
(⇐) Conversely, suppose that every vector v ∈ V can be expressed uniquely as v = u +w for u ∈ U and
w ∈W . Then, the existence of this expression for each v ∈ V is simply the statement that V = U +W .
Moreover, let x ∈ U ∩W , so that x ∈ U and x ∈ W . Thus, there are u ∈ U and w ∈ W (namely,
u = x and w = x) such that

0V + w = x = u + 0V ,

and since U and W are subspaces (so that 0V ∈ U, W ) we find, by the uniqueness of an expression for
x ∈ U ∩W ⊂ V , that u = 0V = w . Hence, x = 0V and U ∩W = {0V }.

1.3 Linear Dependence & spanK

In this section we will make precise the notion of linear (in)dependence. This is a fundamental concept
in linear algebra and abstracts our intuitive notion of (in)dependent directions when we consider the
(Euclidean) plane R2 or (Euclidean) space R3.

Definition 1.3.1. Let V be a K-vector space17, and let {v1, ... , vn} ⊂ V be some subset. A linear
relation (over K) among v1, ... , vn is an equation

(1.3.1) λ1v1 + ... + λnvn = 0V ,

where λ1, ... ,λn ∈ K are scalars.

If λ1 = λ2 = · · · = λn = 0 then we call (1.3.1) a trivial linear relation (among v1, ... , vn).

If at least one of λ1, ... ,λn is nonzero, so thatλ1

...
λn

 6= 0Kn ,

then we call (1.3.1) a nontrivial linear relation (among v1, ... , vn).

Now, let E ⊂ V be an arbitrary nonempty subset (possibly infinite; NOT necessarily a subspace). We
say that E is linearly dependent (over K) if there exists v1, ... , vn ∈ E and a nontrivial linear relation
(over K) among v1, ... , vn.

If E is not linearly dependent (over K) then we say that E is linearly independent (over K).

Remark 1.3.2. There are some crucial remarks to make:

1. We have defined linear (in)dependence for an arbitrary nonempty subset E of a K-vector space V . In
particular, E may be infinite (for example, we could take E = V !18). However, for a subset to be linearly
dependent we need only find a linear relation among finitely many vectors in E . Hence, if there is a
linear relation (over K) of the form (1.3.1) for some vectors v1, ... , vn ∈ V and some scalars λ1, ... ,λn
(at least one of which is nonzero), then for any subset S ⊂ V such that {v1, ... , vn} ⊂ S , we must have
that S is linearly dependent.

2. We will make more precise the notion of linear independence: suppose that E ⊂ V is a linearly
independent set. What does this mean? Definition 1.3.1 defines a subset of V to be linearly independent
if it is not linearly dependent. Therefore, a subset E is linearly independent is equivalent to saying that
there cannot exist a nontrivial linear relation (over K) among any (finite) subset of vectors in E .

So, in order to show that a subset is linearly independent we need to show that no nontrivial linear
relations (over K) can exist among vectors in E . This is equivalent to showing that the only linear
relations that exist among vectors in E must necessarily be trivial:

Suppose that we can write 0V as a linear combination
λ1v1 + ... + λnvn = 0V ,

for some v1, ... , vn ∈ E and scalars λ1, ... ,λn ∈ K. Then, λ1 = · · · = λn = 0.

17Recall our conventions for notation after Remark 1.2.2.
18V is always linearly dependent. Why?
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Thus, in order to show a given subset E of a vector space E is linearly independent (this could be asked
as a homework question, for example) you must show that the above statement is true. This usually
requires some thought and ingenuity on your behalf. However, once we have the notion of coordinates
(with respect to a basis) we can turn this problem into one involving row-reduction (yay!).

However, to show that a subset E ⊂ V is linearly dependent you need to find explicit vectors v1, ... , vn ∈
E and explicit scalars λ1, ... ,λn (not all of which are zero) so that there is a nontrivial linear relation

λ1v1 + ... + λnvn = 0V .

This can sometimes be quite difficult! However, once we have the notion of coordinates then we need
only try to determine solutions to a matrix equation.

