
1.4 Linear Morphisms, Part I

We have given an introduction to vector spaces and we have introduced the fundamental ideas of linear
(in)dependence and spans. In this section we will consider the relationships that can exist between
distinct vector spaces and which respect the ‘linear algebraic’ structure of vector spaces: this is thel
notion of a linear morphism between vector spaces.

Definition 1.4.1. Let V and W be K-vector spaces.

• A function
f : V →W ; v 7→ f (v),

is called a K-linear morphism between V and W if the following properties hold:

(LIN1) for every u, v ∈ V , we have
f (u + v) = f (u) + f (v);

where the ‘+’ on the LHS of this equation is addition in V and the ‘+’ on the RHS of this equation
is addition in W ,

(LIN2) for every u ∈ V , λ ∈ K, we have
f (λv) = λf (v);

where the scalar multiplication on the LHS of this equation is occuring in V and on the RHS of
this equation it is occuring in W .

In fact, we can subsume both of these properties into

(LIN) for every u, v ∈ V , λ ∈ K, we have

f (u + λv) = f (u) + λf (v),

where the scalar multiplication on the LHS of this equation is occuring in V and on the RHS of
this equation it is occuring in W .

• For given K-vector spaces V and W we denote the set of all K-linear morphisms by

HomK(V , W ) = {f : V →W | f linear}.

• The set of all K-linear morphisms from a K-vector space V to itself is denoted

EndK(V )
def
= HomK(V , V ).

A vector f ∈ EndK(V ) is called an endomorphism of V . For every K-vector space V there exists the
identity morphism of V , denoted idV ∈ EndK(V ). See the upcoming examples (Example 1.4.8,).

• We will use the adjectives ‘injective’, ‘surjective’ and ‘bijective’ to describe linear morphisms that
satisfy the corresponding conditions.

• A bijective linear morphism will be called an isomorphism.

The set of all bijective K-linear morphisms from a K-vector space V to itself is denoted

GLK(V ) = {f ∈ EndK(V ) | f is bijective}.

We will see that, in the world of linear algebra, K-vector spaces that are isomorphic have the same linear
algebraic properties (and, therefore, can be regarded as ‘the same’).

Notation. You may have seen the phrases ‘linear map’, ‘linear transformation’ or ‘linear function’:
these all mean the same thing, namely, a function satisfying (LIN) above. We are using the word
‘morphism’ to emphasise the fact that a linear morphism is a function that ‘changes’ one vector space
to another. This is also the fancy grown-up word that certain mathematicians use (myself included) in
daily parlance.

24



Remark 1.4.2. We will see in a later section (Theorem ??) that, for f ∈ EndK(V ), with V a finite
dimensional K-vector space

‘f injective’ =⇒ ‘f surjective’ =⇒ ’f bijective’ =⇒ ‘f injective’,

so that all of these notions are equivalent for finite-dimensional K-vector spaces.

Lemma 1.4.3. Let f ∈ HomK(V , W ) be a K-linear morphism between the K-vector spaces V and W .
Then, f (0V ) = 0W .

Proof: We have
f (0V ) = f (0V + 0V ) = f (0V ) + f (0V ), by LIN1,

and subtracting f (0V ) from both sides of this equation we obtain

0W = f (0V ).

Definition 1.4.4. Let V , W be K-vector spaces and f ∈ HomK(V , W ). Then,

- the kernel of f is the subset

ker f = {v ∈ V | f (v) = 0W } ⊂ V ,

- the image of f is the subset

imf = {w ∈W | w = f (v), for some v ∈ V } ⊂W .

Proposition 1.4.5. Let f ∈ HomK(V , W ), for K-vector spaces V , W . Then,

- ker f is a subspace of V ,

- imf is a subspace of W .

Proof: Left to the reader.

Definition 1.4.6. Let V , W be K-vector spaces. Then, we will define the structure of a K-vector space
on the set HomK(V , W ): define the K-vector space (HomK(V , W ),α,σ) where

α : HomK(V , W )×HomK(V , W )→ HomK(V , W ) ; (f , g) 7→ (α(f , g) : V →W ; v 7→ f (v) + g(v)) ,

σ : K× HomK(V , W )→ HomK(V , W ) ; (λ, f ) 7→ (σ(λ, f ) : V →W ; v 7→ λf (v)) .

