Math 110, Summer 2012 : JCF review problems

Polynomials, representations

1. Determine the minimal polynomials of the following matrices:
$-A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$,

- $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & -1 \\ 1 & 1 & 0\end{array}\right]$,
$-A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 3\end{array}\right]$,
$-A=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$,

Canonical form of an endomorphism

Determine the Jordan canonical form J of the above matrices. Find $P \in G L_{n}(\mathbb{C})$ such that $P^{-1} A P=J$.

Jordan canonical form

Suppose that you are given a matrix $A \in \operatorname{Mat}_{5}(\mathbb{C})$ such that μ_{A} is one of the below polynomials. What are the possibilities for the Jordan canonical form of A ?

- $\mu_{A}=(t+1)^{2}(t-2)^{2}$,
- $\mu_{A}=t(t+4)(t-2)$,
- $\mu_{A}=t^{2}(t-2)$,
- $\mu_{A}=(t-5)(t-1)(t+3)^{3}$.
(Hint: recall that μ_{A} is an annihilating polynomial and we can use the Primary Decomposition Theorem to determine a direct sum decomposition of \mathbb{C}^{5}. What are the allowed blocks of the Jordan form of A?)