3. We have defined the notion of linear (in)dependence (over K). We will usually omit the phrase ‘over
K’ as it will be assumed implicit that we are seeking linear relations over K when we are considering
subsets of K-vector spaces.

Proposition 1.3.3. Let V be a K-vector space and E ⊂ V some nonempty subset. Then, if 0V ∈ E
then E is linearly dependent.

Proof: We must show that there exists a nontrivial linear relation among some collection of vectors
v1, ... , vn ∈ E . We know that 0V ∈ V and that there is the (obvious?) linear relation

1 · 0V = 0V ,

where we have used Proposition 1.2.5. Since we have found a nontrivial linear relation we conclude that
E must be linearly dependent.

Lemma 1.3.4. Let V be a K-vector space and E ⊂ V some subset. Then, E is linearly dependent if
and only if there exists a vector v ∈ E that can be written as a linear combination of some of the others.

Proof: (⇒) Suppose that E is linearly dependent. Then, there exists v1, ... , vn ∈ E and a nontrivial
linear relation

λ1v1 + ... + λvn = 0V .

We may assume, without loss of generality, that λ1 6= 0 and λ−1
1 therefore exists. Then, let v = v1 so

that we have
v = −λ−1

1 (λ2v2 + ... + λnvn) .

Hence, v = v1 is a linear combination of some of the other vectors in E .

The converse is left to the reader.

Corollary 1.3.5. Let V be a K-vector space, E ⊂ V a nonempty subset. If E is linearly independent
and v /∈ spanK E then E ∪ {v} is linearly independent.

Proof: This follows from Lemma 1.3.4: if E ′ = E ∪ {v} were linearly dependent then there would
exist some u ∈ E ′ such that u can be written as a linear combination of other vectors in E ′. WE can’t
have u = v , since v /∈ spanK E . Hence, u ∈ E so that it is possible to write u as a linear combination
of vectors in E . In this case, E would be linearly dependent by Lemma 1.3.4 which is absurd, since E
is assumed linearly independent. Hence, it is not possible for E ′ to be linearly dependent so it must be
linearly independent.

Question. Why did we care about finding λ1 6= 0? Why did we not just take the nontrivial relation
appearing in the proof of Lemma 1.3.4 and move everything to one side except λ1v1?

Example 1.3.6. Most of the following examples will only concern the linear (in)dependence of finite
subsets E . However, I will include a couple of examples where E is infinite to highlight different methods
of proof:

1. Consider the R-vector space R3 and the subset

E =


 1

2
−1

 ,

 0
−1
2

 ,

−1
2
0

 .
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How do we determine linear (in)dependence of E ? We must consider the vector equation

λ1

 1
2
−1

+ λ2

 0
−1
2

+ λ3

−1
2
0

 = 0R3 .

Then, if there exists a particular

λ1

λ2

λ3

 6= 0R3 satisfying this vector equation then E is linearly dependent

as we have found a nontrivial linear relation among the vectors in E . Otherwise, E must be linearly
independent.

So, determining the linear (in)dependence of E ⊂ R3 boils down to solving the homogeneous matrix
equation

Aλ = 0R3 , λ =

λ1

λ2

λ3

 ,

where A is the 3 × 3 matrix whose columns are the vectors in E . Thus, we must row-reduce A and
determine whether there exists a free variable or not: in the language of Math 54, we must determine
if there exists a column of A that is not a pivot column.

2. The previous example generalises to any finite subset E ⊂ Km, for any n ∈ N. Let E = {v1, ... , vn} ⊂
Km be a subset. Then, determining the linear (in)dependence of E is the same as solving the homoge-
neous matrix equation

Aλ = 0Km , λ =

λ1

...
λn

 ,

where A = [v1 v2 · · · vn] is the m × n matrix whose columns are the vectors in E .

If the only solution to this matrix equation is the zero solution (ie, the only solution is λ = 0Kn) then
E is linearly independent. Otherwise, E is linearly dependent and any nonzero solution you find will
determine a nontrivial linear relation among v1, v2, ... , vn.

