Math 110, Summer 2012: Exam 1 SOLUTIONS

1. Let V be a \mathbb{K}-vector space, for some number field \mathbb{K}. Let $E \subset V$ be a nonempty subset of V.
i) (4 pts) Define what it means for E to be linearly independent (over \mathbb{K}). Define what it means for E to be linearly dependent (over \mathbb{K}).
ii) (3 pts) Suppose that E is linearly independent and let $F \subset E$ be a nonempty subset. Prove that F is linearly independent.
iii) (5 pts) Suppose that E is linearly dependent. Prove that there exists $v \in E$ such that v can be written as a linear combination

$$
v=c_{1} v_{1}+\ldots+c_{k} v_{k}, \quad \text { with } c_{i} \in \mathbb{K}, v_{i} \in E
$$

iv) (7 pts) Suppose that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is linearly independent. Let $w \in V$ be such that $w \notin \operatorname{span}_{\mathbb{K}} E$. Prove that $E \cup\{w\}$ is linearly independent.
v) (6 pts) Show that

$$
E=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\right\} \subset \operatorname{Mat}_{2}(\mathbb{Q})
$$

is linearly independent and extend E to a basis of $\operatorname{Mat}_{2}(\mathbb{Q})$.

Solution:

i) E is linearly independent if, whenever we have a linear relation

$$
\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}=0 v, v_{1}, \ldots, v_{n} \in E
$$

then $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=0 \in \mathbb{K} . E$ is linearly dependent if there exists $v_{1}, \ldots, v_{m} \in E$ and $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{K}$, with at least one $\lambda_{i} \neq 0$, such that

$$
\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}=0 v
$$

ii) Suppose that we have a linear relation

$$
c_{1} f_{1}+\ldots+c_{n} f_{n}=0_{V}, f_{1}, \ldots, f_{n} \in F
$$

Then, as $f_{i} \in E$, this is a linear relation among vectors in E. Since E is linearly independent this must be the trivial linear relation. Hence, $c_{1}=c_{2}=\ldots=c_{n}=0$, showing that F is linearly independent.
iii) As E is linearly dependent there is a nontrivial linear relation

$$
c_{1} v_{1}+\ldots c_{n} v_{n}=0 v, v_{1}, \ldots, v_{n} \in E
$$

where we can assume that $c_{1} \neq 0$. Then, we have

$$
v_{1}=-\frac{1}{c_{1}}\left(c_{2} v_{2}+\ldots+c_{n} v_{n}\right)
$$

and this is a linear combination of the desired form.
iv) Suppose that we have a linear relation

$$
c_{1} v_{1}+\ldots+c_{n} v_{n}=0_{v}, v_{1}, \ldots, v_{n} \in E \cup\{w\}
$$

If there exists i such that $v_{i}=w$ and $c_{i} \neq 0$ then we would have

$$
w=-\frac{1}{c_{i}}\left(c_{1} v_{1}+\ldots+c_{i-1} v_{i-1}+c_{i+1} v_{i+1}+\ldots+c_{n} v_{n}\right) \in \operatorname{span}_{\mathbb{K}} E
$$

which is impossible by our assumption on w. Hence, we must have, for every $i, w \neq v_{i}$ or, if $v_{i}=w$, for some i, then $c_{i}=0$. Thus, we now have a linear dependence relation among vectors in E which must be the trivial linear relation since E is linearly independent. Hence, the only linear relation that can exist among vectors in $E \cup\{w\}$ is the trivial linear relation.
v) Consider the standard ordered basis \mathcal{S} of $\operatorname{Mat}_{2}(\mathbb{Q})$. Label $E=\left\{e_{1}, e_{2}, e_{3}\right\}$, the order being the one written above. Then, we see that

$$
\left[e_{1}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[e_{2}\right]_{\mathcal{S}}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right],\left[e_{3}\right]_{\mathcal{S}}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

It is easy to see that

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -1 \\
0 & -1 & 0 \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so that the set $\left\{\left[e_{1}\right]_{\mathcal{S}},\left[e_{2}\right]_{\mathcal{S}},\left[e_{3}\right]_{\mathcal{S}}\right\} \subset \mathbb{Q}^{4}$ is linearly independent. Hence, since the \mathcal{S}-coordinate morphism is an isomorphism the original set E is also linearly independent.