As usual we will write
α(f , g) = f + g , and σ(λ, f ) = λf .

Whenever we discuss HomK(V , W ) as a K-vector space, it will be this K-vector space structure
that we mean.

There are a couple of things that need to be checked to ensure that the above defintion of K-vector
space on HomK(V , W ) makes sense:

1. You need to check that the new functions f + g and λf that we have defined, for f , g ∈
HomK(V , W ),λ ∈ K, are actually elements in HomK(V , W ), that is, that they are K-linear
morphisms.

2. The zero vector 0HomK(V ,W ) ∈ HomK(V , W ) is the K-linear morphism

0HomK(V ,W ) : V →W ; v 7→ 0W .
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3. Given f ∈ HomK(V , W ) we define the negative of f to be the K-linear morphism

−f : V →W ; v 7→ −f (v),

where −f (v) is the negative (in W ) of the vector f (v), for each v ∈ V .

Remark 1.4.7. 1. The fact that HomK(V , W ) has the structure of a K-vector space will be important
when we come to consider the Jordan canonical form. In that case, we will be considering the K-vector
space EndK(V ) and using some of its basic linear algebraic structure to deduce important properties of
K-linear morphisms f : V → V .

2. We can consider HomK(V , W ) ⊂ W V as a subset of the K-vector space of (arbitrary) functions
(recall Example 1.2.6)

W V = {f : V →W }.

In fact, HomK(V , W ) ⊂W V is a vector subspace.

However, the condition of K-linearity that we have imposed on the functions is very strong and there are
far ‘fewer’ K-linear functions than there are arbitrary functions. For example, we will see in a proceeding
section that HomK(V , W ) is finite-dimensional, whereas W V is infinite-dimensional (assuming W 6= Z ,
the trivial vector space introduced in Example 1.2.6, 621).

3. It is not true that GLK(V ) is a vector subspace of EndK(V ), for any K-vector space V that is
not the trivial K-vector space Z with one element (cf. Example 1.2.6). For example, the zero vector
0EndK(V ) /∈ GLK(V ) since 0EndK(V ) : V → V is not an injective function: if v ∈ V is nonzero in V then

0EndK(V )(v) = 0V = 0EndK(V )(0V ),

where we have used Lemma 1.4.3 for the RHS equality.

We will now give some basic examples of K-linear morphisms. Most of these should be familiar from
your first linear algebra class and, as such, you should feel pretty at ease with showing that the given
functions are linear.

Example 1.4.8. 1. Consider the function

f : Q4 → Q2 ;


x1

x2

x3

x4

 7→ [
x1 − x4

x3 + 2
7 x1

]
.

Then, f is Q-linear.

2. The function

f : R2 7→ R3 ;

[
x1

x2

]
7→

 x3
1 + 2x2

2

−x1 +
√

2x2

x1

 ,

is not R-linear. For example, if it were, then we must have (recall the definition of ei from Example 1
1.2.6)

f (−e2) =

 2

−
√

2
0

 ,

whereas

−f (e2) = −

 2√
2

0

 =

 −2

−
√

2
0

 .

Hence,
f (−e2) 6= −f (e2),

21What happens when W = Z?
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so that Axiom LIN2 does not hold.

The problem we have here is the appearance of ‘nonlinear’ terms x2
2 etc. In general, we must only have

single powers of xi appearing as in Example 1.

3. In general, a function
f : Kn → Km ; x 7→ f (x),

is a K-linear morphism if and only there exists an m× n matrix A ∈ Matm×n(K) with entries in K such
that

f (x) = Ax , for every x ∈ Kn.

You should have already seen this result from your first linear algebra class.

Conversely, given A ∈ Matm,n(K) we define the K-linear morphism

TA : Kn → Km ; x 7→ Ax .

This notation will reappear through these notes.

4. Let V be a K-vector space. Then, the identity morphism of V is the K-linear morphism

idV : V → V ; v 7→ v .

It is easy to see that idV ∈ GLK(V ), ie, that idV is an isomorphism.

5. Let V be a K-vector space and U ⊂ V be a vector subspace. Then, there is a K-linear morphism

iU : U → V ; u 7→ u,

called the inclusion morphism of U. It is trivial to verify that this is K-linear. Moreover, iU is an injective
morphism, for any subspace U ⊂ V .