In general, we want to try and turn a linear (in)dependence problem into one that takes the preceeding
form as then we need only row-reduce a matrix and determine pivots.

3. This example is quite subtle and leads to number theoretic considerations: consider the Q-vector
space R. Then, the subset E = {1,

√
2} ⊂ R is linearly independent (over Q!).

Indeed, consider a linear relation (over Q)

a1.1 + a2.
√

2 = 0 ∈ R, where a1, a2 ∈ Q.

Assume that E is linearly dependent; we aim to provide a contradiction. Suppose that one of a1 or a2

is nonzero (in fact, we must have both of a1 and a2 are nonzero. Why?) Then, we have

√
2 = −a1

a2
∈ Q.

However, the Greeks discovered the (heretical19) fact that
√

2 is irrational, therefore we can’t possibly
have that

√
2 ∈ Q. As such, our intial assumption that E is linearly dependent must be false, so that

E is linearly independent (over Q).

If we consider R as a R-vector space then E is no longer linearly independent: we have

−
√

2.1 + 1.
√

2 = 0 ∈ R,

19It is believed that the Pythagorean school in ancient Greece kept the irrationality of
√

2 a secret from the public and
that Hippasus was murdered for revealing the secret!
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is a nontrivial linear relation (over R) among 1,
√

2.

This example highlights the fact that it is important to understand which scalars you are allowed
to use in a vector space as properties (for example, linear (in)dependence) can differ when we
change scalars.

4. Consider the R-vector space R3[t] given in Example 1.2.6. Then, the subset

E = {1, t, t2, t3} ⊂ R3[t],

is linearly independent.

We must show that the boxed statement in Remark 1.3.2 holds. So, assume that we have a linear
relation

λ1.1 + λ2.t + λ3.t2 + λ4.t3 = 0R3[t],

with λ1, ... ,λ4 ∈ R. Then, by definition, the zero polynomial 0R4[t] is the polynomial that has all
coefficients equal to zero. Therefore, from our remarks in Example 1.2.6 we must have λ1 = λ2 = λ3 =
λ4 = 0 (polynomials are equal if and only if they have equal coefficients).

5. This example might appear to be the same as the previous example but it is actually different:
consider CR(0, 1), the R-vector space of continuous functions f : (0, 1) → R. Let E = {f0, f1, f2, f3},
where

fi : (0, 1)→ R ; x 7→ x i .

Then, E is linearly independent.

Indeed, suppose that we have a linear relation

λ0f0 + ... + λ3f3 = 0CR(0,1), λ1, ... ,λ3 ∈ R.

Now, this is a linear relation between functions (0, 1) → R, and any two such functions f , g are equal
if and only if we have f (x) = g(x), for every x ∈ (0, 1). Hence, we are supposing that

λ0f0(x) + λ1f1(x) + λ2f2(x) + λ3f3(x) = 0CR(0,1)(x) = 0, for every x ∈ (0, 1),

=⇒ λ0 + λ1x + λ2x2 + λ3x3 = 0, for every x ∈ (0, 1).

There are now several ways to proceed: we can either use some calculus or a fundamental fact from
algebra. Using calculus, we can differentiate this equation with respect to x repeatedly to obtain that
λ3 = λ2 = λ1 = λ0 = 0. Alternatively, we can use the following basic fact from algebra: if we assume
that one of the λi ’s is nonzero then the polynomial on the LHS of the above equation (considered as a
function of x , not a formal expression) can have at most three distinct roots. However, since (0, 1) is
infinite we can choose four distinct roots (for example, x = 0.1, 0.2, 0.3, 0.4 are roots), which is absurd.
Hence, our assumption that one of the λi is nonzero is false, so that λ0 = ... = λ3 = 0 and E is linearly
independent.

There is also a linear algebra approach to this problem that will appear on a worksheet.

6. Examples 4 and 5 can be generalised to show that, if I ⊂ Z≥0 is some set of non-negative integers,
then the subsets

E1 = {t i | i ∈ I} ⊂ K[t], E2 = {fi (x) = x i | i ∈ I},
are linearly independent.

