Math 110, Summer 2012 : Bilinear forms review problems

Basics

1. Determine which of the following bilinear forms are symmetric/antisymmetric/neither, nondegenerate:
$-B_{A} \in \operatorname{Bil}_{\mathbb{Q}}\left(\mathbb{Q}^{3}\right)$, where $A=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & -1 \\ -1 & 1 & 2\end{array}\right]$,

- $B_{A} \in \operatorname{Bil}_{\mathbb{R}}\left(\mathbb{R}^{4}\right)$, where $A=\left[\begin{array}{cccc}1 & 1 & 0 & 1 \\ 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 5\end{array}\right]$,
- $B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(A, B) \mapsto \operatorname{tr}\left(A^{t} X B\right)$, where $X=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
- $B: \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R} ;(\underline{u}, \underline{v}) \mapsto u_{1} v_{2}+u_{2} v_{1}+u_{1} v_{4}+u_{4} v_{1}+u_{2} v_{2}+u_{2} v_{4}+u_{4} v_{2}+u_{4} v_{4}+2 u_{3} v_{3}$.
- $B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(A, B) \mapsto \operatorname{tr}\left(A^{t} X B\right)$, where $X=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$.

Canonical forms of symmetric nondegenerate real bilinear forms

Determine the canonical form of the following real symmetric nondegenerate bilinear forms.

- $B_{A} \in \operatorname{Bil}_{\mathbb{R}}\left(\mathbb{R}^{3}\right)$, where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 3 & 2 \\ 0 & 2 & -1\end{array}\right]$,
- $B_{A} \in \operatorname{Bil}_{\mathbb{R}}\left(\mathbb{R}^{3}\right)$, where $A=\left[\begin{array}{ccc}-3 & 2 & -2 \\ 2 & 1 & 0 \\ -2 & 0 & 5\end{array}\right]$,
- $B_{A} \in \operatorname{Bi}_{\mathbb{R}}\left(\mathbb{R}^{4}\right)$, where $A=\left[\begin{array}{cccc}0 & 1 & 2 & -1 \\ 1 & 0 & -3 & 1 \\ 2 & -3 & 1 & 0 \\ -1 & 1 & 0 & 5\end{array}\right]$.

Which of the bilinear forms are inner products? For those that are not inner products determine \underline{x} such that $B_{A}(\underline{x}, \underline{x})<0$.

Solution:

- We have

$$
\underline{x}^{t} A \underline{x}=\left(x_{1}-x_{2}\right)^{2}+2\left(x_{2}+x_{3}\right)^{2}-3 x_{3}^{2}
$$

so if

$$
P=Q^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & \sqrt{2} & \sqrt{2} \\
0 & 0 & \sqrt{3}
\end{array}\right]^{-1}
$$

then

$$
P^{t} A P=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & -1
\end{array}\right]
$$

This is NOT an inner product. We have

$$
B_{A}\left(\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]\right)=-3<0
$$

- We have

$$
\underline{x}^{t} A \underline{x}=-3\left(x_{1}-\frac{2}{3}\left(x_{2}-x_{3}\right)\right)^{2}+\frac{7}{3}\left(x_{2}-\frac{4}{7} x_{3}\right)^{2}+\frac{133}{21} x_{3}^{2} .
$$

If we set

$$
P=Q^{-1}=\left[\begin{array}{ccc}
\sqrt{3} & -\frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\
0 & \sqrt{\frac{7}{3}} & \frac{4}{\sqrt{21}} \\
0 & 0 & \sqrt{\frac{133}{21}}
\end{array}\right]^{-1}
$$

then

$$
P^{t} A P=\left[\begin{array}{lll}
-1 & & \\
& 1 & \\
& & 1
\end{array}\right]
$$

This is NOT an inner product. We have

$$
B_{A}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=-3<0
$$

Projections, Gram-Schmidt

Determine $\operatorname{proj}_{U} v$, for the given subspace $U \subset V$ and $v \in V$. You will need to determine an orthogonal basis of U using Gram-Schmidt (with respect to the 'dot product').