Consider the matrix $e_{11} \in \operatorname{Mat}_{2}(\mathbb{Q})$. Then,

$$
\left[e_{11}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \text { and }\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \sim I_{4}
$$

so that

$$
\operatorname{span}_{\mathbb{Q}}\left\{\left[e_{1}\right]_{\mathcal{S}},\left[e_{2}\right]_{\mathcal{S}},\left[e_{3}\right]_{\mathcal{S}},\left[e_{11}\right]_{\mathcal{S}}\right\}=\mathbb{Q}^{4} .
$$

Hence, as the \mathcal{S}-coordinate morphism is an isomorphism we must have

$$
\operatorname{span}_{\mathbb{Q}}\left\{e_{1}, e_{2}, e_{3}, e_{11}\right\}=\operatorname{Mat}_{2}(\mathbb{Q})
$$

and $E \cup\left\{e_{11}\right\}$ is a basis of $\operatorname{Mat}_{2}(\mathbb{Q})$.
2. i) (3 pts) Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right) \subset V$ be an ordered subset of the \mathbb{K}-vector space V. Define what it means for \mathcal{B} to be an ordered basis of V (You can use ANY definition here.)
ii) (2 pts) Suppose that $E \subset V$ is a linearly independent subset of a finite dimensional \mathbb{K}-vector space V. What is the allowed possible size of E ?
iii) (6 pts) Suppose that V is a \mathbb{K}-vector space such that $\operatorname{dim}_{\mathbb{K}} V=n$. Let $E \subset V$ be a linearly independent subset of size $|E|=n$. Prove that $\operatorname{span}_{\mathbb{K}} E=V$. (Hint: Use a 'proof by contradiction' argument and try to contradict your answer for ii) above.)
iv) (6 pts) Consider the ordered subset

$$
\mathcal{B}=\left(f_{1}, f_{2}, f_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}}=\{f:\{1,2,3\} \rightarrow \mathbb{Q}\}
$$

where

$$
f_{1}(1)=1, f_{1}(2)=0, f_{1}(3)=-1, f_{2}(1)=1, f_{2}(2)=0, f_{2}(3)=1, f_{3}(1)=0, f_{3}(2)=1, f_{3}(3)=1
$$

Prove that \mathcal{B} is linearly independent. Deduce that \mathcal{B} is a basis of $\mathbb{Q}^{\{1,2,3\}}$.
v) (5 pts) Let $\mathcal{S}=\left(e_{1}, e_{2}, e_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}}$ be the standard ordered basis of $\mathbb{Q}^{\{1,2,3\}}$. Determine the change of coordinate matrix $P_{\mathcal{B} \leftarrow \mathcal{S}}$.
vi) (3 pts) Suppose that $f \in \mathbb{Q}^{\{1,2,3\}}$ is such that

$$
[f]_{\mathcal{B}}=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]
$$

Is $f \in \operatorname{span}_{\mathbb{Q}}\left\{f_{1}, f_{3}\right\}$? Justify your answer.

Solution:

i) \mathcal{B} is a basis of V if \mathcal{B} is linearly independent and $\operatorname{span}_{\mathbb{K}} \mathcal{B}=V$. It is an ordered basis whenever it is also an ordered set.
ii) Let $n=\operatorname{dim} V$. Then, we must have $|E| \leq n$.
iii) Suppose that $\operatorname{span}_{\mathbb{K}} E \neq V$. Then, there is some $v \in V$ such that $v \notin \operatorname{span}_{\mathbb{K}} E$. Hence, by a result from class, the set

$$
E^{\prime}=E \cup\{v\}
$$

is linearly independent and has size $\left|E^{\prime}\right|=n+1$. However, this contradicts ii). Therefore, our initial assumption that $\operatorname{span}_{\mathbb{K}} E \neq V$ must be false, so that $\operatorname{span}_{\mathbb{K}} E=V$.
iv) Consider the standard ordered basis $\mathcal{S}=\left(e_{1}, e_{2}, e_{3}\right) \subset \mathbb{Q}^{\{1,2,3\}}$. Then,

$$
\left[f_{1}\right]_{\mathcal{S}}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[f_{2}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[f_{3}\right]_{\mathcal{S}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

