Corollary 3.3.30 (QR factorisation). Let A € GL,(R). Then, there exists an orthogonal matrix Q €
O(n) and a upper-triangular matrix R such that

A= QR.

Proof: This is a simple restatement of the Gram-Schmidt process. Suppose that

A=lay -+ an]
Then B = (ay, ..., a,) is an ordered basis of R". Apply the Gram-Schmidt process (with respect to the
dot product) to obtain an orthonormal basis B = (by, ..., b,) as above. Then, we have
bl = l31

r

by, = ,iz (32 - (32 : bl)bl)

bn = rl,, (an - (an . bl)bl e (an . bnfl)bnfl)
where r; € R+ is the length of the ¢; vectors from the Gram-Schmidt process. We have also slightly
modified the Gram-Schmidt process (in what way?) but you can check that (by, ..., b,) is an orthonormal
basis[™]

By moving all b; terms to the left hand side of the above equations we obtain the table
nb =a
(82 . bl)bl +nb =a
(an'bl)bl+---+(an’bn—1)bn—l+rnbn = dn

and we can rewrite these equations using matrices: if

n a-b a-b - ap-b
0 r a3 by -+ an-bo

Q=1[bs - by)€O(n), R= 0 0 r3 cvap-bs ’
0 '

then we see that the above equations correspond to

QR = A.

3.4 Hermitian spaces

In this section we will give a (very) brief introduction to the definition and fundamental properties of
Hermitian forms and Hermitian spaces. A Hermitian form can be considered as a ‘quasi-bilinear form’
on complex vector spaces.

Definition 3.4.1. Let V be a C-vector space. A function
H:VxV—=C; (uv)— H(u,v),
is called a Hermitian form on V if
(HF1) for any u,v,w € V, A € C,

H(u+ Av,w) = H(u, w) + AH(v, w),

Do this!
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(HF2) for any u,v € V,
H(u,v) = H(v, u), (Hermitian symmetric)

where, if z=a+ /—1b € C, we define the complex conjugate of z to be the complex number

Z=a—+Vv-1beC.

We denote the set of all Hermitian forms on V' by Herm(V/).

Remark 3.4.2. It is a direct consequence of the above definition that if H is a Hermitian form on V
we have

H(u, v+ Aw) = H(u, v) + AH(v, w),
for any u,v,w e V, A € C.
We say that a Hermitian form is

‘linear in the first argument, antilinea”| in the second argument’

Definition 3.4.3. Let V be a C-vector space, B = (by, ..., b,) C V an ordered basis and H a Hermitian
form on V. Define the matrix of H with respect to B, to be the matrix

[H]s = [aj], a; = H(bi, b)).
The Hermitian symmetric property of a Hermitian form implies that

—t
[H]s = [H]3,
where, for any matrix A = [a;] € Matp, o(C), we define
A=[bj], bj=3j.

A matrix A € Mat,(C) is called a Hermitian matrix if

t

A=A
For any A € Mat,(C), we will write
2% g
hence, a matrix A € Mat,(C) is Hermitian if A" = A.
Lemma 3.4.4. For any A, B € Mat,(C),n € C we have
- (A+B)h= A"+ B,
- (AB)" = Bh AP,
- (nA)" = A"

Lemma 3.4.5. Let V be a C-vector space, B C V an ordered basis of V and H a Hermitian form on
V. Then, for any u,v € V, we have

H(u, v) = [u]5[H]s[V]g.
Moreover, if A € Mat,(C) is any matrix such that
H(u, v) = [u]A[V]5,

for every u,v € V, then A = [H]5.
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Example 3.4.6. 1. Consider the function

H:C>xC? = C; (z,w) = 21wy + V12w, — V—1z1W,.

H is a Hermitian form on C2.

2. The function
H:C?>xC?>—=C; (z,w) = z1wy + zows,

is NOT a Hermitian form on C?: it is easy to see that
TR = I s A ST S L
V=l ) T =A 1| |v=) )

H:CxC—C; (z,w) — zw,

3. The function

is a Hermitian form on C.