We now introduce the second fundamental notion concerning vector spaces, that of the linear span of
a subset (in [1] this is called the linear manifold defined by a subset).

Definition 1.3.7. Let V be a K-vector space, E ⊂ V some nonempty subset. Then, the K-linear span
of E is the set of all possible linear combinations of vectors in E ,

spanK E = {λ1v1 + ... + λnvn | v1, ... , vn ∈ E , λ1, ... ,λn ∈ K}.

If E ⊂ V is a subset such that spanK E = V , then we say that E spans V , or that E is a spanning set
of V .
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Proposition 1.3.8. Let V be a K-vector space, E ⊂ V some nonempty subset. Then, spanK E is a
vector subspace of V .

Proof: We will show that spanK E satsfies Axiom SUB from Definition 1.2.8: let

v = λ1v1 + ... + λnvn, u = µ1u1 + ... + µpup ∈ spanK E ,

and α,β ∈ K. Then,

αu + βv = α(µ1u1 + ... + µpup) + β(λ1v1 + ...λnvn)

= αµ1u1 + ... + αµpup + βλ1v1 + ... + βλnvn,

is a linear combination of elements of E . Hence, by the definition of spanK E , αu + βv ∈ spanK E .

Conversely, we have that every subspace U ⊂ V is the span of some subset: namely, spanK U = U.

Lemma 1.3.9. Let V be a K-vector space and E1 ⊂ E2 ⊂ V nonempty subsets of V . Then,

spanK E1 ⊂ spanK E2,

and spanK E1 is a subspace of spanK E2.

Proof: Left to the reader.

Lemma 1.3.10 (Elimination Lemma). Let V be a K-vector space and E ⊂ V some nonempty subset.
Suppose that E is linearly dependent. Then, there exists a vector v ∈ E such that, if E ′ = E \ {v}20,
then

spanK E = spanK E ′.

Hence, we can remove a vector from E without changing the subspace spanned by E .

Proof: Since E is linearly dependent then, by Lemma 1.3.4, there exists a vector v ∈ E such that v
is a linear combination of some other vectors in E , that is

v = λ1v1 + ... + λnvn,

with v1, ... , vn ∈ E and λ1, ... ,λn ∈ K. Moreover, we can assume that v 6= vj , for each j ; this is the
same as saying that v ∈ spanK E ′. We will show that this v satisfies the conditions of the Lemma.

Now, as E ′ ⊂ E then we can use the previous Lemma to conclude that

spanK E ′ ⊂ spanK E .

If we can now show that spanK E ⊂ spanK E ′ then we must have equality

spanK E ′ = spanK E .

So, let u ∈ spanK E . Therefore, by the definition of spanK E , we have

u = µ1u1 + ...µkuk ,

with u1, ... , uk ∈ E and we can assume that ui 6= uj for i 6= j . If there is some ui such that v = ui , then

u = µ1u1 + ... + µi−1ui−1 + µiv + µi+1ui+1 + ... + µkuk .

Hence, we have u1, ... , ui−1, ui+1, ... , uk ∈ E ′ ⊂ spanK E ′ and v ∈ spanK E ′, so that by Proposition
1.3.8, we must have u ∈ spanK E ′.

Now, if v 6= ui , for each i , then each ui ∈ E ′ so that u ∈ spanK E ′. In either case, we have shown that
u ∈ spanK E ′ and, since u was arbitrary, we must have spanK E ⊂ spanK E ′ and the result follows.

Remark. Lemma 1.3.10 has the following consequence: if E is a finite linearly dependent set that spans
the K-vector space V , then there is a subset of E that forms a basis of V . You should already be aware
of what a basis is; however, for completeness, we will (re)introduce this notion in an upcoming section
in a (perhaps) not so familiar way that fits better with the intuition behind the a basis.

20If S ⊂ T are sets, then define
T \ S = {t ∈ T | t /∈ S},

the collection of all elements of T that are not elements of S .
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