6. Let V be a K-vector space and suppose that there are subspaces U, W ⊂ V such that V = U ⊕W .
Then, define the projection morphisms onto U and W as follows:

pU : V → U ; v = u + w 7→ u,

pW : V →W ; v = u + w 7→ w .

These morphisms are surjective.

Note that these functions are well-defined because V = U ⊕W and so every v ∈ V can be uniquely
written as v = u + w (by Proposition 1.2.11). Therefore, we need not worry about whether pU , pW are
functions.22

7. The following are examples from calculus: consider the R-vector space CR[0, 1] of continuous functions
f : [0, 1]→ R. Then, the function∫ 1

0

: CR[0, 1]→ R ; f 7→
∫ 1

0

f (x)dx ,

is R-linear. This should be well-known to all.

If we denote by C 1(0, 1) ⊂ CR(0, 1) the set of all continuous functions f : (0, 1) → R that are
differentiable, then we have an R-linear map23

d

dx
: C 1(0, 1)→ CR(0, 1) ; f 7→ df

dx
,

22If we did not have the uniqueness property, and only knew that V = U = W , then it could be possible that
v = u + w = u′ + w with u 6= u′ ∈ U. Then, pU(v) could equal either u or u′, so that pU can’t be a function (recall that
a function f : S →W must assign a unique value f (s), to every s ∈ S).

23It is not necessarily true that a function that can be differentiated once can be differentiated twice. It is actually
surprisingly hard to find such an example but if you take Math 104 you should see the following example of such a function

f : R→ R ; x 7→
{
x2 sin(x−1), if x 6= 0,

0, if x = 0.
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which is just the ‘derivative with respect to x ’ morphism. It is R-linear.

8. This example exhibits a subtlety that we shall come back to in later sections: recall the set of natural
numbers N. Define a function

T : KN → KN ; (i 7→ f (i)) 7→

(
i 7→

{
0, if i = 1,

f (i − 1), if i 6= 1.

)
.

That is, if we represent a function (f : N→ K ; i 7→ f (i)) ∈ KN by an infinite sequence

(fi ) = (f1, f2, f3, ...),

where fi
def
= f (i), then

T ((fi )) = (0, f1, f2, f3, ...).

So, T is the ‘shift to the right by one place’ function defined on infinite sequences of numbers in K.

Then, it is relatively straightforward to see that T is K-linear and is injective. However, T is not
surjective: thus, we have an example of an injective linear endomorphism of a K-vector space that is
not surjective. As we will see in an upcoming section, this is impossible if KN were finite-dimensional
(cf. Theorem ??). Hence, this implies that KN is an infinite dimensional K-vector space.

We now recall an important result that allows us to characterise when K-linear morphisms are injective.
In practice, whenever you want to show that a morphism is injective you should use the following

Lemma 1.4.9 (Characterising injective linear morphisms). Let V , W be K-vector spaces, f : V → W
a K-linear morphism. Then, f is injective if and only if ker f = {0V }.

Proof: (⇒) Suppose that f is injective. Let v ∈ ker f ; we want to show that v = 0V . Now, since
v ∈ ker f , then f (v) = 0W , by the definition of ker f . Furthermore, by Lemma 1.4.3, we know that
f (0V ) = 0W . Hence, as f is injective then

f (v) = f (0V ) =⇒ v = 0V ,

so that ker f = {0V }.

(⇐) Conversely, suppose that ker f = {0V }. We must show that f is injective: therefore, we need to
show that, whenever f (v) = f (w), for some v , w ∈ V , then we necessarily have v = w . So suppose
that there are v , w ∈ V with f (v) = f (w). Then

f (v) = f (w) =⇒ f (v)− f (w) = 0W =⇒ f (v − w) = 0W , since f linear,

so that v − w ∈ ker f = {0V }. Hence, v = w . Therefore, f must be an injective function.

Remark 1.4.10. In this section, we have given a (re)introduction to linear morphisms (or linear maps,
transformations, whatever) and stated some basic properties and examples. However, in practice it is
usually pretty difficult to prove certain things about linear morphisms (for example, injectivity, surjectivity
etc.) in a direct manner.

In order to make questions easier to understand and solve we will most often represent a linear morphism
using a matrix representation. This will be done in the proceeding sections. However, it should be
noted that this approach to attacking problems only works for finite-dimensional vector spaces and the
morphisms between them (infinite matrices are difficult to manipulate!).