4. Let A= ajj € Mat,(C) be a Hermitian matrix. Then, we define

n n
Hpa:C"xC" = C; (z,w) — ' Aw = ZZa,-jz,-Wj.

i=1 j=1

Hj is a Hermitian form on C". Moreover, any Hermitian form H on C" is of the form H = Hy,
for some Hermitian matrix A € Mat,(C).

Lemma 3.4.7. Let H € Herm(V), B,C C V ordered bases on V. Then, if P = Pc. is the change of
coordinate matrix from B to C, then
P"[H]cP = [H]s.

Definition 3.4.8. Let H € Herm(V). We say that H is nondegenerate if [H]g is invertible, for any
basis B C V. The previous lemma ensures that this notion of nondegeneracy is well-defined (ie, does
not depend on the choice of basis B)F_E]

Theorem 3.4.9 (Classification of Hermitian forms). Let V' be a C-vector space, n = dim V and H €
Herm (V) be nondegenerate. Then, there is an ordered basis B C V such that

d
[H]s = . die{l, -1}
dn
Hence, if u,v € V with
& m
W= ||, Vls=1|:].
&n "I

then we have .
H(u,v) =Y digim;.
i=1

Proof: The proof is similar to the proof of Theorem [3.2.6] and uses the following facts: for any
Hermitian form H € Herm(V), there exists v € V such that H(v, v) # 0; if H € Herm(V/) is nonde-
generate then for any subspace U C V we have V = U @ U~. The first fact follows from an analagous
‘polarisation identity’ for Hermitian forms. U

"6Note that the determinant of A" is equal to det A: indeed, we have

det(A") = det(A") = det A = det A.
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Definition 3.4.10. A Hermitian (or unitary) space is a pair (V, H), where V is a C-vector space and
H is a Hermitian form on V such that [H]g = I,, for some basis 5. This condition implies that H is
nondegenerate.

If (V, H) is a Hermitian space and E C V is a nonempty subset then we define the orthogonal comple-
ment of E (with respect to H) to be the subspace

Et ={ve V|H(v,u)=0, forevery uc E}.

We say that z, w € V are orthogonal (with respect to H) if H(z,w) = 0. We say that E C V is
orthogonal if H(s,t) =0, for every s # t € E.

A basis B C V is an orthogonal basis if BB is an orthogonal set. A basis B C V' is an orthonormal basis
if it is an orthogonal basis and H(b, b) = 1, for every b € B.

We define H" = ((Cnv H/n), where
Hi (z. w) = ziw1 + ... + z,W,,.

As in the Euclidean case we obtain the notion of a ‘Hermitian morphism': a Hermitian morphism
f:(V,Hy) — (W, Hy) is a linear morphism such that

Hw(f(u), f(v)) = Hy(u,v), for any u,v € V.

In particular, if (V, H) is a Hermitian space then we denote the set of all Hermitian isomorphisms of
(V, H) by U(V, H), or simply U(V) when there is no confusion. A Hermitian isomorphism is also called
a unitary transformation of V. Thus,

UvV)y={f:V - V| H(uv)=H(f(u), f(v)), foranyuve V}
We denote U(n) = U(H") and it is straightforward to verify{7_7] that
U(n) = {Ta € Endc(C") | A € Mat,(C) and A"A = I,}.
We say that A € Mat,(C) is a unitary matrix if
APA = |,

Thus, we can identify the set of unitary transformations of H"” with the set of unitary matrices. Moreover,
this association is an isomorphism of groups.

As a consequence of Theorem we can show that there is essentially only one Hermitian space of
any given dimension.

Theorem 3.4.11. Let (V, H) be a Hermitian space, n = dim V. Then, there is a Hermitian isomorphism
f:(V,H)—H"

Remark 3.4.12. There are generalisations to Hermitian spaces of most of the results that apply to
Euclidean spaces (section 3.3). In particular, we obtain notions of length and Cauchy-Schwarz/triangle
inequalities. For details see [I], section 9.2.

77Every linear endomorphism f of C” is of the form f = T, for some A € Matn((C). Then, for f to be a Hermitian
morphism we must have L .
z'w = (Az)'Aw = z' A'Aw, for every z, w € C".

