Worksheet 7/17. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Algebra of polynomials

1. Use the division algorithm to find g, h, with $\operatorname{deg} h<\operatorname{deg} f_{2}$ and such that $f_{1}=g f_{2}+h$:
a) $f_{1}=t^{4}+2, f_{2}=t^{3}+5 t^{2}-1$,
b) $f_{1}=3 t^{13}-6 t^{5}+3 t, f_{2}=t^{3}+t^{2}+t+1$,
c) $f_{1}=-7 t^{2}+5 t+2, f_{2}=4 t^{2}+4 t$.
2. Perform the Euclidean algorithm on the polynomials in Question 1 to determine the 'greatest common divisor' of f_{1}, f_{2} : ie, find $u, v \in \mathbb{C}[t]$ such that

$$
u f_{1}+v f_{2}=\operatorname{gcd}\left(f_{1}, f_{2}\right)
$$

Which of the pairs of polynomials in 1 are relatively prime?
(Hint: if you get stuck then consider the corresponding algorithms for integers and try to transfer the method to the polynomial setting.)