We see that

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right] \sim I_{3}
$$

so that $\left\{\left[f_{1}\right]_{\mathcal{S}},\left[f_{2}\right]_{\mathcal{S}},\left[f_{3}\right]_{\mathcal{S}}\right\}$ is linearly independent. Hence, as the \mathcal{S}-coordinate morphism is an isomorphism, we obtain that \mathcal{B} is linearly independent. Since $\mathbb{Q}^{\{1,2,3\}}$ is 3 dimensional and \mathcal{B} is a linearly independent set with 3 elements, it must be a basis.
v) We have

$$
P_{\mathcal{B} \leftarrow \mathcal{S}}=P_{\mathcal{S} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 \\
0 & 1 & 0
\end{array}\right]
$$

vi) No: we must have

$$
f=f_{1}-2 f_{2}
$$

If $f \in \operatorname{span}_{\mathbb{Q}}\left\{f_{1}, f_{3}\right\}$ then there exists $a, b \in \mathbb{Q}$ such that

$$
f_{1}-2 f_{2}=f=a f_{1}+b f_{3} \Longrightarrow(1-a) f_{1}-2 f_{2}-b f_{3}=0_{\mathbb{Q}^{\{1,2,3\}}}
$$

which is impossible since \mathcal{B} is linearly independent.
3. i) (6 pts) Define the image imf of a linear morphism $f: V \rightarrow W$ and the rank of f, rankf. Define the rank of an $m \times n$ matrix $A \in M a t_{m, n}(\mathbb{K})$, rank A.
ii) (7 pts) Prove: if rankf $=\operatorname{dim} V$ then f is surjective.
iii) (5 pts) Prove: if $A \in \operatorname{Mat}_{m, n}(\mathbb{K}), B \in \operatorname{Mat}_{n, p}(\mathbb{K})$ and $\operatorname{rank} A=r, \operatorname{rank} B=s$, then $\operatorname{rank} A B \leq r$.
iv) (7 pts) Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & -1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Determine $r=\operatorname{rank} A$ and find $P, Q \in \mathrm{GL}_{3}(\mathbb{Q})$ such that

$$
Q^{-1} A P=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]
$$

Solution:

i) The image of f is the set

$$
\operatorname{imf}=\{w \in W \mid \exists v \in V \text { such that } f(v)=w\}=\{f(v) \mid v \in V\}
$$

and the rank of f is rank $f=\operatorname{dimim} f$.
The rank of an $m \times n$ matrix is $\operatorname{rank} A=\operatorname{dimim} T_{A}$, where $T_{A}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$ is the morphism defined by A.
ii) Suppose that rankf $=\operatorname{dim} W$. Thus, $\operatorname{dim} \operatorname{im} f=\operatorname{dim} W$. Hence, since $\operatorname{im} f \subset W$ is a subspace and has the same dimension as W we must have $\operatorname{im} f=W$. Therefore, for every $w \in W$, there is some $v \in V$ such that $f(v)=w$. This implies that f is surjective.
iii) Consider the morphisms $T_{A} \in \operatorname{Hom}_{\mathbb{K}}\left(\mathbb{K}^{n}, \mathbb{K}^{m}\right)$, $T_{B} \in \operatorname{Hom}_{\mathbb{K}}\left(\mathbb{K}^{p}, \mathbb{K}^{n}\right)$. Then, we have rank $A B=$ $\operatorname{dim} \operatorname{im} T_{A B}$. Now, we have

$$
\operatorname{im} T_{A B}=\left\{A B \underline{x} \mid \underline{x} \in \mathbb{K}^{p}\right\},
$$

and if $\underline{y}=T_{A B}(\underline{x}) \in \operatorname{im} T_{A B}$ then,

$$
\underline{y}=A B \underline{x}=A(B \underline{x})=A \underline{z} \in \operatorname{im} T_{A}
$$