This implies that AtA = [,, which is equivalent to the condition AhA = I,
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3.5 The spectral theorem

In this section we will discuss the diagonalisabliity properties of morphisms in Euclidean/Hermitian
spaces. The culmination of this discussion is the spectral theorem: this states that self-adjoint mor-
phisms are orthogonally/unitarily diagonalisable and have real eigenvalues. This means that such mor-
phisms are diagonalisable and, moreover, there exists an orthonormal basis of eigenvectors.

Throughout section 3.5 we will only be considering Euclidean (resp. Hermitian) spaces (V/, (,)) (resp.
(V, H)) and, as such, will denote such a space by V, the inner product (resp. Hermitian form) being
implicitly assumed given.

First we will consider f-invariant subspaces U C V and their orthogonal complements, for an orthogo-
nal/unitary transformation f : V — V.

Proposition 3.5.1. Let f : V — V be an orthogonal (resp. unitary) transformation of the Euclidean
(resp. Hermitian) space V and U C V be an f-invariant subspace. Then, U* is f*-invariant, where
ft:V — V is the adjoint of f (with respect to the corresponding inner product/Hermitian form )F_g]

Proof: To say that U is f —-invariant means that, for every u € U, f(u) € U. Consider the orthogonal
complement of U in V, U~ and let w € U+L. Then, we want to show that f*(w) € UL. Now, for each
u € U, we have

H(u, ft(w)) = H(f(u), w) =0,

as f(u) € U. Hence, f¥(w) € U+ and Ut is f*-invariant. O

Lemma 3.5.2. Let (V, H) be a Hermitian space and U C V be a subspace. Then, the restriction of H
to U is nondegenerate.

Proof: Suppose that v € U is such that H(u,v) =0, for every u € U. Then, V = U® U+ (as H is
nondegenerate). Hence, if w € V then w = u + z, with u € U,z € U+ and
H(w,v)=H(u+zv)=H(u,v)+ H(z,v)=0+0=0.

Hence, using nondegeneracy of H on V we have v = Oy and the restriction of H to U is nondegenerate.
O

3.5.1 Normal morphisms

Throughout this section we will assume that V is a Hermitian space, equipped with the Hermitian form
H. The results all hold for Euclidean spaces with appropriate modifications to statements of results and

to proofs[™Y]

Definition 3.5.3 (Normal morphism). Let V' be a Hermitian space. We say that f : V — V is a normal
morphism if we have
foft =ftof.

"8Given a linear morphism f : V — V, where (V, H) is a Hermitian space, we define the adjoint of f to be the morphism

ff =0, of oon: V=V,

where
oy : V= V*; v oy(v), so that (oy(v))(u) = H(u, v).
It is important to note that oy is NOT C-linear: we have oi(\v) = Aoy(v), for any A € C. However, the composition
0;1 o f* ooy IS linear (check this). The definition of f* implies that, for every u, v € V, we have
H(f(u),v) = H(u, fT(v));

moreover, f1 is the unique morphism such that this property holds.

As a result of the nonlinearity of oy we DO NOT have a nice formula for the matrix of £+ in general. However, if V = H"
and f = T4 € Endc(V), where A € Mat,(C), then T = T,4: indeed, for any z, w € C" we have
H(Az, w) = (Az)'w = ' A'W = z' Ahw = H(z, A"w).

"We could consider a Euclidean space as being a real Hermitian space, since x = X, for every x € R.
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Example 3.5.4. Let V be a Hermitian (resp. Euclidean) space. Then, unitary (resp. orthogonal)
transformations of V are normal.

However, not all normal morphisms are unitary/orthogonal transformations: for example, the morphism
Ta € Endc(C3) defined by the matrix

A:

=
o R
—= = o

is normal but does not define a unitary transformation of H® (as A"A # k).

Normal morphisms possess useful orthogonality properties of their eigenvectors.

Lemma 3.5.5. Let f : V — V be a normal morphism of the Hermitian space (V, H), f* : V — V the
adjoint of f (with respect to H). If v € V is an eigenvector of f with associated eigenvalue A € C then
v is an eigenvector of f+ with associated eigenvalue A € C.

