Worksheet 7/30. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Euclidean spaces

1. Which of the following matrices A define an inner product B_{A} ?
i) $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 4\end{array}\right]$.
ii) $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$.
iii) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$.
iv) $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.

For those matrices that do not define an inner product, explain why.
For those matrices for which B_{A} is an inner product determine

- the length of the standard basis vectors (with respect to B_{A}),
- a Euclidean isomorphism $f:\left(\mathbb{R}^{n}, B_{A}\right) \rightarrow \mathbb{E}^{n}$.

2. Show that the symmetric bilinear form

$$
B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(X, Y) \mapsto \operatorname{tr}(X Y)
$$

is not an inner product on $\operatorname{Mat}_{2}(\mathbb{R})$ by determining $X \in \operatorname{Mat}_{2}(\mathbb{R})$ such that $B(X, X)<0$.
3. Is the symmetric bilinear form

$$
B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(X, Y) \mapsto \operatorname{tr}\left(X^{t} Y\right)
$$

an inner product on $\operatorname{Mat}_{2}(\mathbb{R})$?
4. Let V be a finite dimensional \mathbb{R}-vector space and $\mathcal{I}(V)=\left\{B \in \operatorname{Bil}_{\mathbb{R}}(V) \mid B\right.$ is an inner product $\}$. Is $\mathcal{I}(V) \subset \operatorname{Bil}_{\mathbb{R}}(V)$ a subspace?
5. Show that a Euclidean morphism $f: V_{1} \rightarrow V_{2}$, where $\left(V_{1},\langle,\rangle_{1}\right),\left(V_{2},\langle,\rangle_{2}\right)$ are Euclidean spaces, is length-preserving (so that $\|f(v)\|_{2}=\|v\|_{1}$).