Hence, $\operatorname{im} T_{A B} \subset \operatorname{im} T_{A}$ is a subspace. Therefore, we must have

$$
\operatorname{rank} A B=\operatorname{dimim} T_{A B} \leq \operatorname{dimim} T_{A}=\operatorname{rank} A=r
$$

iv) Since

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & -1 & 1 \\
0 & 1 & 1
\end{array}\right] \sim I_{3}
$$

we must have that rank $A=3$ (there is a pivot in every column so that T_{A} is surjective. Hence, $\operatorname{dimim} T_{A}=3$). As T_{A} is a surjective morphism between spaces of the same dimension it must be an isomorphism. Hence, A is invertible so that we can take

$$
Q=I_{3}, P=A^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & -1 / 4 & 3 / 4 \\
-1 / 2 & 1 / 4 & 1 / 4
\end{array}\right]
$$

4. i) (4 pts) Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, with V a finite dimensional \mathbb{C}-vector space. Define what it means for $\lambda \in \mathbb{C}$ to be an eigenvalue of f. Define the geometric and algebraic multiplicity of λ.
ii) (4 pts) Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, with V a finite dimensional \mathbb{C}-vector space. Define what it means for f to be diagonalisable. Give a criterion for f to be diagonalisable using the notions of geometric and algebraic multiplicity of eigenvalues.
iii) (7 pts) Let $f \in \operatorname{End}_{\mathbb{C}}(V)$, where $\operatorname{dim} V=7$. Suppose that f is non-surjective, diagonalisable and such that $\operatorname{dim} \operatorname{im} f=1$. Prove that f admits exactly one nonzero eigenvalue λ and that $E_{\lambda}=\operatorname{im} f$, where E_{λ} is the λ-eigenspace.

Consider the endomorphism

$$
f: \operatorname{Mat}_{2}(\mathbb{C}) \rightarrow \operatorname{Mat}_{2}(\mathbb{C}) ; A \mapsto A+A^{t}
$$

where A^{t} is the transpose of A.
iv) (4 pts) Determine the eigenvalues of f and their algebraic multiplicities.
v) (6 pts) Prove that f is diagonalisable and find a basis $\mathcal{B} \subset \operatorname{Mat}_{2}(\mathbb{C})$ such that $[f]_{\mathcal{B}}$ is diagonal.

For iv)-v) you may want to use the standard ordered basis

$$
\mathcal{S}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) \subset \operatorname{Mat}_{2}(\mathbb{C})
$$

Solution:

i) λ is an eigenvalue of f if there is some nonzero $v \in V$ such that $f(v)=\lambda v$.

The geometric multiplicity of λ is $\operatorname{dim} \operatorname{ker}(f-\lambda i d v)$. If $\chi_{f}(t)$ is the characteristic polynomial of f then

$$
\chi_{f}(t)=(t-\lambda)^{n_{\lambda}} g
$$

where $g \in \mathbb{C}[t]$ is such that $g(\lambda) \neq 0$. Then, the algebraic multiplicity of λ is n_{λ}.
ii) f is diagonalisable if there exists a basis $\mathcal{B} \subset V$ consisting of eigenvectors of f.
f is diagonalisable if and only if, for every eigenvalue of f, the algebraic and geometric multiplicities are equal.
iii) As f is non-surjective then then it must also be non-injective so that ker $f \neq\{0 v\}$. Hence, we must have that 0 is an eigenvalue of f. Using $\operatorname{dim} \operatorname{imf}=1$, the Rank Theorem implies that $\operatorname{dim} \operatorname{ker} f=7-1=6$, so that the geometric multiplicity of 0 is 6 . Since f is assumed diagonalisable we must also have the algebraic multiplicity of 0 is 6 . Hence, the characteristic polynomial of f is of the form

