Worksheet 7/18. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Minimal polynomial

1. Suppose that $A \in \operatorname{Mat}_{n}(\mathbb{C})$ such that

$$
\mu_{A}=(t-1)^{2} .
$$

Which of the following polynomial relations can A satisfy?

- $A^{3}-2 A^{2}+A=0_{n}$,
- $A^{3}-3 A^{2}+3 A-I_{n}=0_{n}$,
- $A^{2}-3 A+2=0_{n}$,
$-A^{5}-3 A^{4}+5 A-2=0$.

2. Prove that the minimial polynomial of an endomorphism L is unique: ie, show that if $f \in \operatorname{ker} \rho_{L}$ and $\operatorname{deg} f=\operatorname{deg} \mu_{L}$ and the leading coefficient of f is 1 , then $f=\mu_{L}$.
3. Determine the minimal polynomials of the following matrices (you will want to use that $\chi_{A} \in \operatorname{ker} \rho_{A}$):

- $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$,
$-A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
$-A=\left[\begin{array}{cccc}-1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$.
Are these matrices diagonalisable?

4. True or false: if $L \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{n}\right)$ is an endomorphism and $f \in \operatorname{ker} \rho_{L}$ is such that $\operatorname{deg} f=n$ and f has leading entry 1 , then $\chi_{L}=f$. Prove your assertion if you think the statement is TRUE; provide a counterexample if you think the statement is FALSE.
5. Let $L \in \operatorname{End}_{\mathbb{C}}(V)$ and $n=\operatorname{dim} V$. Prove that χ_{L} divides μ_{L}^{n}.
6. Suppose that $A \in \operatorname{Mat}_{n}(\mathbb{C})$ is invertible, diagonalisable and such that

$$
A^{6}-4 A^{5}+6 A^{4}-4 A^{3}+A^{2}=0_{n}
$$

Prove that $A=I_{n}$.