Proof: First, we claim that E, (the A-eigenspace of f) is f-invariant: indeed, for any u € E we
want to show that f*(u) € E. Then,

F(FT(u)) = FT(F(u)) = FT(Au) = AT (),

so that f*(u) € Ex. Hence, f* defines an endomorphism of Ex. Now, let v € E\ be nonzero (so that
v € V is an eigenvector of f with associated eigenvalue A). Then, for any u € Ey we have

H(u, ft(v)) = H(f(u),v) = HAu, v) = H(u,Xv) = H(u,f"(v) —Xv) =0, for every u € Ej.
Then, by Lemma [3.5.2 we see that
fr(v) —Av =0y = f(v) =\,

and the result follows. O

Lemma 3.5.6. Let f : V — V be a normal morphism of the Hermitian space V.. Then, if vy, ..., vx € V
are eigenvectors of f corresponding to distinct eigenvectors &1, ..., &k (so that & # &, i # j), then
{v1,..., v} is orthogonal.

Proof: Consider v;,v; with i # j. Then, we have f(v;) = &v; and f(v;) = &v; as v, v are
eigenvectors. Then,
&iH(vi,vy) = H(&viy vy) = H(f(vi), vj) = H(vi, £(v)) = H(vi, §v) = §H(vi, v;),
so that
(& —&)H(vi,vj)) =0 = H(vi,vj) =0, since & # &;.
O

Theorem 3.5.7 (Normal morphisms are orthogonally diagonalisable). Let (V, H) be a Hermitian space,
f : V — V a normal morphism. Then, there exists an orthonormal basis of V' consisting of eigenvectors
of f.

Proof: Since V is a C-vector space we can find an eigenvector v € V of f with associated eigenvalue
A € C (as there is always a root of the characteristic polynomial x¢). Let Ex C V be the corresponding
\-eigenspace (so that Ex # {0y }). Consider the orthogonal complement E5- of E, (with respect to H).
Then, since H is nondegenerate we have

V=EoE [

We are going to show that Ej‘ is f-invariant: let w € Ej‘, so that for every v € E) we have

H(u,v)=0.

80You can check that Ey N EAL ={0y}.
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We want to show that f(w) € E;-. Let u € Ey. Then, using Lemma we obtain
H(f(w), u) = H(w, ft(u)) = H(w, Au) = AH(w, u) = 0.
Hence, f(w) € Ei- and Ej- is f-invariant.

So, we have that Ej‘ is both f-invariant and f*-invariant (Proposition and so f and f1 define
endomorphisms of Ej‘. Moreover, we see that the restriction of f to Ej‘ is normal. Hence, we can use
an induction argument on dim V and assume that there exists an orthonormal basis of E)\L consisting
of eigenvectors of f, By say. Using the Gram-Schmidt process we can obtain an orthonormal basis of
Ey, By say. Then, B = By U B, is an orthonormal basis (Lemma and consists of eigenvectors of
f. O

Corollary 3.5.8. 1. Let A € Mat,(C) be such that
AA" = APA.
Then, there exists a unitary matrix P € U(n) (ie, P~ = P") such that

P"AP = D,

where D is a diagonal matrix.
Remark 3.5.9. Suppose that A € Mat,(R). Then, we have
Ah — At

so that the condition
ANA = AAP — ATA = AAL

Thus, if A'A = AA* then Corollary implies that A is diagonalisable. However, it is not necessarily
true that there exists P € GL,(R) such that

P~'AP =D,
with D € Mat,(R). For example, consider the matrix
A= |:0 _01:| € Matz(R).
Then,
ATA = = AAY,

so that A is normal. Then, Corollary implies that we can diagonalise A. However, the eigenvalues
of A are ++/—1 so that we must have

P'AP =+ [\? _\%] :

so that it is not possible that P € GLg(R){ﬂ

3.5.2 Self-adjoint operators and the spectral theorem

Definition 3.5.10. Let V be a Hermitian space. We say that a morphism f € Endc(V) is self-adjoint
if f = f*. Self-adjoint morphisms are normal morphisms.

Example 3.5.11. Let V be a Hermitian (resp. Euclidean) space. Then, T4 € End(V) is self-adjoint if
and only if A is Hermitian (resp. symmetric).

