Worksheet 7/24. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Bilinear forms

1. Which of the following functions are bilinear forms

i)
$$B: \mathbb{Q}^3 \times \mathbb{Q}^3 \to \mathbb{Q}$$
; $(u, v) \mapsto u_1v_3 + 5u_2v_2 - 6u_3v_1$.

- ii) $B: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$; $(u, v) \mapsto u_1^2 2u_1v_3 + v_2 u_3v_1$.
- iii) $B: Mat_{3,2}(\mathbb{Q}) \times Mat_{3,2} \rightarrow \mathbb{Q}$; $(X, Y) \mapsto tr(XY^t)$.

For those functions that are bilinear forms determine the matrix $[B]_S$, where S is the appropriate standard basis. Which of the bilinear forms are symmetric/antisymmetric/neither? Which are nondegenerate?

- 2. Let $B \in Bil_{\mathbb{K}}(V)$, $A = [B]_{\mathcal{B}}$. Prove:
 - *B* is symmetric if and only if *A* is symmetric (so $A = A^t$).
 - *B* is antisymmetric if and only if *A* is antisymmetric (so $A = -A^t$).
- 3. Let $\alpha, \beta \in V^*$. Consider the function

$$B_{\alpha,\beta}: V \times V \to \mathbb{K}; (u, v) \mapsto \alpha(u)\beta(v).$$

* Is *B* symmetric/antisymmetric/neither?

4. Let $B \in \text{Bil}_{\mathbb{K}}(V)$, $\mathcal{B} \subset V$ be an ordered basis. Is it necessarily true that if $[B]_{\mathcal{B}}$ is a diagonal matrix then $[B]_{\mathcal{C}}$, for any basis $\mathcal{C} \subset V$, is diagonalisable?

5. Let $A \in Mat_2(\mathbb{R})$ be symmetric. Is A diagonalisable? If $A \in Mat_2(\mathbb{Q})$ is symmetric then is A diagonalisable?

6. Let $B \in Bil_{\mathbb{K}}(V)$ be nondegenerate. Prove that, if B(u, v) = 0, for every $v \in V$, then $u = 0_V$.