Worksheet 7/25. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Nondegenerate bilinear forms

Consider the following bilinear forms
i) $B_{1}: \mathbb{Q}^{3} \times \mathbb{Q}^{3} \rightarrow \mathbb{Q}$; $(u, v) \mapsto u_{1} v_{3}+5 u_{2} v_{2}-6 u_{3} v_{1}$.
iii) $B_{2}: \operatorname{Mat}_{3,2}(\mathbb{Q}) \times \operatorname{Mat}_{3,2} \rightarrow \mathbb{Q} ;(X, Y) \mapsto \operatorname{tr}\left(X Y^{t}\right)$.

1. Prove that if B is nondegenerate and $v \in V$, then there exists $v^{\prime} \in V$ such that $B\left(v, v^{\prime}\right) \neq 0$. Deduce that there is some $w \in V$ such that $B(v, w)=1$.
2. Consider the bilinear form

$$
B: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C} ;(\underline{x}, \underline{y}) \mapsto x_{1} y_{1}+x_{1} y_{2} .
$$

Show that B is degenerate by finding an explicit $\underline{x}_{0} \in \mathbb{C}^{2}$ such that $B\left(\underline{y}, \underline{x}_{0}\right)=0$, for every $\underline{y} \in \mathbb{C}^{2}$.
3. Which of B_{1}, B_{2} above are nondegenerate? If B_{i} is nondegenerate determine $v_{i} \in V$ (here $V=\mathbb{Q}^{3}$ or $\left.V=\operatorname{Mat}_{3,2}(\mathbb{Q})\right)$ such that

$$
B\left(v_{i}, e_{1}+e_{2}\right)=1,
$$

where we are assuming $e_{1}, e_{2} \in \mathcal{S}$, with \mathcal{S} the usual standard ordered basis of V (eg, if $V=M a t_{3,2}(\mathbb{Q})$ then $e_{1}=e_{11}, e_{2}=e_{12}$ etc $)$.

Adjoints

4. Determine the adjoint of f for the following morphisms f (with respect to the appropriate bilinear form B_{i} above).
i) $f: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3} ; \underline{x} \mapsto A \underline{x}$, where

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & 1 \\
-2 & 4 & -3
\end{array}\right]
$$

ii) $f: \operatorname{Mat}_{3,2}(\mathbb{Q}) \rightarrow \operatorname{Mat}_{3,2}(\mathbb{Q})$; $X \mapsto B X$, where

$$
B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

What is the adjoint of f in i) with respect to 'dot product'?