We finish this section with some important facts that we will use throughout the remainder of these
notes.

Theorem 1.4.11 (Invariance of Domain). Suppose that there exists an isomorphism

f : Kn → Km.

Then, n = m.

28



Proof: This is an exercise in row-reduction and one which you should already be familiar with.

Recall that for any linear morphism f : Kn → Km, there is a matrix Af called the standard matrix
associated to f such that

for every x ∈ Kn, f (x) = Af x .

Af is defined to be the m × n matrix whose i th column is the column vector f (ei ), where ei is the i th

standard basis vector of Kn (Example 1.2.6).
Then, it will be an exercise to show the following:

- f is injective if and only if Af has a pivot in every column, and

- f is surjective if and only if Af has a pivot in every row.

Therefore, since we are assuming that f is an isomorphism it must, by definition, be a bijective morphism.
Hence, it is both injective and surjective. By the preceding comments we must therefore have a pivot
in every column and every row. The only way that this can happen is if n = m.

We will see later, after the introduction of bases for vector spaces, that the converse if also true: namely,
if n = m then Kn and Km are isomorphic.

Proposition 1.4.12. Let V , W be K-vector spaces, E ⊂ V a subset of V . Let f : V → W be an
isomorphism from V to W and denote f (E ) = {f (e) | e ∈ E}, the image set of E .24 Then,

- E is linearly independent if and only if f (E ) is linearly independent.

- E spans V if and only if f (E ) spans W .

Proof: Left to the reader.

1.5 Bases, Dimension

In this section we will introduce the notion a basis of a K-vector space. We will provide several equivalent
approaches to the definition of a basis and see that the size of a basis is an invariant25 of a K-vector
space which we will call its dimension. You should have already seen the words basis and dimension in
your previous linear algebra course so do not abandon what you already know! We are just simply going
to provide some interesting(?) ways we can think about a basis; in particular, these new formulations
will allow us to extend our results to infinite dimensional vector spaces.

First, we must introduce a (somewhat annoying) idea to keep us on the straight and narrow when we
are considering bases, that of an ordered set.

Definition 1.5.1 (Ordered Set). An ordered set is a nonempty set S for which we have provided a
‘predetermined ordering’ on S .

Remark 1.5.2. 1. This definition might seem slightly confusing (and absurd); indeed, it is both of these
things as I have not rigorously defined what a ‘predetermined ordering’ is. Please don’t dwell too much
on this as we will only concern ourselves with orderings of finite sets (for which it is easy to provide an
ordering) or the standard ordering of N. An ordered set is literally just a nonempty set S whose elements
have been (strictly) ordered in some way.

For example, suppose that S = [3] = {1, 2, 3}. We usually think of S has having its natural ordering
(1, 2, 3). However, when we consider this ordering we are actually considering the ordered set (1, 2, 3)
and not the set S ... Confused? I thought so. We could also give the objects in S the ordering (2, 1, 3)
and when we do this we have a defined a different ordered set to (1, 2, 3).

24This is not necessarily the same as the image of f , imf , introduced before.
25In mathematics, when we talk of an invariant we usually mean an atrribute or property of an object that remains

unchanged whenever that object is transformed to another via an isomorphism (in an appropriate sense). For example,
you may have heard of the genus of a (closed) geometric surface: this is an invariant of a surface that counts the number
of ‘holes’ that exist within a (closed) surface. Perhaps you have heard or read the phrase that a mathematician thinks a
coffee mug and a donut are indistuingishable. This is because we can continuously deform a donut into a coffee mug, and
vice versa. This continuous deformation can be regarded as an ‘isomorphism’ in the world of (closed) geometric surfaces.

29



If you are still confused, do not worry. Here is another example: consider the set

S = {Evans Hall, Doe Library, Etcheverry Hall}.

Now, there is no predetermined way that we can order this set: I might choose the ordering

(Evans Hall, Etcheverry Hall, Doe Library),

whereas you might think it better to choose an ordering

(Doe Library, Etcheverry Hall, Evans Hall).

Of course, neither of these choices of orderings is ‘right’ and we are both entitled to our different choices.
However, these ordered sets are different.

The reason we require this silly idea is when we come to consider coordinates (with respect to a given
ordered basis). Then, it will be extremely important that we declare an ordering of a basis and that we
are consistent with this choice.

