Worksheet 7/17. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Algebra of polynomials

1. Use the division algorithm to find g, h, with deg $h < \deg f_2$ and such that $f_1 = gf_2 + h$:

a)
$$f_1 = t^4 + 2$$
, $f_2 = t^3 + 5t^2 - 1$,

- b) $f_1 = 3t^{13} 6t^5 + 3t$, $f_2 = t^3 + t^2 + t + 1$,
- c) $f_1 = -7t^2 + 5t + 2$, $f_2 = 4t^2 + 4t$.

2. Perform the Euclidean algorithm on the polynomials in Question 1 to determine the 'greatest common divisor' of f_1, f_2 : ie, find $u, v \in \mathbb{C}[t]$ such that

$$uf_1 + vf_2 = \gcd(f_1, f_2).$$

Which of the pairs of polynomials in 1 are relatively prime?

(*Hint: if you get stuck then consider the corresponding algorithms for integers and try to transfer the method to the polynomial setting.*)