$$
\chi_{f}(t)=t^{6}(t-a)
$$

because $\operatorname{deg} \chi_{f}=7$, and where $a \neq 0$. Thus, a is a nonzero eigenvalue of f and is the only such.
Moreover, let v be an eigenvector with associated eigenvalue a. Then, $f(v)=a v$, so that $v \in \operatorname{im} f$. Conversely, suppose that $w=f(v)$. Then, as f is diagonalisable, we have

$$
V=E_{0} \oplus E_{a}=\operatorname{ker} f \oplus E_{a}
$$

Hence, $v=z+u$, where $z \in \operatorname{ker} f, u \in E_{a}$. So, $w=f(v)=f(z+u)=f(z)+f(u)=0 v+f(u)=$ $f(u)=a u$. Hence, as E_{a} is a subspace, we have $w \in E_{a}$ so that $\operatorname{imf}=E_{a}$.
iv) Consider the standard ordered basis \mathcal{S} of $\operatorname{Mat}_{2}(\mathbb{C})$ given below. Then,

$$
B \stackrel{\text { def }}{=}[f]_{\mathcal{S}}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Hence, we have

$$
\chi_{f}(t) \operatorname{det}\left(B-t I_{4}\right)=t(t-2)^{3}
$$

so that the eigenvalues of f are 0 and 2 with algebraic multiplicities 1 and 3 (respectively).
v) We have

$$
B-2 I_{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so that

$$
E_{2}^{B}=\operatorname{span}_{\mathbb{C}}\left\{e_{1}, e_{4}, e_{2}+e_{3}\right\} \Longrightarrow E_{2}^{f}=\left\{e_{11}, e_{22}, e_{12}+e_{21}\right\}
$$

Similarly,

$$
E_{0}^{B}=\operatorname{span}_{\mathbb{C}}\left\{e_{2}-e_{3}\right\} \Longrightarrow E_{0}^{f}=\left\{e_{12}-e_{21}\right\}
$$

Hence, since the geometric multiplicity of 2 is 3 and the geometric multiplicity of 0 is 1 , we must have that f is diagonalisable. Moreover, if we let

$$
\mathcal{B}=\left(e_{11}, e_{22}, e_{12}+e_{21}, e_{12}-e_{21}\right)
$$

then

$$
[f]_{\mathcal{B}}=\left[\begin{array}{llll}
2 & & & \\
& 2 & & \\
& & 2 & \\
& & & 0
\end{array}\right]
$$

5. Consider the following endomorphism

$$
L_{A}: \operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \operatorname{Mat}_{n}(\mathbb{C}) ; B \mapsto A B, \quad \text { where } A \in \operatorname{Mat}_{n}(\mathbb{C})
$$

i) (4 pts) Define what it means for L_{A} to be nilpotent. Define what it means for A to be nilpotent.
ii) (2 pts) Define the exponent of $L_{A}, \eta\left(L_{A}\right)$. Define the exponent of $A, \eta(A)$.
iii) (4 pts) Prove: A is nilpotent if and only if L_{A} is nilpotent.

Now suppose that $n=2$ and $A=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.
iv) (2 pts) Using iii) deduce that L_{A} is nilpotent. What is $\eta\left(L_{A}\right)$?
v) (3 pts) Let $\mathcal{S}=\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$ be the standard ordered basis of $\operatorname{Mat}_{2}(\mathbb{C})$. Determine $X=\left[L_{A}\right]_{\mathcal{S}}$.
vi) (7 pts) Determine an ordered basis $\mathcal{B}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \subset M a t_{2}(\mathbb{C})$ such that $\left[L_{A}\right]_{\mathcal{B}}$ is a block diagonal matrix, each block being a 0-Jordan block.
vii) (3 pts) Determine the partition associated to $X, \pi(X)$. Is X similar to the following matrix

$$
Y=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] ?
$$

Justify your answer.