2. Other examples of ordered sets include N,Z,Q and R with their usual orderings. We can also order
C in an ordering called a lexicographic ordering : here we say that z = a1 + b1

√
−1 < w = a2 + b2

√
−1

if and only if either, a1 < a2, or, a1 = a2 and b1 < b2. Think of this as being similar to the way that
words are ordered in the dictionary, except now we consider only ‘words’ consisting of two ‘letters’, each
of which is a real number.

3. What about some really bizarre set that might be infinite; for example, RR, the set of all functions
R→ R. How can we order this set? In short, I have no idea! However, there are some very deep results
from mathematical logic that say that, if we assume a certain axiom of mathematics (the so-called
Axiom of Choice), then every set can be ordered in some manner. In fact, it has been shown that the
Axiom of Choice of logically equivalent to this ordering property of sets! If you want to learn more then
you should consult Wikipedia and take Math 125A in the Fall Semester.26

Therefore, no matter how weird or massively infinite a set is, if you are assuming the Axiom of Choice
(which we are) then you can put an ordering on that set, even though you will (a priori) have no idea
what that ordering is! All that matters is that such an ordering exists.

Definition 1.5.3 (Basis; Ordered Basis). Let V be a K-vector space. A nonempty subset B ⊂ V is
called a (K)-basis of V if

- B is linearly independent (over K), and

- if B ⊂ B′ and B′ is linearly independent (over K), then B′ = B.

In this case, we say that B is maximal linearly independent.

An ordered (K)-basis of V is a (K)-basis of V that is an ordered set.

Remark 1.5.4. 1. You may have seen a basis of a K-vector space V defined as a subset B ⊂ V such
that B is linearly independent (over K) and such that spanK B = V . The definition given above is
equivalent to this and it has been used as the definition of a basis to encapsulate the intuition behind
a basis: namely, if K = R, we can think of a basis of an R-vector space as a choice of ‘independent
directions’ that allows us to consider well-defined coordinates. This idea of ‘independent directions’ is
embodied in the fact that a basis must be a linearly independent set; and the assumption of maximal
linear independence is what allows us to obtain well-defined coordinates.

However, just to keep our minds at ease our next result will show the equivalence between Definition
1.5.3 and the definition you have probably seen before.

26I have to admit that I do not know any mathematical logic but have come across these ideas during my own excursions
in mathematics. There are lots of many interesting results that can be obtained if one assumes the Axiom of Choice: one
is called the Banach-Tarski Paradox; another, which is directly related to our studies, is the existence of a basis for any
K-vector space. In fact, the Axiom of Choice is logically equivalent to the existence of a basis for any K-vector space.
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2. We will also see in the homework that we can consider a basis to be a minimal spanning set (in an
appropriate sense to be defined later); this is recorded in Proposition 1.5.9.

3. It is important to remember that a basis is a subset of V and not a subspace of V .

4. We will usually not call a basis of a K-vector space a ‘K-basis’, it being implicitly assumed that we
are considering only K-bases when we are talking about K-vector spaces. As such, we will only use the
terminology ‘basis’ from now on.

Proposition 1.5.5. Let V be a K-vector space and B ⊂ V a basis of V . Then, spanK B = V .
Conversely, if B ⊂ V is a linearly independent spanning set of V , then B is a basis of V

Proof: Let us denote W = spanK B. Then, because B ⊂ V we have W ⊂ V . To show that W = V
we are going to assume otherwise and obtain a contradiction. So, suppose that W 6= V . This means
that there exists v0 ∈ V such that v0 /∈ W . In particular, v0 /∈ B ⊂ W . Now, consider the subset
B′ = B ∪ {v0} ⊂ V .

Then, by Corollary 1.3.5, B′ is linearly independent.

Now, we use the maximal linear independence property of B: since B ⊂ B′ and B′ is linearly independent
we must have B′ = B, because B is a basis. Hence, v0 ∈ B. But this contradicts that fact that v0 /∈ B.
Therefore, our intial assumption, that W 6= V , must be false and we must necessarily have W = V .

Conversely, suppose that B is a linearly independent subset of V such that spanK B = V . We want to
show that B is a basis, so we must show that B satisfies the maximal linearly independent property of
Definition 1.5.3.