- $U=\operatorname{ker} T_{A}$, where $A=\left[\begin{array}{lll}1 & -3 & 1 \\ 3 & -1 & 0\end{array}\right], v=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$.
- $U=\operatorname{im} T_{A}$, where $A=\left[\begin{array}{cccc}-1 & 0 & 2 & -1 \\ 2 & 0 & 2 & 1 \\ 0 & 0 & -1 & 2\end{array}\right], v=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$,
$-U=\left\{\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]\right\}, v=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
Determine U^{\perp} for the above subspaces U.
Solution:
- We have that

$$
\left[\begin{array}{lll}
1 & -3 & 1 \\
3 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & -1 / 8 \\
0 & 1 & -3 / 8
\end{array}\right]
$$

so that

$$
U=\operatorname{span}_{\mathbb{R}}\left\{\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right]\right\}
$$

Hence,

$$
\left(\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right]\right)
$$

is an orthogonal basis of U.

- We have

$$
\operatorname{im} T_{A}=\operatorname{span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\}
$$

and since

$$
\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & 2 & 1 \\
0 & -1 & 2
\end{array}\right] \sim I_{3}
$$

we have that $U=\mathbb{R}^{3}$ so that

$$
\operatorname{proj}_{U} v=v
$$

NOTE: here v should be an element of \mathbb{R}^{3}.

- We have

$$
\left(\left[\begin{array}{c}
1 \\
-1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]\right)
$$

is a basis of U. Then, using the Gram-Schmidt process we have

$$
\begin{aligned}
& c_{1}=\left[\begin{array}{c}
1 \\
-1 \\
2 \\
4
\end{array}\right], \\
& c_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right]-\frac{2}{22}\left[\begin{array}{c}
1 \\
-1 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{c}
10 / 11 \\
-10 / 11 \\
-2 / 11 \\
-4 / 11
\end{array}\right], \\
& c_{3}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]-\frac{-5}{22}\left[\begin{array}{c}
1 \\
-1 \\
2 \\
4
\end{array}\right]-\frac{-6 / 11}{20 / 11}\left[\begin{array}{c}
10 / 11 \\
-10 / 11 \\
-2 / 11 \\
-4 / 11
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
2 / 5 \\
-1 / 5
\end{array}\right]
\end{aligned}
$$

Then,

$$
\operatorname{proj}_{U} v=\frac{c_{1} \cdot v}{c_{1} \cdot c_{1}} c_{1}+\frac{c_{2} \cdot v}{c_{2} \cdot c_{2}} c_{2}+\frac{c_{3} \cdot v}{c_{3} \cdot c_{3}} c_{3}
$$

Let's determine the orthogonal complements:

- We have

$$
U^{\perp}=\left\{\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right]\right\}^{\perp}
$$

and $\underline{x} \in U^{\perp}$ if and only if

$$
0=\underline{x} \cdot\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right]=x_{1}+3 x_{2}+8 x_{3} .
$$

Hence,

$$
U^{\perp}=\operatorname{span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-8 \\
0 \\
1
\end{array}\right]\right\} .
$$

- Since $U=\mathbb{R}^{3}$ then $U^{\perp}=\{0\}$.
- We have

$$
U^{\perp}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]\right\}^{\perp}
$$

so that $\underline{x} \in U^{\perp}$ if and only if
$0=\underline{x} \cdot\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 4\end{array}\right]=x_{1}-x_{2}+2 x_{3}+4 x_{4}, 0=\underline{x} \cdot\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right]=x_{1}-x_{2}, 0=\underline{x} \cdot\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]=x_{2}-x_{4}$.
Hence, we require that

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 4 \\
1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \underline{x}=\underline{0}
$$

Since

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 4 \\
1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 1 & 2 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

we have

$$
U^{\perp}=\operatorname{span}_{\mathbb{R}}\left\{\left[\begin{array}{c}
1 \\
1 \\
-2 \\
1
\end{array}\right]\right\} .
$$

