## Math 110, Summer 2012 : Bilinear forms review notes

## Basics

Definition of a $\mathbb{K}$-bilinear form, (anti-)symmetric property. $\mathbb{K}$-vector space structure of $\operatorname{Bil}_{\mathbb{K}}(V)$. Matrix of a bilinear form with respect to a basis $\mathcal{B}$; fundamental property of this matrix; computing this matrix. Bilinear forms on $\operatorname{Bi}_{\mathbb{K}}\left(\mathbb{K}^{n}\right)$ of the type $B_{A}, A \in M a t_{n}(\mathbb{K})$. Nondegeneracy: definition, relation to matrices. $B$-complements. Definition of adjoint, computing the adjoint of a morphism with respect to a symmetric nondegenerate bilinear form. Examples.

## Basic results

Every bilinear form $B \in \operatorname{Bi}_{\mathbb{K}}\left(\mathbb{K}^{n}\right)$ is of the form $B=B_{A}$. Change of coordiante formula. $B$ nondegenerate if and only if $[B]_{\mathcal{B}}$ is invertible, for any basis $\mathcal{B}$. Nondegenerate bilinear forms induce an isomorphism $\sigma_{B}: V \rightarrow V^{*}$; the matrix of this isomorphism (with respect to $\mathcal{B}, \mathcal{B}^{*}$ ) is $[B]_{\mathcal{B}}$. Dimension formula: $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} U^{\perp}$, where $U^{\perp}$ is the $B$-complement of $U$. Applying these results to specific examples.

## Real/complex symmetric nondegenerate bilinear forms

Polarisation identity. If $B \in \operatorname{Bil}_{\mathbb{C}}(V)$ is symmetric, nondegenerate then there is a basis $\mathcal{B} \subset V$ such that $[B]_{\mathcal{B}}=I_{n}$. If $B \in \operatorname{Bil}_{\mathbb{R}}(V)$ is symmetric, nondegenerate then there is a basis $\mathcal{B} \subset V$ such that $[B]_{\mathcal{B}}$ is diagonal with nonzero entries being $\pm 1$ s (Sylvester's law of inertia). Computing the canonical form of a real symmetric, nondegenerate bilinear form ('completing the square'). Signature of a real symmetric, nondegenerate bilinear form $B$; it's an invariant of B. Examples.

## Euclidean spaces: definitions

Definition of inner product; positive definite property. Definition of Euclidean space, Euclidean morphism, orthogonal transformation. Definition of length (with respect to an inner product), norm function. Orthogonal matrices. Examples of inner (non-) inner products. Projections. Orthogonal sets, orthogonal bases, orthonormal bases. Orthogonal complements.

## Euclidean spaces: results

Theorem 3.3.6: Pythagoras' theorem, Cauchy-Schwarz, triangle inequality. $\|v\|=0$ if and only if $v=0_{v}$. Inner products are nondegenerate. Euclidean spaces of the same dimension are isomorphic. Computing an isomorphism $(V,\langle\rangle,) \rightarrow \mathbb{E}^{n}$. Euclidean morphisms are injective. Euclidean endmorphisms are isomorphisms. Basic structure of $O(n): T_{A} \in O(n)$ if and only if $A^{t} A=I_{n}$. Euclidean morphisms preserve length. $V=U \oplus U^{\perp}$, for any subspace $U \subset V$. Defining property of $\operatorname{proj}_{U^{V}} V$ as the closest vector in $U$ to $v$. Orthogonal sets of nonzero vectors are linearly independent. Computing the $\mathcal{B}$-coordinates when $\mathcal{B}$ is an orthogonal basis. Computing proju $_{U}$ v. Gram-Schmidt process. Examples

## Spectral theorem

Normal morphisms/matrices. Orthogonality property of eigenspaces of normal morphisms/matrices. Normal matrices are unitarily diagonalisable (but not necessarily with $\mathbb{R}$-eigenvalues!). Selfadjoint morphisms/matrices: self-adjoint real matrices are symmetric. Self adjoint matrices are orthogonally diagonalisable, with real eigenvalues. Examples

