V

	

Kn

[−]B
?

TPC←B

- Kn

[−]C
?
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where idV : V → V is the identity morphism from Example 1.4.8. The reason we are also considering
this diagram will become apparent in the following sections.

2. Suppose that PB←C is the change of coordinate matrix from C to B. This means that for every
v ∈ V we have

[v ]B = PB←C[v ]C .

Then, if we want to change back to C-coordinates, we simply multply on the left by PC←B so that

[v ]C = PC←B[v ]B = PC←BPB←C[v ]C , ∀v ∈ V .

This means that the morphism

TPC←BPB←C : Kn → Kn ; x 7→ PC←BPB←Cx ,

is the identity morphism idKn of Kn; this uses the fact that V is isomorphic to Kn.30

We will see later on that this implies that PC←B and PB←C are invertible matrices and are inverse to
each other:

PC←BPB←C = In = PB←CPC←B,

where In is the n × n identity matrix.

This should not be surprising: all we have shown here is that the operations ‘change coordinates from
B to C’ and ‘change coordinates from C to B’ are inverse to each other.

Of course, you can also obtain this result knowing that a matrix with linearly independent columns is
invertible; this should be familiar to you from your first linear algebra course. However, we have just
stated a stronger result: not only have we determined that a change of coordinate matrix is invertible,
we have provided what the inverse actually is.

Example 1.6.3. 1. Consider the two ordered bases S(3) = (e1, e2, e3) and

B =

0
2
1

 ,

 0
1
−1

 ,

1
1
1


of Q3. Then, what is the change of coordinate matrix from B to S(3)? We use the formula given above:
we have

PS(3)←B = [[b1]S(3) [b2]S(3) [b3]S(3) ] =

0 0 1
2 1 1
1 −1 1

 .

Therefore, the change of coordinate matrix from B to S(3) is simply the matrix whose i th column is the
i th basis vector of the ordered basis B.

Moreover, if we want to determine the change of coordinate matrix from S(3) to B we need to determine
the inverse matrix of PS(3)←B, using row-reduction methods, for example.

2. In general, if S(n) = (e1, ... , en) is the standard ordered basis of Kn and B = (b1, ... , bn) is any other
ordered basis of Kn, then the change of coordinate matrix from B to S(n) is

PS(n)←B = [b1 b2 · · · bn].

Again, if we wish to determine the change of coordinate matrix from S(n) to B we need to determine
the inverse matrix of PS(n)←B. This may not be so easy for large matrices.

30Why is this true?
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