81\Why?
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Lemma 3.5.12. Let V be a Hermitian space, f € Endc(V) a self-adjoint morphism. Then, all eigen-
values of f are real numbers.

Proof: As f is self-adjoint then f is normal. Using Lemma we know that if v € V is an
eigenvector of f with associated eigenvalue A € C, then v € V is an eigenvector of fT with associated

eigenvalue A e C. As f = f* we must have that A = )\, which implies that X € R. O

Since a self-adjoint morphism f is normal (indeed, we have fof* = fof = f* of), then Theorem
implies that V' admits an orthonormal basis consisting of eigenvectors of f. This result is commonly
referred to as The Spectral Theorem.

Theorem 3.5.13 (Spectral theorem). Let V be a Hermitian space, f € Endc(V) a self-adjoint mor-
phism. Then, there exists an orthonormal basis B of V' consisting of eigenvectors of f and such that
d
[fls = € Mat,(R).
dn
Corollary 3.5.14. 1. Let A € Mat,(C) be Hermitian (A" = A). Then, there exists a unitary matrix
P € U(n) such that
d
PhAP = , where dq, ..., d, € R.
dn

2. Let A € Mat,(R) be symmetric (At = A). Then, there exists an orthogonal matrix P € O(n)

such that
P'AP = D,
where D is diagonal.
Example 3.5.15. 1. Consider the matrix
1 -1 0
A=|-1 -1 1
0 1 1

Then, At = A so that there exists P € O(3) such that P*AP is diagonal (Theorem [3.5.13).

How do we determine P? We know that A is diagonalisable so we proceed as usual: we find that
xa(A) = (1= M)A = V3)(A + V3).

Then, if we choose eigenvectors vi € E1,v2 € E_ 3, v3 € E 3 such that [|vi]| = 1, then we have

P =[wv1 v2» 3] € O(3).

For example, we can take

1 1 1
V2 \/6—\2[\/3 \/6+\2[\@
_ 1-V3 1+/3

P= (1) \/6—12\/5 \/6-5—12\[3 € 0(3)

V2 \Jo—2v3 +fo+2v3
2. Consider the matrix

-1 0 0

A= |0 1 —1-/~1

0 —-1++v/-1 1
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Then, A = A" so that A is Hermitian. Hence, there exists P € U(3) such that

d
PhAP = d» , di, b, d3 € R.
d3

We first determine
xa(A) = =(1+X)’(A - 2),

so that the eigenvalues are Ay = —1, A\, = 2. Then,

1 0
E 1 =spans< [0], |-1—+~1
0 -2
Since _
1 0
H, [ |0o], |[-1-v=1| | =1.0+0.(-1++v=1)+0.(-2) =0,
0 -2 ]
we have that ~
1 0
0 f —-1-— \/jl = (Vl, V2)
o] | -2

is an orthogonal basis of E_;. In order to obtain an orthonormal basis we must scale vi, v» by
Hy,(vi, vi). Hence, as

Hiy(vi,vi) =1, Hy(va,v2) = 0.0 + (=1 = V=1)(=1+ v=1) + (-2).(-2) =2 + 4 = 6,

we have that

1, 0
o, — |-1-v=1
o| V6 )

is an orthonormal basis of E_j.
Now, we need only determine a vector v3 € E; for which Hj(vs, v3) = 1: such an example is
0

—1—/~1
~1

V3 =

Sl

Hence, if we set

1 0 0
— -1_ /=1 =1_ /=1
P—Oﬁ 6 V3 3|
0 2 =

% %

.

then

3. Consider the matrix

N ®)
=N
N = =



As A = A" we can find P € O(3) such that
P'AP = D,
where D is diagonal. We have that
xa(A) = —(1=2)?(A - 4),
so that the eigenvalues of A are A\; =1, A\, = 4.

We have that

1 1
E; = spang 01],|-1 .
-1 0
where
1 1
01,1 ,
-1 0

1 1
1 1
— 0|, — C E.
V2 o] VB |
Now, we need to find v3 € E; such that ||vs]| = 1: we can take
L
va —
Then, if we let
11 1
V2 VB 3
p=1(0 =2 1,
oo
V2 VB V3
then P € O(3) and
1
P'AP = 1
4
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