Therefore, suppose that B ⊂ B′ and that B′ is linearly independent; we must show that B′ = B. Now,
since B ⊂ B′ we have V = spanK B ⊂ spanK B′ ⊂ V , using Lemma 1.3.9. Hence, spanK B′ = V =
spanK B. Assume that B 6= B′; we aim to provide a contradiction. Then, for each w ∈ B′ \ B we have
w ∈ spanK B′ = spanK B, so that there exists an expression

w = λ1b1 + ... + λnbn,

where b1, ... , bn ∈ B. But this means that we have a nontrivial27 linear relation among vectors in B′
(recall that, as B ⊂ B′, we have b1, ... , bn ∈ B′). However, B′ is linearly independent so that no such
nontrivial linear relation can exist. Hence, our initial assumption of the existence of w ∈ B′ \ B is false,
so that B′ = B. The result follows.

Corollary 1.5.6. Let V be a K-vector space, B ⊂ V a basis of V . Then, for every v ∈ V there exists
a unique expression

v = λ1b1 + ... + λnbn,

where b1, ... , bn ∈ B, λ1, ... ,λn ∈ K, n ∈ N.

Proof: By Proposition 1.5.5, we have that spanK B = V so that, for every v ∈ V , we can write v as
a linear combination of vectors in B

v = λ1b1 + ... + λnbn, b1, ... , bn ∈ B,

where we can further assume that none of λ1, ... ,λn is equal to zero.

We need to show that this expression is unique: so, suppose that we can write v as a different linear
combination

v = µ1b′1 + ... + µkb′k , b′1, ... , b′k ∈ B,

again assuming that none of the µ1, ... ,µk are equal to zero.

Therefore, we have
λ1b1 + ... + λnbn = v = µ1b′1 + ... + µkb′k ,

giving a linear relation
λ1b1 + ... + λnbn − (µ1b′1 + ... + µkb′k) = 0V .

27Why is this linear relation nontrivial?
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Thus, since B is linearly independent this linear relation must be trivial and, furthermore, since we have
assumed that none of the λ’s or µ’s are zero, the only way that this can happen is if n = k and, without
loss of generality, bi = b′i and λi = µi . Hence, the linear combination given above is unique.

Corollary 1.5.7. Let V be a K-vector space, B = (b1, ... , bn) ⊂ V an ordered basis containing finitely
many vectors. Then, V is isomorphic to Kn.

Proof: This is just a simple restatement of Corollary 1.5.6: we define a function

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

where
v = λ1b1 + ... + λnbn,

is the unique expression for v coming from Corollary 1.5.6. Uniqueness shows that [−]B is indeed a
well-defined function.

It will be left to the reader to show that [−]B is a bijective K-linear morphism, thereby showing that it
is an isomorphism.

Definition 1.5.8. Let V be a K-vector space, B = {b1, ... , bn} ⊂ V an ordered basis containing finitely
many vectors. Then, the linear morphism

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

introduced above is called the B-coordinate map or B-coordinate morphism.

The following Proposition provides yet another viewpoint of the idea of a basis: it says that a basis is a
spanning set that satisfies a certain minimality condition.

Proposition 1.5.9. Let V be a K-vector space, B ⊂ V a basis of V . Then, B is a minimal spanning
set - namely,

- spanK B = V , and

- if B′ ⊂ B is such that spanK B′ = V then B′ = B.

A proof of this Proposition will appear as a homework exercise.

Despite all of these results on bases of vector spaces we have still yet to give the most important fact
concerning a basis: that a basis exists in an arbitrary K-vector space.

The proof of the general case requires the use of a particularly subtle lemma, called Zorn’s Lemma. You
can read about Zorn’s Lemma on Wikipedia and there you will see that Zorn’s Lemma is equivalent to
the Axiom of Choice (although the proof of this fact is quite difficult). You will also read on Wikipedia
that Zorn’s Lemma is logically equivalent to the existence of a basis for an arbitrary K-vector space.

Theorem 1.5.10. Let V be a K-vector space. Then, there exists a basis B ⊂ V of V .

Proof: Case 1: There exists a finite subset E ⊂ V such that spanK E = V .