Solution:

i) L_{A} is nilpotent if there is some $r \in \mathbb{N}$ such that $L_{A}^{r}=0 \in \operatorname{End}_{\mathbb{C}}\left(\operatorname{Mat} t_{n}(\mathbb{C})\right)$. A is nilpotent if there is some $r \in \mathbb{N}$ such that $A^{r}=0 \in \operatorname{Mat}_{n}(\mathbb{C})$.
ii) $\eta\left(L_{A}\right)$ is the smallest $r \in \mathbb{N}$ such that $L_{A}^{r}=0$ while $L_{A}^{r} \neq 0 . \eta(A)$ is the smallest $r \in \mathbb{N}$ such that $A^{r}=0$ while $A^{r-1} \neq 0$.
iii) Suppose that A is nilpotent. Then, there is some $r \in \mathbb{N}$ such that $A^{r}=0 \in \operatorname{Mat}_{n}(\mathbb{C})$. Hence, for any $B \in \operatorname{Mat}_{n}(\mathbb{C})$ we have

$$
L_{A}^{r}(B)=A^{r} B=0 . B=0 \in \operatorname{Mat}_{n}(\mathbb{C})
$$

so that $L_{A}^{r}=0 \in \operatorname{End}_{\mathbb{C}}\left(\operatorname{Mat} t_{n}(\mathbb{C})\right)$ and L_{A} is nilpotent. Conversely, if $L_{A}^{r}=0$ then we must have

$$
0=L_{A}^{r}\left(I_{n}\right)=A^{r} I_{n}=A^{r}
$$

so that A is nilpotent.
iv) As A is nilpotent $\left(A^{2}=0\right)$ we have that L_{A} is nilpotent. Since $L_{A} \neq 0$ while $L_{A}^{2}=0$ (consider the proof of iii)) then $\eta\left(L_{A}\right)=2$.
v) We have

$$
L_{A}\left(e_{11}\right)=e_{11}+e_{21}, L_{A}\left(e_{12}\right)=e_{12}+e_{22}, L_{A}\left(e_{21}\right)=-e_{11}-e_{21}, L_{A}\left(e_{22}\right)=-e_{12}-e_{22}
$$

so that

$$
X=\left[L_{A}\right]_{\mathcal{S}}=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

vi) We follow the algorithm from the notes for the matrix X, making sure to translate our answer back to $\mathrm{Mat}_{2}(\mathbb{C})$ at the end.

We have
$H_{2}=\operatorname{ker} T_{X^{2}}=M a t_{2}(\mathbb{C}), H_{1}=\operatorname{ker} T_{X}=\left\{\underline{x} \in \mathbb{C}^{4} \mid x_{1}-x_{3}=0, x_{2}-x_{4}=0\right\}=\operatorname{span}_{\mathbb{C}}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right].\right\}$.
Then, we have

$$
H_{2}=H_{1} \oplus G_{2},
$$

and we can take

$$
G_{2}=\operatorname{span}_{\mathbb{C}}\left\{e_{1}, e_{2}\right\} .
$$

Set $S_{1}=\left\{X e_{1}, X e_{2}\right\}=\left\{e_{1}+e_{3}, e_{2}+e_{4}\right\}$. Then, we have

$$
H_{1}=H_{0} \oplus \operatorname{span}_{\mathbb{C}} S_{1} \oplus G_{1}
$$

However, since $H_{0}=\{0\}$ and S_{1} is linearly independent (so that $\operatorname{dim} \operatorname{span}_{\mathbb{C}} S_{1}=2$) we have $G_{1}=0$.

Therefore, the table we obtain looks like

$$
\begin{array}{cc}
e_{1} & e_{2} \\
X e_{1} & X e_{2}
\end{array}
$$

so if we set $\mathcal{B}=\left(X e_{1}, e_{1}, X e_{2}, e_{2}\right)$ then

$$
\left[L_{A}\right]_{\mathcal{B}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

vii) The partition associated to X is

$$
\pi(X): 2^{2} \leftrightarrow 2+2=4 .
$$

Therefore, X is not similar to Y since

$$
\pi(Y): 1^{2} 2 \leftrightarrow 1+1+2=4,
$$

so that $\pi(X) \neq \pi(Y)$. A result from class states that two nilpotent matrices are similar if and only if they have the same associated partitions.

