Worksheet 7/24. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Bilinear forms

1. Which of the following functions are bilinear forms
i) $B: \mathbb{Q}^{3} \times \mathbb{Q}^{3} \rightarrow \mathbb{Q} ;(u, v) \mapsto u_{1} v_{3}+5 u_{2} v_{2}-6 u_{3} v_{1}$.
ii) $B: \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R} ;(u, v) \mapsto u_{1}^{2}-2 u_{1} v_{3}+v_{2}-u_{3} v_{1}$.
iii) $B: \operatorname{Mat}_{3,2}(\mathbb{Q}) \times \operatorname{Mat}_{3,2} \rightarrow \mathbb{Q} ;(X, Y) \mapsto \operatorname{tr}\left(X Y^{t}\right)$.

For those functions that are bilinear forms determine the matrix $[B]_{\mathcal{S}}$, where \mathcal{S} is the appropriate standard basis. Which of the bilinear forms are symmetric/antisymmetric/neither? Which are nondegenerate?
2. Let $B \in \operatorname{Bil}_{\mathbb{K}}(V), A=[B]_{\mathcal{B}}$. Prove:

- B is symmetric if and only if A is symmetric (so $A=A^{t}$).
- B is antisymmetric if and only if A is antisymmetric (so $A=-A^{t}$).

3. Let $\alpha, \beta \in V^{*}$. Consider the function

$$
B_{\alpha, \beta}: V \times V \rightarrow \mathbb{K} ;(u, v) \mapsto \alpha(u) \beta(v)
$$

* Is B symmetric/antisymmetric/neither?

4. Let $B \in \operatorname{Bil}_{\mathbb{K}}(V), \mathcal{B} \subset V$ be an ordered basis. Is it necessarily true that if $[B]_{\mathcal{B}}$ is a diagonal matrix then $[B]_{\mathcal{C}}$, for any basis $\mathcal{C} \subset V$, is diagonalisable?
5. Let $A \in \operatorname{Mat}_{2}(\mathbb{R})$ be symmetric. Is A diagonalisable? If $A \in M a t_{2}(\mathbb{Q})$ is symmetric then is A diagonalisable?
6. Let $B \in \operatorname{Bil}_{\mathbb{K}}(V)$ be nondegenerate. Prove that, if $B(u, v)=0$, for every $v \in V$, then $u=0 v$.