In this case we will use the Elimination Lemma (Lemma 1.3.10) to remove vectors from E until we obtain
a linearly independent set. Now, if E is linearly independent then E is a linearly independent spanning
set of V and so, by Proposition 1.5.5, E is a basis of V . Therefore, assume that E is linearly dependent.
Then, if we write E as an ordered set E = {e1, ... , en}, we can use Lemma 1.3.10 to remove a vector
from E so that the resulting set is also a spanning set of V ; WLOG, we can assume that the vector we
remove is en. Then, define E (n−1) = E \ {en} so that we have spanK E (n−1) = V . If E (n−1) is linearly
independent then it must be a basis (as it is also a spanning set). If E (n−1) is linearly dependent then
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we can again use Lemma 1.3.10 to remove a vector from E (n−1) so that the resulting set is a spanning
set of V ; WLOG, we can assume that the vector we remove is en−1. Then, define E (n−2) = E \ {en−2}
so that we have spanK E (n−2) = V . Proceeding in a similar fashion as before we will either have that
E (n−2) is linearly independent (in which case it is a basis) or it will be linearly dependent and we can
proceed as before, removing a vector to obtain a new set E (n−3) etc.

Since E is a finite set this procedure must terminate after finitely many steps. The stage at which it
terminates will have a produced a linearly independent spanning set of V , that is, a basis of V (by
Proposition 1.5.5).

Case 2: There does not exist a finite spanning set of V .

In this case we must appeal to Zorn’s Lemma: basically, the idea is that we will find a basis by considering
a maximal linearly independent subset of V . Zorn’s Lemma is a technical result that allows us to show
that such a subset always exists and therefore, by definition, must be a basis of V .

Theorem 1.5.11 (Basis Theorem). Let V be a K-vector space and B ⊂ V a basis such that B has only
finitely many vectors. Then, if B′ is another basis of V then B′ has the same number of vectors as B.

Proof: Let B = {b1, ... , bn} and B′ = {b′1, ... , b′m} be two distinct bases of V . Then, by Corollary
1.5.7, we have isomorphisms

[−]B : V → Kn, and [−]B′ : V → B′.

Hence, we obtain an isomorphism (since the composition of two isomorphisms is again an isomorphism,
by Lemma 0.2.4)

[−]−1
B′ ◦ [−]B : Kn → Km,

where [−]−1
B′ : Km → V is the inverse morphism of [−]B′ . Thus, using Theorem 1.4.11, we must have

n = m, so that B and B′ have the same size.

Theorem 1.5.11 states that if V is a K-vector space admitting a finite basis B, then every other basis
of V must have the same size as the set B.

Definition 1.5.12. Let V be a K-vector space, B ⊂ V a basis of V containing finitely many vectors.
Then, the size of B, |B|, is called the dimension of V (over K) and is denoted dimK V , or simply dim V
when no confusion can arise. In this case we will also say that V is finite dimensional. If V is a K-vector
space that does not admit a finite basis then we will say that V is infinite dimensional.

The Basis Theorem (Theorem 1.5.11) ensures that the dimension of a K-vector space is a well-defined
number (ie, it doesn’t change when we choose a different basis of V ).

Now that we have introduced the notion of dimension of a K-vector space we can give one of the
fundamental results of finite dimensional linear algebra.

Theorem 1.5.13. Let V and W be K-vector spaces such that dimK V = dimK W <∞ is finite. Then,
V is isomorphic to W .

This result, in essence, classifies all finite dimensional K-vector spaces by their dimension. It tells us
that any linear algebra question we can ask in a K-vector space V (for example, a question concerning
linear independence or spans) can be translated to another K-vector space W which we know has the
same dimension as V . This follows from Proposition 1.4.12.

This principle underlies our entire approach to finite dimensional linear algebra: given a K-vector space
V such that dimK V = n, Theorem 1.5.13 states that V is isomorphic to Kn and Corollary 1.5.7 states
that, once we have a basis B of V , we can use the B-coordinate morphism as an isomorphism from V
to Kn. Of course, we still need to find a basis! We will provide an approach to this problem after we
have provided the (simple) proof of Theorem 1.5.13.

Proof: The statement that V and W have the same dimension is just saying that any basis of these
vector spaces have the same number of elements. Let B ⊂ V be a basis of V , C ⊂ W a basis of W .
Then, we have the coordinate morphisms

[−]B : V → Kn and [−]C : W → Kn,
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both of which are isomorphisms. Then, the morphism

[−]−1
C ◦ [−]B : V →W ,

is an isomorphism between V and W .
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