Math 110, Summer 2012 : JCF review problems

Polynomials, representations

1. Determine the minimal polynomials of the following matrices:
$-A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$,

- $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & -1 \\ 1 & 1 & 0\end{array}\right]$,
- $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 3\end{array}\right]$,
$-A=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$,

Solution:

- We have

$$
\chi_{A}(t)=(2-t)^{2}(5-t),
$$

and μ_{A} has the exact same roots as χ_{A}. Hence, we must have

$$
\mu_{A}=\left\{\begin{array}{l}
-\chi_{A}, \\
(t-2)(t-5)
\end{array}\right.
$$

Since

$$
\left(A-2 I_{3}\right)\left(A-5 I_{3}\right)=0_{3},
$$

we have $\mu_{A}=(t-2)(t-5)$.

- We have

$$
\chi_{A}(t)=(1-t)(t-(1+\sqrt{-2}))(t-(1-\sqrt{-2})) .
$$

Hence, we must have

$$
\mu_{A}=-\chi_{A} .
$$

- We have

$$
\chi_{A}(t)=(1-t)^{2}(3-t),
$$

so that

$$
\mu_{A}=\left\{\begin{array}{l}
(1-t)(3-t), \\
-\chi_{A} .
\end{array}\right.
$$

Since

$$
\left(I_{3}-A\right)\left(3 I_{3}-A\right) \neq 0_{3},
$$

then we must have

$$
\mu_{A}=-\chi_{A}
$$

- We have

$$
\chi_{A}=(1-t)^{3}(-1-t),
$$

so that

$$
\mu_{A}=\left\{\begin{array}{l}
(t-1)(t+1) \\
(t-1)^{2}(t+1) \\
\chi_{A}
\end{array}\right.
$$

Since

$$
\left(A-I_{2}\right)\left(A+I_{3}\right) \neq 0_{4},\left(A-I_{2}\right)^{2}\left(A+I_{2}\right) \neq 0_{4},
$$

we must have

$$
\mu_{A}=\chi_{A} .
$$

Canonical form of an endomorphism

Determine the Jordan canonical form J of the above matrices. Find $P \in G L_{n}(\mathbb{C})$ such that $P^{-1} A P=J$.

Solution:

- The JCF is

$$
\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 5
\end{array}\right],
$$

since μ_{A} is a product of distinct linear factors, therefore A is diagonalisable.

- The JCF is

$$
\left[\begin{array}{lll}
1 & & \\
& 1-\sqrt{-2} & \\
& & 1+\sqrt{-2}
\end{array}\right]
$$

since A is diagonalisable ($\mu_{\boldsymbol{A}}$ is a product of distinct linear factors).

- We have the JCF is

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

You can determine this following a similar approach as the solution to SH8, Q1.

- The JCF is

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] .
$$

You can determine this in a similar approach as the solution to $\mathrm{SH} 8, \mathrm{Q} 1$.
To determine P you must follow the same approach as for the solution to SH8, Q1, or Practice Exam 2, Q1.

Jordan canonical form

Suppose that you are given a matrix $A \in \operatorname{Mat}_{5}(\mathbb{C})$ such that μ_{A} is one of the below polynomials. What are the possibilities for the Jordan canonical form of A ?

- $\mu_{A}=(t+1)^{2}(t-2)^{2}$,
- $\mu_{A}=t(t+4)(t-2)$,
- $\mu_{A}=t^{2}(t-2)$,
- $\mu_{A}=(t-5)(t-1)(t+3)^{3}$.
(Hint: recall that μ_{A} is an annihilating polynomial and we can use the Primary Decomposition Theorem to determine a direct sum decomposition of \mathbb{C}^{5}. What are the allowed blocks of the Jordan form of A?)

Solution:

- The JCF can't be a diagonal, as μ_{A} is not a product of distinct linear factors. We can't have the JCF of the form

$$
\left[\begin{array}{cc}
A(-1) & 0 \\
0 & 2 l_{k}
\end{array}\right] \text {, or }\left[\begin{array}{cc}
A(2) & 0 \\
0 & -l_{l}
\end{array}\right] \text {, }
$$

as then the minimal polynomial would be of the form $(t+1)^{2}(t-2)$ or $(t+1)(t-2)^{2}$. Here, $A(-1)$ and $A(2)$ are the -1 and 2 parts of the JCF. Hence, the JCF must be of the form

$$
\left[\begin{array}{lll}
J(\alpha, 1) & & \\
& J(\alpha, 2) & \\
& & J(\beta, 2)
\end{array}\right], \text { or }\left[\begin{array}{ll}
J(\alpha, 3) & \\
& J(\beta, 2)
\end{array}\right] \text {, }
$$

where $\alpha, \beta \in\{-1,2\}, \alpha \neq \beta$, and $J(\alpha, i)$ is the $i \times i \alpha$-Jordan block.

- The JCF is a diagonal matrix with entries $0,-4,2$, and where each possibility appears at least once, and at most three times.
- The JCF is of the form

$$
\left[\begin{array}{ll}
C(0) & \\
& 2 I_{k}
\end{array}\right],
$$

where $C(0)$ is of the form

$$
\begin{gathered}
J(0,4) \text {, or }\left[\begin{array}{ll}
J(0,3) & \\
& 0
\end{array}\right] \text {, or }\left[\begin{array}{ll}
J(0,2) & \\
& J(0,2)
\end{array}\right] \text {, or }\left[\begin{array}{ll}
J(0,2) & \\
& 0 \\
& \\
& \\
& \\
& \\
& \\
& (0,3) \text {, or }\left[\begin{array}{ll}
J(0,2) & \\
& 0
\end{array}\right] \text {, or } J(0,2)
\end{array} . . \begin{array}{ll}
J
\end{array}\right.
\end{gathered}
$$

where $J(0, i)$ is the $i \times i 0$-Jordan block.

- The JCF must take the form

$$
\left[\begin{array}{lll}
5 & & \\
& 1 & \\
& & J(-3,3)
\end{array}\right] .
$$

